Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

The Hitchhiker’s Guide to Developing OneSAF HLA Interfaces

Jennifer Lewis, Kirk E. Kemmler and Khoi Do
Science Applications International Corporation
Orlando, FL
jennifer.e.lewis @saic.com, Kkirk.e.kemmler @saic.com, khoi.m.do @saic.com

ABSTRACT

Army Capabilities Integration Center (ARCIC) is integrating OneSAF into its Battle Lab Collaborative Simulation
Environment (BLCSE), in an ongoing effort to integrate new technologies into war gaming experimentation. This
integration requires modifications to OneSAF’s High Level Architecture (HLA) interoperability module to enable
OneSAF to interact in the experimental and ever-changing BLCSE federation. This paper introduces OneSAF HLA
interface design concepts and provides detailed examples to allow the reader to perform similar development in his
own simulation environment. The reader will learn about the OneSAF HLA interoperability architecture and
structure, how to use OneSAF’s Object Data Model (ODM) and Federation Object Model (FOM) variables, and how
to implement converter classes when FOM changes are required. To illustrate these concepts, the paper uses case
studies from the BLCSE integration effort, which has resulted in successful, record-run experiments using OneSAF
in HLA mode. Specifically, the case studies describe how to implement a new FOM attribute to enable the OneSAF
Plan View Display (PVD) to display whether an external individual combatant is armed, and how to implement a
new FOM interaction to perform terrain damage effects.

ABOUT THE AUTHORS

Jennifer Lewis is a simulation engineer supporting ARCIC’s Battle Lab Collaborative Simulation Environment. She
holds a Master of Science degree in Computer Science with an emphasis in Telecommunications and Networking
from the University of Texas at Dallas and is a Certified Modeling and Simulation Professional. She has designed
and implemented network protocols for the telecommunications and defense industries for the past eight years.

Kirk E. Kemmler is a software engineer supporting ARCIC’s Battle Lab Collaborative Simulation Environment. He
holds a Bachelor of Science degree in Computer Engineering from the University of Central Florida. Since January
2000 he has participated in the design and development of Man-In-The-Loop, Virtual, and Constructive simulation
programs.

Khoi Do is a simulation software engineer supporting ARCIC’s Battle Lab Collaborative Simulation Environment.

He holds a Bachelor of Science degree in Computer Science from the University of Central Florida. He has
developed and integrated military constructive and virtual simulations for the past nine years.

2008 Paper No. 8262 Page 1 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

The Hitchhiker’s Guide to Developing OneSAF HLA Interfaces

Jennifer Lewis, Kirk E. Kemmler and Khoi Do
Science Applications International Corporation
Orlando, FL
jennifer.e.lewis @saic.com, Kkirk.e.kemmler @saic.com, khoi.m.do @saic.com

INTRODUCTION

Like many other simulation communities, Army
Capabilities Integration Center (ARCIC) is integrating
OneSAF into its Battle Lab Collaborative Simulation
Environment (BLCSE). BLCSE is a large scale
federation, operating primarily under the High Level
Architecture (HLA). Because BLCSE uses a Federation
Object Model (FOM) not inherently supported by
OneSAF, ARCIC extended the OneSAF baseline to
support its specific needs. The technical team
performing this task resolved numerous integration
issues. However, perhaps the most problematic
integration issue encountered was a simple lack of
expertise in OneSAF development. The intent of this
paper is to augment the information provided by PM
OneSAF’s formal development training by documenting
the knowledge of OneSAF architecture and
development gained during ARCIC’s integration effort.
The paper will describe the processes and techniques
the integration team used to successfully modify the
OneSAF HLA interoperability module. The paper uses
specific examples from BLCSE’s integration efforts to
illustrate these techniques. However, it is written to
serve as a general developer’s guide, a document the
reader can use to perform similar development in his
own simulation environment.

