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ABSTRACT 
 
Performance assessment in training simulators for learning complex tasks is a complex task in itself. It requires 
monitoring and interpreting the student’s behavior in the simulator using knowledge of the training task, the 
environment, and a lot of experience. Assessment in simulators is therefore generally done by human observers. To 
capture this process in an automated system is challenging and requires innovative solutions. This paper proposes a 
new module in TNO’s Virtual Instruction platform for automated assessment in simulators that is based on Neural-
Symbolic Learning and Reasoning. The module is capable of using existing rules and learning new rules for 
performance assessment. This is done by observing experts and students performing the training tasks. These rules 
can be used to automatically assess student performance in a training simulator, to validate existing rules and to 
support the assessment process. The rules can also be used for adaptive training by applying them backwards 
(relating student competences to adaptations in simulation and instructions). For training organizations, this provides 
a quicker, cost-saving and more objective evaluation and efficient training of the student in simulation based 
training, taking into account both explicit and implicit rules. The module will be developed in a three year research 
project on assessment in driving simulators for testing and examination and tested in various other domains, like 
jetfighter pilot training and strategic command and control training.  
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INTRODUCTION 
 
Performance assessment of learning complex tasks in 
training simulators has always been a complex task in it 
itself. For this reason, this assessment is generally 
performed by human observers. Performance 
assessment by automated systems is often limited to 
simple training tasks, because assessing complex tasks 
requires the modeling of all interrelations between the 
information present in the simulation, the training tasks, 
and the constructs being assessed (e.g.,  competences). 
Also, when it comes to more subjective assessments 
(e.g., how ‘safe’ is the student performing its task), 
conventional modeling techniques fall short, as the 
applied assessment rules are often implicit and difficult 
to elicit from the domain experts.  
 
We propose a new module for automated assessment as 
part of the Virtual Instruction platform SimSCORM 
(Penning et al., 2008). This assessment module will be 
able to learn new rules from the task description, (real-
time) simulation data, related assessment data of 
domain experts or students, and rules already existing 
(also called background knowledge). These rules can be 
presented in a human-readable (‘symbolic’) form, 
facilitating the validation of the assessment rules and 
supporting the assessment process.   

 
GLOBAL ARCHITECTURE 

 
To assess complex tasks, the automated assessment 
module requires models of the training task, the student 
and human assessors (e.g. teachers, examiners or 
students) and the interrelations between these models. 
Therefore it requires real-time interaction with the 
simulator(s), the student and human assessors, and a 
description of the training task, a student profile and the 
simulated environment. SimSCORM provides a generic 
platform for definition and presentation of simulation 
based training content and interaction between the 
content, its users and the simulators based on well-
known international standards, like SCORM (ADL, 
2004), HLA (IEEE, 2000) and XML (W3C, 1998). Via 
this platform, the automated assessment module can 
easily access the objects and attributes in the simulation 

and acquire information on the student profile and 
progress.  
 
Figure 1 depicts the automated assessment module 
(named CogAgent) in the context of SimSCORM. 
SimSCORM provides a player that presents a SCORM-
based training task to the students (and possibly one or 
more human assessors to train CogAgent) via a 
Learning Management System (LMS). For this purpose, 
the player uses several agents that operate in a multi-
agent configuration. For example, it uses one or more 
simulation agents that interact with the simulator(s), an 
assessment agent that does automated performance 
assessment and learns new assessment rules from 
observation, and an instructor agent that presents and 
monitors SCORM-based training tasks and related 
objectives. Each agent contains a XML-based working 
memory, which can be configured from a XML-file and 
interacts with other agents via SOAP (either locally or 
remote via a webservice).  

 
SimSCORM Editor 
 
To create a XML configuration file for an agent, the 
SimSCORM platform contains an editor that extends a 
SCORM editor with the functionality to define 
simulation specific data. This data describes for 
example initial conditions, dynamic behavior, training 
objectives, and related measurements. Also it can 
contain existing assessment rules that apply to a specific 
training task or package. These configuration files can 
then be embedded in a SCORM package and be 
referred from the training task, represented by a 
Sharable Content Object (SCO), as part its launch or 
suspend data. 

