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ABSTRACT

Performance assessment in training simulatorsearning complex tasks is a complex task in itdélfequires

monitoring and interpreting the student’s behaviorthe simulator using knowledge of the trainingktathe

environment, and a lot of experience. Assessmesininlators is therefore generally done by humaseolers. To
capture this process in an automated system i¢eolgalg and requires innovative solutions. Thisgrggroposes a
new module in TNO’s Virtual Instruction platformrfautomated assessment in simulators that is basédeural-

Symbolic Learning and Reasoning. The module is ligpaf using existing rules and learning new rules

performance assessment. This is done by obserxipgrts and students performing the training taskese rules
can be used to automatically assess student perfmenin a training simulator, to validate existinges and to
support the assessment process. The rules carbelased for adaptive training by applying them bauokls

(relating student competences to adaptations inlation and instructions). For training organizasipthis provides
a quicker, cost-saving and more objective evalnatod efficient training of the student in simuatibased
training, taking into account both explicit and iioj rules. The module will be developed in a #angear research
project on assessment in driving simulators fotingsand examination and tested in various othenalos, like

jetfighter pilot training and strategic command a&odtrol training.
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INTRODUCTION and acquire information on the student profile and
progress.
Performance assessment of learning complex tasks in
training simulators has always been a complexitmgk Figure 1 depicts the automated assessment module
itself. For this reason, this assessment is gdgeral(named CogAgent) in the context of SImMSCORM.
performed by human observers. PerformancéSimSCORM provides a player that presents a SCORM-
assessment by automated systems is often limited feased training task to the students (and possidyay
simple training tasks, because assessing compdis ta more human assessors to train CogAgent) via a
requires the modeling of all interrelations betwélee Learning Management System (LMS). For this purpose,
information present in the simulation, the traintagks, the player uses several agents that operate inl@& mu
and the constructs being assessed (e.g., compsjenc agent configuration. For example, it uses one oremo
Also, when it comes to more subjective assessmengimulation agents that interact with the simulagprén
(e.g., how ‘safe’ is the student performing itsklas assessment agent that does automated performance
conventional modeling techniques fall short, as theassessment and learns new assessment rules from
applied assessment rules are often implicit anficdif =~ observation, and an instructor agent that presamds
to elicit from the domain experts. monitors SCORM-based training tasks and related
objectives. Each agent contains a XML-based working

We propose a new module for automated assessment memory, which can be configured from a XML-file and
part of the Virtual Instruction platform SimSCORM interacts with other agents via SOAP (either lgcall
(Penninget al, 2008). This assessment module will beremote via a webservice).
able to learn new rules from the task descript{osgl-
time) simulation data, related assessment data @&imSCORM Editor
domain experts or students, and rules alreadyiegist
(also called _background knowledge). These rulesbean To create a XML configuration file for an agentgth
presented in a human-readablesythbolic) form,  SimSCORM platform contains an editor that extends a
facilitating the validation of the assessment rd@sl SCORM editor with the functionality to define
supporting the assessment process. simulation specific data. This data describes for
example initial conditions, dynamic behavior, tiam
objectives, and related measurements. Also it can
coptain existing assessment rules that apply feaific
‘ter%ming task or package. These configuration fdes

GLOBAL ARCHITECTURE

To assess complex tasks, the automated assessm
module requires models of the training task, thelesbt >
and human assessors (e.g. teachers, examiners tan be embedded in- a SCORM package and be
students) and the interrelations between these Imode'€ferred from the fraining task, represented by a
Therefore it requires real-time interaction witheth Sharable Content Object (SCO), as part its launch o
simulator(s), the student and human assessors,aandsuspend data.

description of the training task, a student prdditel the

simulated environment. SiImSCORM provides a generi®imulation Agents

platform for definition and presentation of simidat

based training content and interaction between th&imulation agents, depicted in Figure 1 as a single
content, its users and the simulators based on wellnstance called SimAgent, act as interface witleml
known international standards, like SCORM (ADL, simulator(s) via standard communication protociits,
2004), HLA (IEEE, 2000) and XML (W3C, 1998). Via HLA, or serious games via scripting languages, like
this platform, the automated assessment module canya (1993).

easily access the objects and attributes in thalatian
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Figure 1. Global architecture of the automatedgrarhnce assessment module

These agents translate the objects and interadgtidhe  simulation objects based on the outcome of these
simulation (or serious game) to XML as part of theobjectives. This allows the instructor agent tontrthe
agent’'s working memory. For example, SimAgentstudent and if desired adapt the training to theestt’s
subscribes to certain objects in the simulation pred  ability.

processes received data to XML elements such that i

can be used by CogAgent. Assessment Agent

Instructor Agent The assessment agent, depicted in Figure 1 as
CogAgent, is configured with information about the