DEVELOPMENT ENVIRONMENT SET-UP

The standard OneSAF installation program does not
configure the Windows or Linux operating systems for
development. Included with the standard OneSAF
delivery products are instructions, usually bundled with
the source code archive, on how to configure both
Windows and Linux operating systems for
development. This step has to be accomplished separate
from the OneSAF installation. Configuring OneSAF for
development usually includes either installing the

2008 Paper No. 8262 Page 2 of 9

source code archive or 're-naming directories that get
installed with the runtime installation, and configuring
the operating system with environment variables. The
major issues with operating system configuration for
OneSAF development have been controlling the
installation of C++ system libraries for both Windows
(Cygwin) and Linux. These issues often result in C++
compilation errors in OneSAF Environment Runtime
Component (ERC) source code. Depending on the exact
development environment, simply installing gcc 3.3.2 is
not sufficient to correct these problems.

A known issue with the OneSAF Cygwin installation is
that it does not provide the correct g++ libraries to
compile ERC C++ source code error free. On the Linux
development side, the installation of gcc3.3.2 is needed
on Red Hat Enterprise 4.x, Fedora Core 5.x (and older),
and CENTOS 4.x (and older). For Red Hat 5.x, Fedora
Cora 6.x, and CentOS 5.x, the installation of gcc3.3.2 is
not needed and should not be done. As of version 1.5.1,
OneSAF can be compiled using the native gccd.l.x
compiler that comes with these newer operating
systems. To compile the OneSAF JAVA source code,
Java JDK 1.5.x is needed. For development on Red Hat
5x, Fedora Core 6.x and CentOS 5.x, it is
recommended to use Java JDK 1.6.x. However, only
OneSAF version 2.1(with Java 1.6 OneSAF patch) or
newer versions are needed to be able to compile. The
step-up to Java 1.6.x is needed to solve OneSAF multi-
threaded compatibility issues with newer Linux kernels.
Figure 1 summarizes the various operating systems and
software needed for each development environment.

Runtime Infrastructure (RTI) Setup

The HLA RTI is an important part of configuring
OneSAF to compile in the capability to run the HLA
interoperability adapter. The BLCSE federation uses the
RTI-1.3NGmatrexVx.x for interoperability testing of

! With the release of OOS Version 2.0 the baseline
directories have been standardized for both runtime
and development environments.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

OneSAF. Initial HLA interoperability testing began
with version 3.1 and has progressed to version 5.5
during the Omni Fusion 2008 experiment. The
integration team identified several issues with the
version 3 releases of the MATREX RTI, mainly related
to the stability of the RTI when federates improperly
left the federation or when a network connection was
too heavily loaded. The team worked around these
issues by maintaining strict control over when and how
a federate joined and resigned from the federation.

However, the team has found recent releases of the
MATREX RTI to be robust and stable enough for use
in the BLCSE federation, even under high network
loads.

In order to compile OneSAF HLA interoperability
source codes, the RTI and its Java binding files must be
installed. Proper environment variables also must be set,
specifically RTI_HOME, RTI_BUILD_TYPE,
RTI_JAR_PATH, and RTI_JAR_NAME.

OneSAF 2.1

Red Hat 5.x
CentOS 5.x
Fedora Core 6.x

Red Hat 4.x
CentOS 4.x
Fedora Core 5.x

Windows XP
Windows 2000

Cygwin

Java 1.5.x

gcc 3.3.2

RTI

Figure 1. OneSAF Development Environment

Building OneSAF Source

Once the RTI is installed and environment variables are
set, the user can perform either a top-down standard
OneSAF build, per the OneSAF build instructions, or a
more pointed HLA build. The HLA build can be done
by building only the HLA interoperability directories in
both the core and any external development directories
being used that contain additional HLA core
inheritances and extensions. For BLCSE purposes, the
integration team developed additional object and
interaction converters, which are located in the
extension directory “SWR/src/net/onesaf/ext/blcse”. It
is recommended that all external OneSAF development
be done under the extension directory. In order for
OneSAF to recognize the new extension directory and
be included in the top down standard build, the
extension needs to be added to the “SWR/confdb.csv”
file and build with the “-e <extension_name>"
parameter. For example, “./build -1 build.log —e blcse”,

2008 Paper No. 8262 Page 3 of 9

where “blcse” is the BLCSE extension. The BLCSE
extension provides specific functionality for the BLCSE
FOM, which is a derivative of the MATREX FOM. The
BLCSE federation is in continuous change and
development. Therefore, the BLCSE FOM rarely
coincides exactly with the latest released MATREX
FOM. BLCSE engineers are continuously collaborating
with MATREX to incorporate BLCSE FOM additions
and changes back into the MATREX FOM through the
MATREX FOM Management Group’s change request
process.

