

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9202 Page 1 of 7

Automated Performance Assessment and Adaptive Training
for Training Simulators with SimSCORM

Leo de Penning MSc, Bart Kappé PhD, Eddy Boot PhD
 TNO Defense, Safety and Security
 Soesterberg, The Netherlands

leo.depenning@tno.nl, bart.kappe@tno.nl, eddy.boot@tno.nl

ABSTRACT

Performance assessment in training simulators for learning complex tasks is a complex task in itself. It requires
monitoring and interpreting the student’s behavior in the simulator using knowledge of the training task, the
environment, and a lot of experience. Assessment in simulators is therefore generally done by human observers. To
capture this process in an automated system is challenging and requires innovative solutions. This paper proposes a
new module in TNO’s Virtual Instruction platform for automated assessment in simulators that is based on Neural-
Symbolic Learning and Reasoning. The module is capable of using existing rules and learning new rules for
performance assessment. This is done by observing experts and students performing the training tasks. These rules
can be used to automatically assess student performance in a training simulator, to validate existing rules and to
support the assessment process. The rules can also be used for adaptive training by applying them backwards
(relating student competences to adaptations in simulation and instructions). For training organizations, this provides
a quicker, cost-saving and more objective evaluation and efficient training of the student in simulation based
training, taking into account both explicit and implicit rules. The module will be developed in a three year research
project on assessment in driving simulators for testing and examination and tested in various other domains, like
jetfighter pilot training and strategic command and control training.

ABOUT THE AUTHORS

Leo de Penning is a senior software engineer and researcher at TNO Human Factors, and is currently working on
new and innovative learning technologies for the Training and Instruction department. He holds a MSc in Computer
Science and specializes in Artificial Intelligence and Virtual Reality. Previously he worked as system integrator at
Atos Origin and as researcher on Artificial Brain building at StarLab.

Bart Kappé is a researcher at TNO Human Factors, and is involved in R&D projects on specification and validation
of training simulators, on simulator displays and on motion cueing in simulators. His current research interests
include testing in driving simulators, and the integration of simulators and e-learning (and e-testing) systems.

Eddy Boot is a researcher at TNO Human Factors, and is involved in R&D projects concerning the application of
Information and Communication Technology (ICT) to improve learning processes. He holds a PhD in instructional
technology and specializes in complex learning and competency-based learning supported by advanced learning
technologies.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9202 Page 2 of 7

Automated Performance Assessment and Adaptive Training
for Training Simulators with SimSCORM

Leo de Penning MSc, Bart Kappé PhD, Eddy Boot PhD

 TNO Defense, Safety and Security
 Soesterberg, The Netherlands

leo.depenning@tno.nl, bart.kappe@tno.nl, eddy.boot@tno.nl

INTRODUCTION

Performance assessment of learning complex tasks in
training simulators has always been a complex task in it
itself. For this reason, this assessment is generally
performed by human observers. Performance
assessment by automated systems is often limited to
simple training tasks, because assessing complex tasks
requires the modeling of all interrelations between the
information present in the simulation, the training tasks,
and the constructs being assessed (e.g., competences).
Also, when it comes to more subjective assessments
(e.g., how ‘safe’ is the student performing its task),
conventional modeling techniques fall short, as the
applied assessment rules are often implicit and difficult
to elicit from the domain experts.

We propose a new module for automated assessment as
part of the Virtual Instruction platform SimSCORM
(Penning et al., 2008). This assessment module will be
able to learn new rules from the task description, (real-
time) simulation data, related assessment data of
domain experts or students, and rules already existing
(also called background knowledge). These rules can be
presented in a human-readable (‘symbolic’) form,
facilitating the validation of the assessment rules and
supporting the assessment process.

GLOBAL ARCHITECTURE

To assess complex tasks, the automated assessment
module requires models of the training task, the student
and human assessors (e.g. teachers, examiners or
students) and the interrelations between these models.
Therefore it requires real-time interaction with the
simulator(s), the student and human assessors, and a
description of the training task, a student profile and the
simulated environment. SimSCORM provides a generic
platform for definition and presentation of simulation
based training content and interaction between the
content, its users and the simulators based on well-
known international standards, like SCORM (ADL,
2004), HLA (IEEE, 2000) and XML (W3C, 1998). Via
this platform, the automated assessment module can
easily access the objects and attributes in the simulation

and acquire information on the student profile and
progress.

Figure 1 depicts the automated assessment module
(named CogAgent) in the context of SimSCORM.
SimSCORM provides a player that presents a SCORM-
based training task to the students (and possibly one or
more human assessors to train CogAgent) via a
Learning Management System (LMS). For this purpose,
the player uses several agents that operate in a multi-
agent configuration. For example, it uses one or more
simulation agents that interact with the simulator(s), an
assessment agent that does automated performance
assessment and learns new assessment rules from
observation, and an instructor agent that presents and
monitors SCORM-based training tasks and related
objectives. Each agent contains a XML-based working
memory, which can be configured from a XML-file and
interacts with other agents via SOAP (either locally or
remote via a webservice).