 
Simulation Agents 
 
Simulation agents, depicted in Figure 1 as a single 
instance called SimAgent, act as interface with external 
simulator(s) via standard communication protocols, like 
HLA, or serious games via scripting languages, like 
LUA (1993).  
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Figure 1. Global architecture of the automated performance assessment module 

 
These agents translate the objects and interactions in the 
simulation (or serious game) to XML as part of the 
agent’s working memory. For example, SimAgent 
subscribes to certain objects in the simulation and pre-
processes received data to XML elements such that it 
can be used by CogAgent.  
 
Instructor Agent 
 
The instructor agent, not depicted separately in Figure 
1, is the main part of the SimSCORM player and 
presents and monitors training objectives that are 
defined for the SCO currently presented to the student. 
These objectives are defined in the form of SCORM 
objectives and can be related to data received from the 
simulation agents, the human assessors, and the LMS. 
This allows the instructor agent to test student 
competences, which are related to these objectives, 
based on the student’s actions, a task description, the 
student’s learner profile, previous results, and the 
learned or predefined rules. Also it can provide 
feedback and instruction or adapt the behavior of 

simulation objects based on the outcome of these 
objectives. This allows the instructor agent to train the 
student and if desired adapt the training to the student’s 
ability. 
 
Assessment Agent 
 
The assessment agent, depicted in Figure 1 as 
CogAgent, is configured with information about the 
training task, measured variables, assessed objectives 
and existing rules. During execution of the training task, 
human assessors can provide feedback on the assessed 
objectives, via the SimSCORM player, which will be 
presented to CogAgent as short-term evaluations 
(depicted as assessment data). Based on these 
evaluations, the student’s profile, and information from 
the simulation agents, CogAgent then determines an 
overall (or long-term) evaluation for the assessed 
objectives which will be presented to the students (and 
assessors) as assessment result. Parallel to this, it uses 
the simulation data and assessment data to adapt and 
improve the internal knowledge on assessment rules.  
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Figure 2. Neural-Symbolic Cognitive Architecture for CogAgent 
 

LEARNING AND REASONING 
  

The assessment agent must be able to learn new rules 
from observation and existing rules, infer conclusions 
from these rules and present them in a human 
readable form. Research on Neural-Symbolic 
Learning and Reasoning focuses on the integration of 
learning techniques and architectures from Neural 
Networks with the symbolic presentation and 
reasoning techniques in (Fuzzy) Logic Programs 
(Bader and Hitzler, 2005). 
 
The Neural-Symbolic model proposed for CogAgent 
is based on the Recurrent Temporal Restricted 
Boltzmann Machine (RTRBM) (Sutskever et al., 
2009) and is depicted in  
Figure 2. This partially connected symmetric neural 
network implements an auto-associative memory of 
its input layers (called visible layers). CogAgent 
contains three visible layers that represent its beliefs, 
desires and intentions (Bratman, 1999). Beliefs are 
variables related to the training task (initial 
conditions, dynamic behavior and measured 
variables) and the student’s learner profile. Intentions 
are variables related to actions (feedback, instructions 
or adaptive training). And desires are variables 

related to performance assessment (e.g. training 
objectives and student competences).  
 
Beliefs and intentions are directly related to the 
current state of the simulation whereas desires will be 
related to future states as well using Temporal 
Difference learning (Sutton, 1988). This technique 
learns the model to predict a maximum obtainable 
value for its desires (e.g. overall evaluation scores) 
based on the current and previous states. Otherwise, 
the model would only learn to map short-term 
evaluations, which is not desired in this case.  
 