Configuring OneSAF’s HLA

Configuring OneSAF to operate with an HLA
interoperability adapter starts with the OneSAF
property “net.onesaf.core.services.sim.interopmgt.
interfaceConfig”. Adding this property to the
“onesaf.properties” file will enable OneSAF to read in
all the interoperability configuration properties needed

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

for HLA or DIS, depending on how the configuration
file is configured. The HLA interoperability interface
configuration file details and parameterizes various
OneSAF HLA settings such as the FOM to use,
federation name, federate name, and Data Distribution
Management settings. The file also lists the OneSAF
HLA converter classes which are the primary elements
to converting OneSAF interactions and objects to their
FOM counterparts and vice versa. The various
OneSAF interoperability configuration files are located
under “PAIR/interop” directory. Figure 2 shows HLA
federate settings, and Figure 3 shows the converter
classes currently being used in the BLCSE
interoperability file.

HLA INTEROPERABILITY ARCHITECTURE

OneSAF was developed to enable the interoperability
adapter to communicate natively as either HLA or DIS.
Architecturally, there is a clearly defined line drawn
between OOS and the interoperability interfaces,
whether it is HLA or DIS. It is best that this line is only
crossed via the provided interfaces in the Object Data

<?xml version="1.0" encoding="UTF-§" ?2:-

<InteropConfig refID="1" >
<interfaceConfigurationss>
<HLAConfig refID="2">
<name>MATREX HLA Adapter< ramel-

Model (ODM). The public ODM interfaces, found in
net.onesaf.core.services.odm, provide visibility into the
Runtime Data Model (RDM) objects and classes and
give the developer nearly complete access to needed
data for proper OneSAF synchronization with the
federation.

Core and Extension Packages

The core OneSAF baseline provides MATREX
compatible object and interaction classes needed for
basic federate operation. Most of the basic data type
conversion methods are provided allowing the
developer to easily convert from and to the OneSAF
ODM and FOM data types, eliminating the need for
each extension package developer to re-create these
converters. Not completely provided are the interfaces
for the interactions, called converters. Often what the
core interoperability baseline lacks are converters for
specific or customized functionality. Using standard
object-oriented principles and standards, it is relatively
straightforward to extend from and use all of the
existing OneSAF HLA architecture in order to create
specifically tailored converters.

<classNamernet.onesaf, core. services. sin. interopugt.hla, HLaInterfaces /classNane>-

<federationMNane>BLC3E_HLA Federation</federationWMNames

<federateNane>005_windowa /federateNanss-
<FOMName>natrex_fom wi.0_blcze</FOMNane>
<autodoinrfalsedfautoloins
<autodoindindtate>RUNNINGS fautodoindindtate:

<sitelD>=8</zitell>
<applicationID>5< applicationID>

<timeRealating>-false< /tineRequlating-
<timeConstrained-false< /tineConstraineds
<timelookahead-1</tinelookaheads-

<l== 100 ms (default walue) -->
<RTITickDelay>=100</RTITickDelay>

Gb== loms =

<RETINinTickTime>l< /RTIMinTickTine>
il BTREE o
<RTIMaxTickTime>5000</RTIMaxTickTine>

<!'-— 200 ms (default walue) -->
<003TickDelay>=200</005TickDelay>

Figure 2. BLCSE OneSAF HLA federate settings

2008 Paper No. 8262 Page 4 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

<oonverterss
net.onezaf.ext.blcse. zervices. sin. interopngt.hla. converters.natrex.blcse_wdl.AircraftConverter:
net.onesaf.ext.blcse. services. sin. interopngt.hla. converters. matrex.blcse_wdl. AssetConverter:
net.onezaf.core.services. zin. interopugt.hla. fom.hlal_ 3.matrex.converter.vilel, AnmunitionInventoryConverter:
net.onezaf.ext.bleose. services. sim. interopngt.hla. converters.natrex.hlese_w40. GroundPlatformConverter:
net.onesaf.ext.blcse. services. sim. interopngt.hla. converters.matrex.blcse_wd0. Individual CombatantConverter:
net.onezaf.ext.blecse. services. sim. interopngt.hla. converters.natrex.blcse_w40.MunitionConverter:
net.onesaf.core. services. sim. interopugt.hla. fom.hlal 3.matrex.conwerter.wilel. icenarioDataConwerter:
net.onezaf.core.services. zin. interopugt.hla. fom.hlal_ 3.matrex.converter.v3lel.MniformbtmosphereConverter