SimSCORM Editor

To create a XML configuration file for an agent, the
SimSCORM platform contains an editor that extends a
SCORM editor with the functionality to define
simulation specific data. This data describes for
example initial conditions, dynamic behavior, training
objectives, and related measurements. Also it can
contain existing assessment rules that apply to a specific
training task or package. These configuration files can
then be embedded in a SCORM package and be
referred from the training task, represented by a
Sharable Content Object (SCO), as part its launch or
suspend data.

Simulation Agents

Simulation agents, depicted in Figure 1 as a single
instance called SimAgent, act as interface with external
simulator(s) via standard communication protocols, like
HLA, or serious games via scripting languages, like
LUA (1993).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9202 Page 3 of 7

Figure 1. Global architecture of the automated performance assessment module

These agents translate the objects and interactions in the
simulation (or serious game) to XML as part of the
agent’s working memory. For example, SimAgent
subscribes to certain objects in the simulation and pre-
processes received data to XML elements such that it
can be used by CogAgent.

Instructor Agent

The instructor agent, not depicted separately in Figure
1, is the main part of the SimSCORM player and
presents and monitors training objectives that are
defined for the SCO currently presented to the student.
These objectives are defined in the form of SCORM
objectives and can be related to data received from the
simulation agents, the human assessors, and the LMS.
This allows the instructor agent to test student
competences, which are related to these objectives,
based on the student’s actions, a task description, the
student’s learner profile, previous results, and the
learned or predefined rules. Also it can provide
feedback and instruction or adapt the behavior of

simulation objects based on the outcome of these
objectives. This allows the instructor agent to train the
student and if desired adapt the training to the student’s
ability.

Assessment Agent

The assessment agent, depicted in Figure 1 as
CogAgent, is configured with information about the
training task, measured variables, assessed objectives
and existing rules. During execution of the training task,
human assessors can provide feedback on the assessed
objectives, via the SimSCORM player, which will be
presented to CogAgent as short-term evaluations
(depicted as assessment data). Based on these
evaluations, the student’s profile, and information from
the simulation agents, CogAgent then determines an
overall (or long-term) evaluation for the assessed
objectives which will be presented to the students (and
assessors) as assessment result. Parallel to this, it uses
the simulation data and assessment data to adapt and
improve the internal knowledge on assessment rules.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9202 Page 4 of 7

Figure 2. Neural-Symbolic Cognitive Architecture for CogAgent

LEARNING AND REASONING

The assessment agent must be able to learn new rules
from observation and existing rules, infer conclusions
from these rules and present them in a human
readable form. Research on Neural-Symbolic
Learning and Reasoning focuses on the integration of
learning techniques and architectures from Neural
Networks with the symbolic presentation and
reasoning techniques in (Fuzzy) Logic Programs
(Bader and Hitzler, 2005).

The Neural-Symbolic model proposed for CogAgent
is based on the Recurrent Temporal Restricted
Boltzmann Machine (RTRBM) (Sutskever et al.,
2009) and is depicted in
Figure 2. This partially connected symmetric neural
network implements an auto-associative memory of
its input layers (called visible layers). CogAgent
contains three visible layers that represent its beliefs,
desires and intentions (Bratman, 1999). Beliefs are
variables related to the training task (initial
conditions, dynamic behavior and measured
variables) and the student’s learner profile. Intentions
are variables related to actions (feedback, instructions
or adaptive training). And desires are variables

related to performance assessment (e.g. training
objectives and student competences).

Beliefs and intentions are directly related to the
current state of the simulation whereas desires will be
related to future states as well using Temporal
Difference learning (Sutton, 1988). This technique
learns the model to predict a maximum obtainable
value for its desires (e.g. overall evaluation scores)
based on the current and previous states. Otherwise,
the model would only learn to map short-term
evaluations, which is not desired in this case.