The hidden layer of the RTRBM is connected to the 
visible layers with symmetric weighted connections. 
Each hidden unit in this layer represents a rule or 
relation between one or more visible units. It also 
contains recurrent hidden-to-hidden connections that 
enable the RTRBM to learn the temporal dynamics in 
the visible layers using an algorithm based on 
contrastive divergence and back-propagation through 
time. Using this layer we can infer the posterior 
probability of beliefs, intentions and desires in 
relation to the state of other beliefs, intentions and 
desires and previously applied rules. 
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Fuzzy Atoms 
 
The assessment rules that CogAgent needs to encode, 
learn and reason about are relations (or causalities) 
between XML encoded constructs, which will be 
called atoms hereafter. An XML based atom 
describes a belief, intention or desire as a function of 
measured data from the simulator and/or assessment 
data from the assessors (or students). In case of 
training simulators this data is often expressed in both 
continuous and binary values. Therefore we need to 
use activation functions in the visible units that can 
express both. In Chen and Murray (2003), sigmoid 
functions are introduced that can model binary as well 
as continuous stochastic functions. These functions 
contain a ‘noise-control’ parameter that controls the 
steepness of the sigmoid function which can be 
trained. So the actual behavior of a unit is also 
learned from observation according to the distribution 
of its input values. We will extend our model with 
such functions to create a Recurrent Temporal 
Continuous Restricted Boltzmann Machine 
(RTCRBM). 
 
Symbolic Rules 
 
To express relations between atoms in symbolic rules 
we propose to use the temporal propositional logic 
described in (Lamb et al., 2007). This logic contains 
several modal operators that extend classical modal 
logic with a notion of past and future. All these 
operators can be translated to a form that relates only 
to the immediate previous time step (denoted by the 
temporal operator ●). This allows us to encode any 
rule from this language in the RTCRBM as a 
combination of visible units (or atoms) and recurrent 
hidden units that represent applied rules in the 
previous time step. For example the proposition αSβ 
denotes that a proposition α has been true since the 
occurrence of proposition β. This can be translated to: 
β → αSβ and α ∧ ●(αSβ) → αSβ, where α and β are 
modeled by visible units and ●(αSβ) is modeled by a 
recurrent hidden unit.  
 
We extend this logic with the use of equality and 
inequality formulas to represent the atoms for 
continuous variables (e.g. A=x, A<x, etc). Note that 
the atoms for binary variables can also be represented 
as A=true or A=false, which allows us to handle the 
outcome of these atoms in the same way as with the 
continuous atoms. But for readability we will use the 
classical notion A and ¬A.  
 
Due to the stochastic nature of the sigmoid functions 
used in our model, the atoms can be regarded as fuzzy 
sets with a Gaussian membership function. This 
allows us to represent fuzzy concepts, like good and 
bad or fast and slow or approximations of learned 

values, which is especially useful when reasoning 
with implicit and subjective rules. In fact, our model 
can be regarded as a neural-fuzzy system similar to 
the fuzzy systems described in (Kosko, 1992) and 
(Sun, 1994). 

 
Example 
 
Now let’s take the training task depicted in the 
following figure (Figure 3). In this task, the student 
(depicted by the car with letter T) drives on an urban 
road and approaches an intersection. In this scenario 
the student has to apply the yield-to-the-right-rule, 
which can be regarded as a training objective. 
 

 
 

Figure 3. Example training task for driving simulation. The 
Trainee drives on an urban road, approaching an 
intersection. The Trainee has to apply the yield-to-the-
right-rule. 
 
Using our extended temporal propositional logic, we 
can describe rules about the conditions, scenario and 
performance assessment related to this task. 
 
Conditions: 

(Area = urban) (1) 
(Weather ≥ good) (2) 
(Time ≥ 6) ∧ (Time ≤ 18) (3) 

 
Scenario: 

(Speed > 0) ∧ ApproachingIntersection → 
CrossIntersection 

(4) 

ApproachingIntersection ∧ ◊(ApproachingTraffic = 
right) 

(5) 

((Speed > 0) ∧ (HeadingIntersection)) S 
(DistanceIntersection < x) → ApproachingIntersection 

(6) 

 
Assessment: 

ApproachingIntersection ∧ (DistanceIntersection = 0) ∧ 
(ApproachingTraffic = right) ∧ □(Speed = 0) → 
(Evaluation = good) 