</ oOnverterss

<oconverterbatas
defaul tGroundPlatformConposition=enticy /mr /COMBAT /ARMOR,/Tank M1AZ Ahrams_ Armor:
defaulthircraftConposition=entity/1lr/COMBAT FAVIATION /ROTARY WING/EWA AH&4 ApacheD:
defaultICConposition=entity/nr/COMBAT /INFANTREY /ICFullyLoaded M240 Gunner:
defaul tMunitionConposition=entity /hr/flyoutMunitions/Hellfire Radar Guided:
defaultinitConposition=unit/external f/generic_lr:
placfornEnun=FlacfornTypeEDT:
icEmm=Tndividual CombatantEDT:
wunitionEnun=Muni tionTypeEDLT:
tagbenerationtethod=AUTOGEN

< /oonverterbatas

<L/0bjectHandlerConfio-
<InteractionHandlerConfig refID="4">

<CONVEerterss
net.onesaf.ext.blcse. services. sim. interopmngt.hla. converters.matrex.blcse_wdl.CallForFireConverter:
net.onesaf.ext.blcose. services. sim. interopngt.hla. converters.natrex.hlcse_w4l.DamageReportConverter:
net.onesaf.ext.blcse. zervices. sin. interopndt.hla. converters. natrex.blcse wdl.WeaponFireConverter:
net.onezaf.ext.blcse. zervices. sim. interopngt.hla. converters.natrex.blcse_wvwil. FeatureDanageConverter:
net.onesaf.core.services. sim. interopugt. hla. fom.hlal 3.matrex.conwverter.wilel.mmunitionInventoryConverter:
net.onesaf.core.services. sim. interopngt.hla, fom.hlal 3.matrex.converter.w3lel.CIDFriendResponseConverter:
net.onezaf.core.services. sim. interopmgt.hla. fom.hlal 3.matrex.converter.v3lel.CIDInterrogatelonverter:
net.onesaf.core. services. sim. interopmgt.hla. fom.hlal 3.matrex.conwverter.wilel. FireMizssionConverter:
net.onezaf.core.gervices. zin. interopugt.hla. fom.hlal 3.matrex.converter.v3lel,FireMizsionResponseConverter:
net.onesaf. core. services. sim. interopugt.hla. fom.hlal 3.matrex.conwerter.wilel.FirelolutionConwerter:
net.onezaf.core.services. zin. interopugt.hla. fom.hlal_ 3.matrex.converter.v3lel.MoveConverter:
net.onesaf.core.services. sinm. interopmgt.hla. fom.hlal_3.matrex.converter.vilel.MunitionletonationConverter:
net.onesaf.core.services. sim. interopmgt.hla. fom.hlal 3.matrex.converter.wilel.RequestFireSolutionConverter:
net.onesaf.core.services. sin. interopmgt.hla. fom.hlal_3.matrex.converter.vwilel.TriggerPullConverter:
net.onesaf.core. services. sim. interopugt.hla. fom.hlal 3J.matrex.conwerter.wilel.RequestLAMFireConverter:
net.onezaf.core.services. zin. interopugt.hla. fom.hlal_ 3.matrex.converter.vilel,RequestPaMFireConverter:

Figure 3. BLCSE OneSAF HLA converter settings

Converter Class Structure Data Type and Enumeration Mapping

Standard OneSAF HLA converters contain at least two
methods, processOOSFiredinter (SimulationEvent) and
processFOMReceivedInter(InteractionClassRTIHandle
). The former method is called by the Interaction
Handler to convert OneSAF ODM outbound or
published interaction data to the FOM. The latter
method is called to convert inbound or subscribed FOM
interaction data into OneSAF ODM. Another required
method within the converter classes is the
initialize(InteractionHandler) method. This method
adds the subscription and publish classes for the
converter to the publish and subscribe list for the
instance of the HLA interoperability adapter.

