
 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8262 Page 1 of 9 

  

The Hitchhiker’s Guide to Developing OneSAF HLA Interfaces 

 
Jennifer Lewis, Kirk E. Kemmler and Khoi Do 

Science Applications International Corporation 

Orlando, FL 

jennifer.e.lewis@saic.com, kirk.e.kemmler@saic.com, khoi.m.do@saic.com 

 

 
ABSTRACT 

 

Army Capabilities Integration Center (ARCIC) is integrating OneSAF into its Battle Lab Collaborative Simulation 

Environment (BLCSE), in an ongoing effort to integrate new technologies into war gaming experimentation. This 

integration requires modifications to OneSAF’s High Level Architecture (HLA) interoperability module to enable 

OneSAF to interact in the experimental and ever-changing BLCSE federation. This paper introduces OneSAF HLA 

interface design concepts and provides detailed examples to allow the reader to perform similar development in his 

own simulation environment. The reader will learn about the OneSAF HLA interoperability architecture and 

structure, how to use OneSAF’s Object Data Model (ODM) and Federation Object Model (FOM) variables, and how 

to implement converter classes when FOM changes are required. To illustrate these concepts, the paper uses case 

studies from the BLCSE integration effort, which has resulted in successful, record-run experiments using OneSAF 

in HLA mode. Specifically, the case studies describe how to implement a new FOM attribute to enable the OneSAF 

Plan View Display (PVD) to display whether an external individual combatant is armed, and how to implement a 

new FOM interaction to perform terrain damage effects.  

 

 
ABOUT THE AUTHORS 

 

Jennifer Lewis is a simulation engineer supporting ARCIC’s Battle Lab Collaborative Simulation Environment. She 

holds a Master of Science degree in Computer Science with an emphasis in Telecommunications and Networking 

from the University of Texas at Dallas and is a Certified Modeling and Simulation Professional. She has designed 

and implemented network protocols for the telecommunications and defense industries for the past eight years. 
 

Kirk E. Kemmler is a software engineer supporting ARCIC’s Battle Lab Collaborative Simulation Environment. He 

holds a Bachelor of Science degree in Computer Engineering from the University of Central Florida. Since January 

2000 he has participated in the design and development of Man-In-The-Loop, Virtual, and Constructive simulation 

programs. 

 

Khoi Do is a simulation software engineer supporting ARCIC’s Battle Lab Collaborative Simulation Environment. 

He holds a Bachelor of Science degree in Computer Science from the University of Central Florida. He has 

developed and integrated military constructive and virtual simulations for the past nine years. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8262 Page 2 of 9 

The Hitchhiker’s Guide to Developing OneSAF HLA Interfaces 

 
Jennifer Lewis, Kirk E. Kemmler and Khoi Do 

Science Applications International Corporation 

Orlando, FL 

jennifer.e.lewis@saic.com, kirk.e.kemmler@saic.com, khoi.m.do@saic.com 

 

 

INTRODUCTION 

 

Like many other simulation communities, Army 

Capabilities Integration Center (ARCIC) is integrating 

OneSAF into its Battle Lab Collaborative Simulation 

Environment (BLCSE). BLCSE is a large scale 

federation, operating primarily under the High Level 

Architecture (HLA). Because BLCSE uses a Federation 

Object Model (FOM) not inherently supported by 

OneSAF, ARCIC extended the OneSAF baseline to 

support its specific needs. The technical team 

performing this task resolved numerous integration 

issues. However, perhaps the most problematic 

integration issue encountered was a simple lack of 

expertise in OneSAF development. The intent of this 

paper is to augment the information provided by PM 

OneSAF’s formal development training by documenting 

the knowledge of OneSAF architecture and 

development gained during ARCIC’s integration effort. 

The paper will describe the processes and techniques 

the integration team used to successfully modify the 

OneSAF HLA interoperability module. The paper uses 

specific examples from BLCSE’s integration efforts to 

illustrate these techniques. However, it is written to 

serve as a general developer’s guide, a document the 

reader can use to perform similar development in his 

own simulation environment. 