The hidden layer of the RTRBM is connected to the
visible layers with symmetric weighted connections.
Each hidden unit in this layer represents a rule or
relation between one or more visible units. It also
contains recurrent hidden-to-hidden connections that
enable the RTRBM to learn the temporal dynamics in
the visible layers using an algorithm based on
contrastive divergence and back-propagation through
time. Using this layer we can infer the posterior
probability of beliefs, intentions and desires in
relation to the state of other beliefs, intentions and
desires and previously applied rules.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9202 Page 5 of 7

Fuzzy Atoms

The assessment rules that CogAgent needs to encode,
learn and reason about are relations (or causalities)
between XML encoded constructs, which will be
called atoms hereafter. An XML based atom
describes a belief, intention or desire as a function of
measured data from the simulator and/or assessment
data from the assessors (or students). In case of
training simulators this data is often expressed in both
continuous and binary values. Therefore we need to
use activation functions in the visible units that can
express both. In Chen and Murray (2003), sigmoid
functions are introduced that can model binary as well
as continuous stochastic functions. These functions
contain a ‘noise-control’ parameter that controls the
steepness of the sigmoid function which can be
trained. So the actual behavior of a unit is also
learned from observation according to the distribution
of its input values. We will extend our model with
such functions to create a Recurrent Temporal
Continuous Restricted Boltzmann Machine
(RTCRBM).

Symbolic Rules

To express relations between atoms in symbolic rules
we propose to use the temporal propositional logic
described in (Lamb et al., 2007). This logic contains
several modal operators that extend classical modal
logic with a notion of past and future. All these
operators can be translated to a form that relates only
to the immediate previous time step (denoted by the
temporal operator ●). This allows us to encode any
rule from this language in the RTCRBM as a
combination of visible units (or atoms) and recurrent
hidden units that represent applied rules in the
previous time step. For example the proposition αSβ
denotes that a proposition α has been true since the
occurrence of proposition β. This can be translated to:
β → αSβ and α ∧ ●(αSβ) → αSβ, where α and β are
modeled by visible units and ●(αSβ) is modeled by a
recurrent hidden unit.

We extend this logic with the use of equality and
inequality formulas to represent the atoms for
continuous variables (e.g. A=x, A<x, etc). Note that
the atoms for binary variables can also be represented
as A=true or A=false, which allows us to handle the
outcome of these atoms in the same way as with the
continuous atoms. But for readability we will use the
classical notion A and ¬A.

Due to the stochastic nature of the sigmoid functions
used in our model, the atoms can be regarded as fuzzy
sets with a Gaussian membership function. This
allows us to represent fuzzy concepts, like good and
bad or fast and slow or approximations of learned

values, which is especially useful when reasoning
with implicit and subjective rules. In fact, our model
can be regarded as a neural-fuzzy system similar to
the fuzzy systems described in (Kosko, 1992) and
(Sun, 1994).

Example

Now let’s take the training task depicted in the
following figure (Figure 3). In this task, the student
(depicted by the car with letter T) drives on an urban
road and approaches an intersection. In this scenario
the student has to apply the yield-to-the-right-rule,
which can be regarded as a training objective.

Figure 3. Example training task for driving simulation. The
Trainee drives on an urban road, approaching an
intersection. The Trainee has to apply the yield-to-the-
right-rule.

Using our extended temporal propositional logic, we
can describe rules about the conditions, scenario and
performance assessment related to this task.

Conditions:

(Area = urban) (1)
(Weather ≥ good) (2)
(Time ≥ 6) ∧ (Time ≤ 18) (3)

Scenario:

(Speed > 0) ∧ ApproachingIntersection →
CrossIntersection

(4)

ApproachingIntersection ∧ ◊(ApproachingTraffic =
right)

(5)

((Speed > 0) ∧ (HeadingIntersection)) S
(DistanceIntersection < x) → ApproachingIntersection

(6)

Assessment:

ApproachingIntersection ∧ (DistanceIntersection = 0) ∧
(ApproachingTraffic = right) ∧ □(Speed = 0) →
(Evaluation = good)

(7)

ApproachingIntersection ∧ (DistanceIntersection = 0) ∧
(ApproachingTraffic = right) ∧ ◊(Speed > 0) →
(Evaluation = bad)

(8)

T

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9202 Page 6 of 7

The temporal operator S, used in rule 6, denotes that
ApproachingIntersection is true when the driver has
been driving towards an intersection since a certain
distance x to an intersection was passed. This rule and
the actual value for x can be learned from observation
by clamping the actual speed, heading and distance to
the visible units and the value true to the unit for
ApproachingIntersection when the trainee is
approaching the intersection. This can be done by an
assessor or the student, but could also be
automatically inferred by the model, as explained in
the next section.

Rule encoding and extraction

To encode and extract symbolic rules in symmetric
connectionist networks, like the RTRBM, Pinkas
(1995) describes a generic method that directly maps
these rules to the energy function of such networks.
Therefore, he describes an extension to propositional
logic, called penalty logic that applies a penalty to
each rule. This penalty can be regarded as the
“certainty” or “reliability” of a rule and is directly
related to the weights of the connections between the
units that form this rule. To apply the encoding and
extraction algorithms of Pinkas (1995) successfully to
our model we need extend our temporal propositional
logic with the use of penalties. Sun (1994) describes a
method to map atoms with classical modal operators
to real values (a process called fuzzyfication). We
propose to extend this method to create a mapping of
atoms and rules with the modal operators used in our
model to penalties.