2008 Paper No. 8262 Page 5 of 9

OneSAF relies on the enumerated entity and munitions
names in the Object Model Template (OMT) file to
perform enumeration mappings between OneSAF entity
and munitions compositions to the FOM entity and
munitions data. It is important to note the difference in
the OMT and Federation Execution Data (FED) files.
Both are representations of the FOM. However, the
FED includes the subset of the data in the OMT, which
the RTI requires at runtime to set up proper publication
and subscription routes. Therefore, only the OMT file
contains the enumerated data type (EDT) definitions
OneSAF requires to perform proper enumeration

mapping.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

In order for OneSAF to map corresponding entity and
munitions FOM data to OneSAF entity and munitions
compositions HLA entity and munitions enumeration
mapping files are utilized. Listed in the OneSAF HLA
configuration file are references to FOM mapping data
files for entities and munitions. These files list the FOM
enumeration description and the OneSAF composition.
Also listed in these files is the intended direction of the
mapping. A value of “inbound” would be a FOM to
OneSAF mapping, a value of “outbound” is a OneSAF
to FOM mapping, and a value of “bidirectional” would
be for both directions.

FOM CONVERTER CLASSES

As released, OneSAF version 2.1 comes with various
FOM support. It supports Entity Resolution Federation
(ERF) FOM version 4.0, Multi-Resolution Federation
(MRF) FOM version 4.0, and MATREX FOM versions
2.0 through 4.0. Since MATREX has released
numerous versions of their FOM, OneSAF kept its
converter classes compatible with all major FOM
releases. Each MATREX FOM release has its own
directory structure with supporting converter classes
within the OneSAF HLA framework. With each new
MATREX FOM release, the interaction and object
converter classes are updated as an extension of the
previous FOM converter classes. For example, the fire
interaction converter for MATREX FOM version 4.0
extends > version 3.1e extends = version 3.0 extends
-> version 2.2 extends > version 2.0. Along with the
interaction and object converters, OneSAF also includes
a set of utility converter classes that convert commonly
used complex FOM data types, such as State Vector, to
simple FOM data types.

Converters get called when one of two conditions are
triggered. One condition is when a subscribed OneSAF
interaction is created or a subscribed OneSAF object
attribute is changed, e.g., when a OneSAF fire
interaction is created or a OneSAF entity’s position
changes. When this condition occurs, OneSAF converts
interaction/object data to FOM interaction/object data.
The other condition that triggers converters is when a
subscribed FOM interaction or object attribute update is
delivered to OneSAF. In this case, the corresponding
converter translates the FOM interaction/object data to
OneSAF interaction/object data that gets posted to
OneSAF’s sim engine. If the FOM object update is for a
newly discovered entity, the subscribed entity converter
class creates a OneSAF entity to represent that external
entity in OneSAF. This entity is marked as transient. It
has no physical or behavioral model associated to it. It

2008 Paper No. 8262 Page 6 of 9

is important to note that the OneSAF checkpoint
process does not save transient entities, as OneSAF
currently only supports light-weight checkpoints during
an HLA or DIS exercise.

All OneSAF complex data types are broken down to
basic data types. OneSAF supports the External Data
Representation (XDR) standard used by most HLA
federations. OneSAF reads and writes to the FOM data
buffer through its two XDR classes.
“XDROutputStream.java” writes OneSAF basic data
types to the FOM data buffer. “XDRInputStream.java”
reads from the FOM data buffer to populate OneSAF
data types. These classes extend Java’s
DataOutputStream class, adding new functionality
specific for writing and reading FOM compliant data,
such as padding shorts, Booleans and strings to 4-byte
boundaries.

MATREX FOM converters that come included in
OneSAF cover most HLA interactions and objects
translation needs. However, over the course of BLCSE
experiments, new interoperability requirements with
other simulations have driven the needs for new
converters to translate new interactions and objects.
Some of the converters needed are in the areas of
mounting and dismounting, supply transfer, and
maintenance casualty care and/or evacuation.