 

 

DEVELOPMENT ENVIRONMENT SET-UP 

 

The standard OneSAF installation program does not 

configure the Windows or Linux operating systems for 

development. Included with the standard OneSAF 

delivery products are instructions, usually bundled with 

the source code archive, on how to configure both 

Windows and Linux operating systems for 

development. This step has to be accomplished separate 

from the OneSAF installation.  Configuring OneSAF for 

development usually includes either installing the 

source code archive or 
i
re-naming directories that get 

installed with the runtime installation, and configuring 

the operating system with environment variables. The 

major issues with operating system configuration for 

OneSAF development have been controlling the 

installation of C++ system libraries for both Windows 

(Cygwin) and Linux. These issues often result in C++ 

compilation errors in OneSAF Environment Runtime 

Component (ERC) source code. Depending on the exact 

development environment, simply installing gcc 3.3.2 is 

not sufficient to correct these problems.  

 

A known issue with the OneSAF Cygwin installation is 

that it does not provide the correct g++ libraries to 

compile ERC C++ source code error free. On the Linux 

development side, the installation of gcc3.3.2 is needed 

on Red Hat Enterprise 4.x, Fedora Core 5.x (and older), 

and CENTOS 4.x (and older). For Red Hat 5.x, Fedora 

Cora 6.x, and CentOS 5.x, the installation of gcc3.3.2 is 

not needed and should not be done. As of version 1.5.1, 

OneSAF can be compiled using the native gcc4.1.x 

compiler that comes with these newer operating 

systems. To compile the OneSAF JAVA source code, 

Java JDK 1.5.x is needed.  For development on Red Hat 

5.x, Fedora Core 6.x and CentOS 5.x, it is 

recommended to use Java JDK 1.6.x.  However, only 

OneSAF version 2.1(with Java 1.6 OneSAF patch) or 

newer versions are needed to be able to compile. The 

step-up to Java 1.6.x is needed to solve OneSAF multi-

threaded compatibility issues with newer Linux kernels.  

Figure 1 summarizes the various operating systems and 

software needed for each development environment. 

 

Runtime Infrastructure (RTI) Setup 

 

The HLA RTI is an important part of configuring 

OneSAF to compile in the capability to run the HLA 

interoperability adapter. The BLCSE federation uses the 

RTI-1.3NGmatrexVx.x for interoperability testing of 

                                                           
i
 With the release of OOS Version 2.0 the baseline 

directories have been standardized for both runtime 

and development environments. 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8262 Page 3 of 9 

OneSAF. Initial HLA interoperability testing began 

with version 3.1 and has progressed to version 5.5 

during the Omni Fusion 2008 experiment. The 

integration team identified several issues with the 

version 3 releases of the MATREX RTI, mainly related 

to the stability of the RTI when federates improperly 

left the federation or when a network connection was 

too heavily loaded. The team worked around these 

issues by maintaining strict control over when and how 

a federate joined and resigned from the federation. 

However, the team has found recent releases of the 

MATREX RTI to be robust and stable enough for use 

in the BLCSE federation, even under high network 

loads.  

 

In order to compile OneSAF HLA interoperability 

source codes, the RTI and its Java binding files must be 

installed. Proper environment variables also must be set, 

specifically RTI_HOME, RTI_BUILD_TYPE, 

RTI_JAR_PATH, and RTI_JAR_NAME. 

OneSAF 2.1

Red Hat 5.x
CentOS 5.x

Fedora Core 6.x

Red Hat 4.x
CentOS 4.x

Fedora Core 5.x

Windows XP
Windows 2000

Java 1.6.x

gcc 4.1.x

Java 1.5.x

gcc 3.3.2

Cygwin

Java 1.5.x

gcc 3.3.2RTI RTI

RTI

 
Figure 1. OneSAF Development Environment 

 

 

Building OneSAF Source 

 