Furthermore, we need to investigate what changes are
required to the algorithms to handle the use of
equality formulas and continuous variables. For
example, we need to prove that it is possible to infer
the correct value for unknown continuous variables in
a rule via pattern reconstruction based on known
values and (previously) applied rules. And to encode
and extract rules with inequality formulas (e.g. rules
with < or >) we need to be able to transform these to
and from rules that contain only equality formulas
(rules with = or ≠).

The penalties that are encoded or learned by our
model can also be used to rank the rules according to
their applicability in a certain context or scenario,
giving the students and assessors a ranked overview
of the applied rules. Also they allow us to solve
ambiguities in the application of rules, by using such
a ranking to select the most applicable (or reliable)
rule in each case.

ADAPTIVE TRAINING

Because the automated assessment module is capable
of learning the relations between student
competences, constructs being measured in the
simulation and assessments and instructions given
during the training, it can be used for adaptive
training as well. This means that the results of the
assessment module can be used by the instructor
agent to adapt the training scenario and/or
instructions to make the training task easier or more
challenging. This is possible because of the auto-
associative nature of the neural-symbolic model that
is used in the agent, which allows the learned rules to
be applied backwards (i.e. from student competences
to changes in behavior of simulation objects and
instructions).

RESEARCH AND EXPERIMENTS

The automated assessment module will be developed
as part of a three year research project on assessment
in driving simulators, carried out by TNO in
cooperation with the Dutch licensing authority
(CBR), Research Center for Examination and
Certification (RCEC), Rozendom Technologies, and
ANWB driving schools. A prototype will be ready at
the end of 2009 which will be used to do experiments
on the ANWB driving simulators used in their drivers
training curriculum (see Figure 4). This allows the
module to be validated in several scenarios on a large
student population using multiple commercial driving
simulators. If successful, the module will be used to
support the Dutch driver training and examination
program.

Figure 4. ANWB Driving Simulators

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9202 Page 7 of 7

Figure 5. TNO Mission Simulation Center (MSC)

In parallel, the module will also be tested in other
simulation environments, like in TNO’s Mission
Simulation Center (see Figure 5), for jetfighter pilot
training and in Cannibal Hector, for strategic
command and control training.

Preliminary results of the experiments will be
presented during the paper session.

REFERENCES

 ADL (2004). Sharable Content Object Reference

Model (SCORM). Advanced Distributed Learning.
http://www.adlgov.net.

Bader, S. & Hitzler, P. (2005). Dimensions of neural-
symbolic integration - a structured survey. In We
Will Show Them: Essays in Honour of Dov
Gabbay, Volume 1. International Federation for
Computational Logic, pages 167-194, College
Publications.

Bratman, M.E., (1999). Intention, Plans, and
Practical Reason. Cambridge University Press.

Chen, H. & Murray, A.F. (2003). Continuous
restricted Boltzmann machine with an
implementable training algorithm. In Vision,
Image and Signal Processing, IEE Proceedings,
pages 153-158.

IEEE (2000). IEEE 1516-2000 - Standard for
Modeling and Simulation High Level Architecture
(HLA). Institute of Electrical and Electronics
Engineers.

Kosko, B. (1992). Neural Networks and Fuzzy
Systems: A Dynamical Systems Approach to
Machine Intelligence, Prentice Hall.

Lamb, L.C., Borges, R.V. & d’Avila Garcez, A.S.
(2007). A Connectionist Cognitive Model for
Temporal Synchronisation and Learning. In
Proceedings of the Conference on Association for
the Advancement of Artificial Intelligence (AAAI),
pages 827-832.

LUA (1993). LUA Programming Language.
http://www.lua.org.

Penning, de H.L.H., Boot, E. & Kappé, B. (2008).
Integrating Training Simulations and e-Learning
Systems: The SimSCORM platform. In
Proceedings of the Conference on
Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC), Orlando, USA.

Pinkas, G. (1995). Reasoning, nonmonotonicity and
learning in connectionist networks that capture
propositional knowledge. In Artificial Intelligence
v.77 n.2, pages 203-247.

Sutskever, I., Hinton, G.E. & Taylor G.W. (2009).
The Recurrent Temporal Restricted Boltzmann
Machine. In Advances in Neural Information
Processing Systems 21, MIT Press, Cambridge,
MA.

Sun, R. (1994). A neural network model of causality.
In IEEE Transactions on Neural Networks, Vol. 5,
No. 4. pages 604-611.

Sutton, R. (1988). Learning to predict by the methods
of temporal differences. In Machine Learning 3:
pages 9-44, erratum page 377, 1988.

W3C (1998). Extensible Markup Language (XML)
1.0. World Wide Web Consortium.
http://www.w3.org/tr/xml.