CASE STUDY: NEW FOM ATTRIBUTE
Functional Requirement

To support the Complex Web Defense (CWD)
experiment conducted in March 2008, BLCSE had a
requirement to portray civilians as hostile entities if they
are visibly carrying one or more weapons. However, the
FOM used by the BLCSE federation only contained
enough information to describe the weapon state of a
single weapon being carried by a civilian.

Implementation

To implement the requirement, the team created a new
FOM attribute called SecondaryWeaponState in the
existing IndividualCombatant object. In conjunction
with the existing FOM attribute, PrimaryWeaponState,
the FOM can describe the states of both weapons being
carried by a civilian or soldier entity. The FOM is a
simple text file written in OMT format. Therefore, it
can be modified using a standard text editor or using a
FOM-specific application tool, such as Aegis’s Object
Model Development Tool (OMDT). Figure 4 shows the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

FOM detail of the modified Individual Combatant
object from a standard text editor.

In order for OneSAF to be able to populate this new
FOM attribute, the integration team created an
IndividualCombatantConverter in the BLCSE extension
package. Because the FOM used in the BLCSE

(Clas=s (ID 35)
[Mame "IndividualCombatant™)
[PECapshilities P3)

federation is a variant of the MATREX FOM, the actual
file is located at services\sim\interopmgt\hla\converters\
matrex\blcse\IndividualCombatantConverter.java. This
file creates the necessary FOM and ODM variables. It
also adds these variables to the lists of attributes which
later will be sent to the RTI for publication and
subscription.

[Description "Indicates a single soldier™)

[3uperClass 12)
(Attribute (Mame "FrimaryWeapon3tate™)

[DataType "ICWeaponStateEDT™)

[Cardinality "1™)

[Acocuracy "perfect™)
[AocuracyCondition "always™)
[UpdateType Conditional)

[UpdateCondition "On chanoge™)

[Transferlccept N
[UpdateReflect UR)

(Degcription "Current state of an individual conbatant)'s weapon™)

[RoutingSpace "Platform3pace™)

)
[Attribute

[Cardinality "1™

[Accuracy "perfect™)
[AoouracyCondition "always'™)
[UpdateType Conditional)

[UpdateCondition "On chanoge™)

[Transferloccept M)
[UpdateReflect UR)

[Mame "Secondaryleaponitate™)
[DataType "ICWeaponStateEDT™)

(Description "Current state of an individual combatant)'s weapon™)

[RoutingSpace "Platform3pace™)

Figure 4. FOM detail of new Individual Combatant object attribute

The handleODMPropertyChanged function populates
the FOM variable from internal ODM variables by
calling the handleODMWeaponState function, adapted
from the existing handleODMPrimaryWeaponState
function. The ODM value, obtained from the Lifeform
class, is translated to the proper FOM enumeration
values. This value is then written in XDR format to the
FOM data buffer, from which it will be transmitted to
the RTI through the setAttributeInClassHandle function.

The handleFOMALttrRequest function populates the
ODM variable for data coming in from the RTI by
calling the handleFOMSecondaryWeaponState
function, adapted from the existing
handleFOMICWeaponState function. This function
decodes the XDR-formatted data and sets the Lifeform
object with the correct weapon state value. The function
also determines if the Individual Combatant (IC) is
carrying a visible weapon, by evaluating the LifeForm’s
weapon states. If the IC is not carrying a visible

2008 Paper No. 8262 Page 7 of 9

weapon, the function uses the Lifeform’s Entity base
class to default the IC’s composition name to a standard
civilian. This triggers the OneSAF Plan View Display
(PVD) to show the IC with a green, neutral icon,
effectively hiding the IC’s true identity. In addition, by
modifying the composition name, the user cannot see
the true composition by using the icon’s tool tip
information.

Results

The converter classes worked effectively for the CWD
experiment, preventing operators from knowing if an
apparent civilian might, at some point, pick up a gun
and become a hostile entity. Another option for
implementing the same functionality is to create an
attribute called ICWeaponState that has cardinality 0+.
This would allow an IC to have any number of weapons
without requiring additional FOM or converter class
changes.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

CASE STUDY: NEW FOM INTERACTION
Functional Requirement

To support CWD, BLCSE had a requirement to provide
a visual indication on the PVD when an Ultra High
Resolution Building (UHRB) becomes destroyed. This
required OneSAF to interoperate with a Dynamic
Terrain Server (DTS). The DTS determines when a
UHRB becomes destroyed based on detonations that
occur within the area of the UHRB. Information is
passed from the DTS to OneSAF via a new HLA
interaction called FeatureDamage, which contains a
parameter indicating the center of mass location of the
affected UHRB.