Once the RTI is installed and environment variables are 

set, the user can perform either a top-down standard 

OneSAF build, per the OneSAF build instructions, or a 

more pointed HLA build. The HLA build can be done 

by building only the HLA interoperability directories in 

both the core and any external development directories 

being used that contain additional HLA core 

inheritances and extensions.  For BLCSE purposes, the 

integration team developed additional object and 

interaction converters, which are located in the 

extension directory “SWR/src/net/onesaf/ext/blcse”. It 

is recommended that all external OneSAF development 

be done under the extension directory. In order for 

OneSAF to recognize the new extension directory and 

be included in the top down standard build, the 

extension needs to be added to the “SWR/confdb.csv” 

file and build with the “-e <extension_name>” 

parameter.  For example, “./build –l build.log –e blcse”, 

where “blcse” is the BLCSE extension.  The BLCSE 

extension provides specific functionality for the BLCSE 

FOM, which is a derivative of the MATREX FOM. The 

BLCSE federation is in continuous change and 

development. Therefore, the BLCSE FOM rarely 

coincides exactly with the latest released MATREX 

FOM. BLCSE engineers are continuously collaborating 

with MATREX to incorporate BLCSE FOM additions 

and changes back into the MATREX FOM through the 

MATREX FOM Management Group’s change request 

process. 

 

Configuring OneSAF’s HLA 

 

Configuring OneSAF to operate with an HLA 

interoperability adapter starts with the OneSAF 

property “net.onesaf.core.services.sim.interopmgt. 

interfaceConfig”. Adding this property to the 

“onesaf.properties” file will enable OneSAF to read in 

all the interoperability configuration properties needed 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8262 Page 4 of 9 

for HLA or DIS, depending on how the configuration 

file is configured. The HLA interoperability interface 

configuration file details and parameterizes various 

OneSAF HLA settings such as the FOM to use, 

federation name, federate name, and Data Distribution 

Management settings. The file also lists the OneSAF 

HLA converter classes which are the primary elements 

to converting OneSAF interactions and objects to their 

FOM counterparts and vice versa.  The various 

OneSAF interoperability configuration files are located 

under “PAIR/interop” directory.  Figure 2 shows HLA 

federate settings, and Figure 3 shows the converter 

classes currently being used in the BLCSE 

interoperability file. 

 

 

HLA INTEROPERABILITY ARCHITECTURE 

 

OneSAF was developed to enable the interoperability 

adapter to communicate natively as either HLA or DIS. 

Architecturally, there is a clearly defined line drawn 

between OOS and the interoperability interfaces, 

whether it is HLA or DIS. It is best that this line is only 

crossed via the provided interfaces in the Object Data 

Model (ODM). The public ODM interfaces, found in 

net.onesaf.core.services.odm, provide visibility into the 

Runtime Data Model (RDM) objects and classes and 

give the developer nearly complete access to needed 

data for proper OneSAF synchronization with the 

federation. 

 

Core and Extension Packages 

 

The core OneSAF baseline provides MATREX 

compatible object and interaction classes needed for 

basic federate operation. Most of the basic data type 

conversion methods are provided allowing the 

developer to easily convert from and to the OneSAF 

ODM and FOM data types, eliminating the need for 

each extension package developer to re-create these 

converters. Not completely provided are the interfaces 

for the interactions, called converters. Often what the 

core interoperability baseline lacks are converters for 

specific or customized functionality. Using standard 

object-oriented principles and standards, it is relatively 

straightforward to extend from and use all of the 

existing OneSAF HLA architecture in order to create 

specifically tailored converters. 

 

 

 

 
Figure 2. BLCSE OneSAF HLA federate settings 

 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8262 Page 5 of 9 

 

 

 

 
 

Figure 3.  BLCSE OneSAF HLA converter settings 

 

 

Converter Class Structure 

 

Standard OneSAF HLA converters contain at least two 

methods, processOOSFiredInter (SimulationEvent) and 

processFOMReceivedInter(InteractionClassRTIHandle

). The former method is called by the Interaction 

Handler to convert OneSAF ODM outbound or 

published interaction data to the FOM. The latter 

method is called to convert inbound or subscribed FOM 

interaction data into OneSAF ODM. Another required 

method within the converter classes is the 

initialize(InteractionHandler) method. This method 

adds the subscription and publish classes for the 

converter to the publish and subscribe list for the 

instance of the HLA interoperability adapter.  