(7) 

ApproachingIntersection ∧ (DistanceIntersection = 0) ∧ 
(ApproachingTraffic = right) ∧ ◊(Speed > 0) → 
(Evaluation = bad) 

(8) 

T 
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The temporal operator S, used in rule 6, denotes that 
ApproachingIntersection is true when the driver has 
been driving towards an intersection since a certain 
distance x to an intersection was passed. This rule and 
the actual value for x can be learned from observation 
by clamping the actual speed, heading and distance to 
the visible units and the value true to the unit for 
ApproachingIntersection when the trainee is 
approaching the intersection. This can be done by an 
assessor or the student, but could also be 
automatically inferred by the model, as explained in 
the next section. 
 
Rule encoding and extraction 
 
To encode and extract symbolic rules in symmetric 
connectionist networks, like the RTRBM, Pinkas 
(1995) describes a generic method that directly maps 
these rules to the energy function of such networks. 
Therefore, he describes an extension to propositional 
logic, called penalty logic that applies a penalty to 
each rule. This penalty can be regarded as the 
“certainty” or “reliability” of a rule and is directly 
related to the weights of the connections between the 
units that form this rule. To apply the encoding and 
extraction algorithms of Pinkas (1995) successfully to 
our model we need extend our temporal propositional 
logic with the use of penalties. Sun (1994) describes a 
method to map atoms with classical modal operators 
to real values (a process called fuzzyfication). We 
propose to extend this method to create a mapping of 
atoms and rules with the modal operators used in our 
model to penalties.  
 
Furthermore, we need to investigate what changes are 
required to the algorithms to handle the use of 
equality formulas and continuous variables. For 
example, we need to prove that it is possible to infer 
the correct value for unknown continuous variables in 
a rule via pattern reconstruction based on known 
values and (previously) applied rules. And to encode 
and extract rules with inequality formulas (e.g. rules 
with < or >) we need to be able to transform these to 
and from rules that contain only equality formulas 
(rules with = or ≠). 
 
The penalties that are encoded or learned by our 
model can also be used to rank the rules according to 
their applicability in a certain context or scenario, 
giving the students and assessors a ranked overview 
of the applied rules. Also they allow us to solve 
ambiguities in the application of rules, by using such 
a ranking to select the most applicable (or reliable) 
rule in each case. 

 
 
 

ADAPTIVE TRAINING 
 
Because the automated assessment module is capable 
of learning the relations between student 
competences, constructs being measured in the 
simulation and assessments and instructions given 
during the training, it can be used for adaptive 
training as well. This means that the results of the 
assessment module can be used by the instructor 
agent to adapt the training scenario and/or 
instructions to make the training task easier or more 
challenging. This is possible because of the auto-
associative nature of the neural-symbolic model that 
is used in the agent, which allows the learned rules to 
be applied backwards (i.e. from student competences 
to changes in behavior of simulation objects and 
instructions). 
 

RESEARCH AND EXPERIMENTS 
 
The automated assessment module will be developed 
as part of a three year research project on assessment 
in driving simulators, carried out by TNO in 
cooperation with the Dutch licensing authority 
(CBR), Research Center for Examination and 
Certification (RCEC), Rozendom Technologies, and 
ANWB driving schools. A prototype will be ready at 
the end of 2009 which will be used to do experiments 
on the ANWB driving simulators used in their drivers 
training curriculum (see Figure 4). This allows the 
module to be validated in several scenarios on a large 
student population using multiple commercial driving 
simulators. If successful, the module will be used to 
support the Dutch driver training and examination 
program.  
 

 
 
Figure 4. ANWB Driving Simulators 
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Figure 5. TNO Mission Simulation Center (MSC) 
 
In parallel, the module will also be tested in other 
simulation environments, like in TNO’s Mission 
Simulation Center (see Figure 5), for jetfighter pilot 
training and in Cannibal Hector, for strategic 
command and control training.  
 
Preliminary results of the experiments will be 
presented during the paper session. 
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