Implementation

Once the team added the Feature Damage interaction to
the FOM, OneSAF needed a way to utilize the new data
that would be delivered via the interaction. As with the
new FOM attribute, a converter class was written using
existing OneSAF super classes to convert the byte
stream of data into useable values. The data converted
are double values resolving the three points of the
coordinate specifying the UHRB’s center of mass. From
the location provided in the interaction, a one square
meter bounding box is created. Using the bounding box,
a call is made to get the UHRB within the boundary,
and the damage fraction is then set to 100%. Within
OneSAF when a UHRB damage fraction is set to
anything above zero, a visual PVD indicator is drawn.
In this case, a red line outlines the UHRB to identify
that it has been damaged or destroyed.

Since ODM classes have not been developed yet for
damage fraction level access to features like UHRB’s
the only way gain access to this level of data was to
access the FeatureAPI class and EnvironmentHandle
class directly. Most of the work to allow ODM access
to the ERC architecture is not due to be complete until
around OneSAF version 4.0. Meanwhile, accessing the
lower level class is a risky but viable option. Using
these lower level classes limits the ease of access and
may cause some modification of data that was
unintended.

Results

The effects of this implementation were visual only. In
no way was the traffic ability of the buildings affected.
The architecture to provide this level of interface from
the HLA converter classes is just not available yet and
is difficult to implement. Detailed knowledge of the

2008 Paper No. 8262 Page 8 of 9

ERC architecture and a familiarity with the PVD
interfaces is required. Most of the damage level and
rubble capability exists in the low resolution buildings,
but the ability to rubble or largely degrade UHRBs is
not yet available.

Great care should be exercised when using the OMDT
to modify the OMT and FED files. When the FOM is
created, each object and interaction is given a numerical
identifier. Some applications, including OneSAF, use
these identifiers, rather than the interaction name, to
access the FOM’s interaction data. When adding a new
interaction to the FOM, the OMDT does not necessarily
add the interaction to the end of the list of identifiers.
Instead, it inserts the new interaction into the sequence
based on the new interaction’s class hierarchy. This can
cause a cascading re-numbering of all existing
interaction IDs and cause problems for applications that
rely on pre-defined interaction IDs.

DIS INTEROPERABILITY ARCHITECTURE

Besides from supporting HLA, OneSAF also natively
supports DIS. Switching which interface to use can
easily be done by changing the interoperability interface
within the “onesaf.properties” file. The DIS interface is
similar to the HLA interface on how it communicates
with OneSAF Object Database (ODB). It also contains
converter classes for of standard IEEE 1278 PDUs.
However, the underlying architecture for subscribing
and translating the OneSAF ODB is different from the
HLA implementation. It is also possible to enable both
interfaces at the same time. By doing so, the OneSAF
node can act as a DIS-HLA gateway. DIS data will be
translated into the OneSAF ODB and then translated to
HLA and vice versa. The Advanced Concepts Research
Tool (ACRT) program uses this architecture to allow
OneSAF to receive simulation traffic via HLA and to
send data to it 3-D visual system via DIS.

SUMMARY

OneSAF interoperability is currently a major objective
of many simulation communities. The details in this
paper are intended to serve as a guide for developing
HLA interoperability for specific needs within a
simulation environment. The BLCSE OneSAF
integration team has resolved many technical and
developmental issues during the past two years, which
have allowed OneSAF to participate in successful,
record-run experiments within a large-scale, highly
distributed federation in HLA mode. These issues range

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008
from network configuration to performance. More Experimentation Using OOS” and the 2008 I/ITSEC
issues and resolutions to this work can be found the Paper entitled “OneSAF Testing in Complex Web
2007 IITSEC paper entitled “Modernizing Army Defense Experiment”.

2008 Paper No. 8262 Page 9 of 9