Data Type and Enumeration Mapping 

 

OneSAF relies on the enumerated entity and munitions 

names in the Object Model Template (OMT) file to 

perform enumeration mappings between OneSAF entity 

and munitions compositions to the FOM entity and 

munitions data. It is important to note the difference in 

the OMT and Federation Execution Data (FED) files. 

Both are representations of the FOM. However, the 

FED includes the subset of the data in the OMT, which 

the RTI requires at runtime to set up proper publication 

and subscription routes. Therefore, only the OMT file 

contains the enumerated data type (EDT) definitions 

OneSAF requires to perform proper enumeration 

mapping.  



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8262 Page 6 of 9 

In order for OneSAF to map corresponding entity and 

munitions FOM data to OneSAF entity and munitions 

compositions HLA entity and munitions enumeration 

mapping files are utilized. Listed in the OneSAF HLA 

configuration file are references to FOM mapping data 

files for entities and munitions. These files list the FOM 

enumeration description and the OneSAF composition. 

Also listed in these files is the intended direction of the 

mapping. A value of “inbound” would be a FOM to 

OneSAF mapping, a value of “outbound” is a OneSAF 

to FOM mapping, and a value of “bidirectional” would 

be for both directions. 

 

 

FOM CONVERTER CLASSES 

 

As released, OneSAF version 2.1 comes with various 

FOM support.  It supports Entity Resolution Federation 

(ERF) FOM version 4.0, Multi-Resolution Federation 

(MRF) FOM version 4.0, and MATREX FOM versions 

2.0 through 4.0. Since MATREX has released 

numerous versions of their FOM, OneSAF kept its 

converter classes compatible with all major FOM 

releases. Each MATREX FOM release has its own 

directory structure with supporting converter classes 

within the OneSAF HLA framework. With each new 

MATREX FOM release, the interaction and object 

converter classes are updated as an extension of the 

previous FOM converter classes. For example, the fire 

interaction converter for MATREX FOM version 4.0 

extends � version 3.1e extends � version 3.0 extends 

� version 2.2 extends � version 2.0.  Along with the 

interaction and object converters, OneSAF also includes 

a set of utility converter classes that convert commonly 

used complex FOM data types, such as State Vector, to 

simple FOM data types. 

 

Converters get called when one of two conditions are 

triggered. One condition is when a subscribed OneSAF 

interaction is created or a subscribed OneSAF object 

attribute is changed, e.g., when a OneSAF fire 

interaction is created or a OneSAF entity’s position 

changes. When this condition occurs, OneSAF converts 

interaction/object data to FOM interaction/object data.  

The other condition that triggers converters is when a 

subscribed FOM interaction or object attribute update is 

delivered to OneSAF. In this case, the corresponding 

converter translates the FOM interaction/object data to 

OneSAF interaction/object data that gets posted to 

OneSAF’s sim engine. If the FOM object update is for a 

newly discovered entity, the subscribed entity converter 

class creates a OneSAF entity to represent that external 

entity in OneSAF. This entity is marked as transient.  It 

has no physical or behavioral model associated to it.  It 

is important to note that the OneSAF checkpoint 

process does not save transient entities, as OneSAF 

currently only supports light-weight checkpoints during 

an HLA or DIS exercise. 

 

All OneSAF complex data types are broken down to 

basic data types. OneSAF supports the External Data 

Representation (XDR) standard used by most HLA 

federations.  OneSAF reads and writes to the FOM data 

buffer through its two XDR classes. 

“XDROutputStream.java” writes OneSAF basic data 

types to the FOM data buffer.  “XDRInputStream.java” 

reads from the FOM data buffer to populate OneSAF 

data types. These classes extend Java’s 

DataOutputStream class, adding new functionality 

specific for writing and reading FOM compliant data, 

such as padding shorts, Booleans and strings to 4-byte 

boundaries.  

 

MATREX FOM converters that come included in 

OneSAF cover most HLA interactions and objects 

translation needs.  However, over the course of BLCSE 

experiments, new interoperability requirements with 

other simulations have driven the needs for new 

converters to translate new interactions and objects.  

Some of the converters needed are in the areas of 

mounting and dismounting, supply transfer, and 

maintenance casualty care and/or evacuation.  

 

 

CASE STUDY: NEW FOM ATTRIBUTE 

 

Functional Requirement 

 

To support the Complex Web Defense (CWD) 

experiment conducted in March 2008, BLCSE had a 

requirement to portray civilians as hostile entities if they 

are visibly carrying one or more weapons. However, the 

FOM used by the BLCSE federation only contained 

enough information to describe the weapon state of a 

single weapon being carried by a civilian. 

 

Implementation 

 

To implement the requirement, the team created a new 

FOM attribute called SecondaryWeaponState in the 

existing IndividualCombatant object. In conjunction 

with the existing FOM attribute, PrimaryWeaponState, 

the FOM can describe the states of both weapons being 

carried by a civilian or soldier entity. The FOM is a 

simple text file written in OMT format. Therefore, it 

can be modified using a standard text editor or using a 

FOM-specific application tool, such as Aegis’s Object 

Model Development Tool (OMDT). Figure 4 shows the 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8262 Page 7 of 9 

FOM detail of the modified Individual Combatant 

object from a standard text editor. 

 

In order for OneSAF to be able to populate this new 

FOM attribute, the integration team created an 

IndividualCombatantConverter in the BLCSE extension 

package. Because the FOM used in the BLCSE 

federation is a variant of the MATREX FOM, the actual 

file is located at services\sim\interopmgt\hla\converters\ 

matrex\blcse\IndividualCombatantConverter.java. This 

file creates the necessary FOM and ODM variables. It 

also adds these variables to the lists of attributes which  

later will be sent to the RTI for publication and 

subscription.  

 

 

 
 

Figure 4. FOM detail of new Individual Combatant object attribute 

 

 

The handleODMPropertyChanged function populates 

the FOM variable from internal ODM variables by 

calling the handleODMWeaponState function, adapted 

from the existing handleODMPrimaryWeaponState 

function. The ODM value, obtained from the Lifeform 

class, is translated to the proper FOM enumeration 

values. This value is then written in XDR format to the 

FOM data buffer, from which it will be transmitted to 

the RTI through the setAttributeInClassHandle function.  

 

The handleFOMAttrRequest function populates the 

ODM variable for data coming in from the RTI by 

calling the handleFOMSecondaryWeaponState 

function, adapted from the existing 

handleFOMICWeaponState function. This function 

decodes the XDR-formatted data and sets the Lifeform 

object with the correct weapon state value. The function 

also determines if the Individual Combatant (IC) is 

carrying a visible weapon, by evaluating the LifeForm’s 

weapon states. If the IC is not carrying a visible 

weapon, the function uses the Lifeform’s Entity base 

class to default the IC’s composition name to a standard 

civilian. This triggers the OneSAF Plan View Display 

(PVD) to show the IC with a green, neutral icon, 

effectively hiding the IC’s true identity. In addition, by 

modifying the composition name, the user cannot see 

the true composition by using the icon’s tool tip 

information.  

 

Results 

 

The converter classes worked effectively for the CWD 

experiment, preventing operators from knowing if an 

apparent civilian might, at some point, pick up a gun 

and become a hostile entity. Another option for 

implementing the same functionality is to create an 

attribute called ICWeaponState that has cardinality 0+. 

This would allow an IC to have any number of weapons 

without requiring additional FOM or converter class 

changes. 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8262 Page 8 of 9 

CASE STUDY:  NEW FOM INTERACTION 

 

Functional Requirement 

 

To support CWD, BLCSE had a requirement to provide 

a visual indication on the PVD when an Ultra High 

Resolution Building (UHRB) becomes destroyed. This 

required OneSAF to interoperate with a Dynamic 

Terrain Server (DTS). The DTS determines when a 

UHRB becomes destroyed based on detonations that 

occur within the area of the UHRB. Information is 

passed from the DTS to OneSAF via a new HLA 

interaction called FeatureDamage, which contains a 

parameter indicating the center of mass location of the 

affected UHRB. 

 

Implementation 

 

Once the team added the Feature Damage interaction to 

the FOM, OneSAF needed a way to utilize the new data 

that would be delivered via the interaction. As with the 

new FOM attribute, a converter class was written using 

existing OneSAF super classes to convert the byte 

stream of data into useable values. The data converted 

are double values resolving the three points of the 

coordinate specifying the UHRB’s center of mass. From 

the location provided in the interaction, a one square 

meter bounding box is created. Using the bounding box, 

a call is made to get the UHRB within the boundary, 

and the damage fraction is then set to 100%. Within 

OneSAF when a UHRB damage fraction is set to 

anything above zero, a visual PVD indicator is drawn. 

In this case, a red line outlines the UHRB to identify 

that it has been damaged or destroyed. 

 

Since ODM classes have not been developed yet for 

damage fraction level access to features like UHRB’s 

the only way gain access to this level of data was to 

access the FeatureAPI class and EnvironmentHandle 

class directly.  Most of the work to allow ODM access 

to the ERC architecture is not due to be complete until 

around OneSAF version 4.0. Meanwhile, accessing the 

lower level class is a risky but viable option. Using 

these lower level classes limits the ease of access and 

may cause some modification of data that was 

unintended.  

 

Results 

 

The effects of this implementation were visual only. In 

no way was the traffic ability of the buildings affected. 

The architecture to provide this level of interface from 

the HLA converter classes is just not available yet and 

is difficult to implement. Detailed knowledge of the 

ERC architecture and a familiarity with the PVD 

interfaces is required. Most of the damage level and 

rubble capability exists in the low resolution buildings, 

but the ability to rubble or largely degrade UHRBs is 

not yet available. 

 

Great care should be exercised when using the OMDT 

to modify the OMT and FED files. When the FOM is 

created, each object and interaction is given a numerical 

identifier. Some applications, including OneSAF, use 

these identifiers, rather than the interaction name, to 

access the FOM’s interaction data. When adding a new 

interaction to the FOM, the OMDT does not necessarily 

add the interaction to the end of the list of identifiers. 

Instead, it inserts the new interaction into the sequence 

based on the new interaction’s class hierarchy. This can 

cause a cascading re-numbering of all existing 

interaction IDs and cause problems for applications that 

rely on pre-defined interaction IDs. 

 

 

DIS INTEROPERABILITY ARCHITECTURE 

 

Besides from supporting HLA, OneSAF also natively 

supports DIS. Switching which interface to use can 

easily be done by changing the interoperability interface 

within the “onesaf.properties” file.  The DIS interface is 

similar to the HLA interface on how it communicates 

with OneSAF Object Database (ODB).  It also contains 

converter classes for of standard IEEE 1278 PDUs. 

However, the underlying architecture for subscribing 

and translating the OneSAF ODB is different from the 

HLA implementation. It is also possible to enable both 

interfaces at the same time. By doing so, the OneSAF 

node can act as a DIS-HLA gateway.  DIS data will be 

translated into the OneSAF ODB and then translated to 

HLA and vice versa.  The Advanced Concepts Research 

Tool (ACRT) program uses this architecture to allow 

OneSAF to receive simulation traffic via HLA and to 

send data to it 3-D visual system via DIS. 

 

 

SUMMARY 

 

OneSAF interoperability is currently a major objective 

of many simulation communities. The details in this 

paper are intended to serve as a guide for developing 

HLA interoperability for specific needs within a 

simulation environment.  The BLCSE OneSAF 

integration team has resolved many technical and 

developmental issues during the past two years, which 

have allowed OneSAF to participate in successful, 

record-run experiments within a large-scale, highly 

distributed federation in HLA mode. These issues range 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008 

2008 Paper No. 8262 Page 9 of 9 

from network configuration to performance. More 

issues and resolutions to this work can be found the 

2007 I/ITSEC paper entitled “Modernizing Army 

Experimentation Using OOS” and the 2008 I/ITSEC 

Paper entitled “OneSAF Testing in Complex Web 

Defense Experiment”. 

 

 