The instructor agent, not depicted separately guiei  training task, measured variables, assessed olgscti

1, is the main part of the SImMSCORM player andand existing rules. During execution of the traintask,

presents and monitors training objectives that aréUMman assessors can provide feedback on the assesse

defined for the SCO currently presented to theestud  ©PIectives, via the SImSCORM player, which will be

These objectives are defined in the form of SCORNpresented to CogAgent as short-term evaluations

S : (depicted as assessment data). Based on these
objectives and can be related to data received fleam valuations, the student's profile, and informaticom

S|mulat|on agents, t_he human assessors, and the LMS]G simulation agents, CogAgent then determines an
This allows the instructor agent to test studeniyyera (or long-term) evaluation for the assessed
competences, which are related to these objectivegpjectives which will be presented to the studéats
based on the student's actions, a task descripti@n, assessors) as assessment result. Parallel tdtthises
student’s learner profile, previous results, an@ ththe simulation data and assessment data to adadpt an
learned or predefined rules. Also it can provideimprove the internal knowledge on assessment rules.
feedback and instruction or adapt the behavior of
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Figure 2. Neural-Symbolic Cognitive Architecture ©ogAgent

LEARNING AND REASONING

The assessment agent must be able to learn nesv rule
from observation and existing rules, infer conausi
from these rules and present them in a human
readable form. Research on Neural-Symbolic
Learning and Reasoning focuses on the integrafion o
learning techniques and architectures from Neural
Networks with the symbolic presentation and
reasoning techniques in (Fuzzy) Logic Programs
(Bader and Hitzler, 2005).

The Neural-Symbolic model proposed for CogAgent
is based on the Recurrent Temporal Restricted
Boltzmann Machine (RTRBM) (Sutskevest al,
2009) and is depicted in

Figure 2. This partially connected symmetric neural
network implements an auto-associative memory of
its input layers (called visible layers). CogAgent
contains three visible layers that represent itetse
desires and intentions (Bratman, 1999). Beliefs are
variables related to the training task (initial
conditions, dynamic behavior and measured
variables) and the student’s learner profile. Itites

are variables related to actions (feedback, instus

or adaptive training). And desires are variables
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related to performance assessment (e.g. training
objectives and student competences).

Beliefs and intentions are directly related to the
current state of the simulation whereas desirdsbeil
related to future states as well using Temporal
Difference learning (Sutton, 1988). This technique
learns the model to predict a maximum obtainable
value for its desires (e.g. overall evaluation espr
based on the current and previous states. Otherwise
the model would only learn to map short-term
evaluations, which is not desired in this case.

The hidden layer of the RTRBM is connected to the
visible layers with symmetric weighted connections.
Each hidden unit in this layer represents a rule or
relation between one or more visible units. It also
contains recurrent hidden-to-hidden connections tha
enable the RTRBM to learn the temporal dynamics in
the visible layers using an algorithm based on
contrastive divergence and back-propagation through
time. Using this layer we can infer the posterior
probability of beliefs, intentions and desires in
relation to the state of other beliefs, intentiarsl
desires and previously applied rules.
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Fuzzy Atoms

The assessment rules that CogAgent needs to encode,
learn and reason about are relations (or causlitie
between XML encoded constructs, which will be
called atoms hereafter. An XML based atom
describes a belief, intention or desire as a fonctif
measured data from the simulator and/or assessment
data from the assessors (or students). In case of
training simulators this data is often expresselaith
continuous and binary values. Therefore we need to
use activation functions in the visible units tlcan
express both. In Chen and Murray (2003), sigmoid
functions are introduced that can model binary el w

as continuous stochastic functions. These functions
contain a ‘noise-control’ parameter that contrdis t
steepness of the sigmoid function which can be
trained. So the actual behavior of a unit is also
learned from observation according to the distrdut

of its input values. We will extend our model with
such functions to create a Recurrent Temporal
Continuous  Restricted Boltzmann Machine
(RTCRBM).

Symbolic Rules

To express relations between atoms in symbolicsrule
we propose to use the temporal propositional logic
described in (Lamket al, 2007). This logic contains
several modal operators that extend classical modal
logic with a notion of past and future. All these
operators can be translated to a form that retatgs

to the immediate previous time step (denoted by the
temporal operatos). This allows us to encode any
rule from this language in the RTCRBM as a
combination of visible units (or atoms) and recntre
hidden units that represent applied rules in the
previous time step. For example the propositiég
denotes that a propositian has been trusincethe
occurrence of propositighft This can be translated to:

S — aSp anda [ e(aSh) — aSH, wherea andp are
modeled by visible units anelaSp) is modeled by a
recurrent hidden unit.

We extend this logic with the use of equality and
inequality formulas to represent the atoms for
continuous variables (e.@\=x, A<x, etc). Note that
the atoms for binary variables can also be repteden
asA=true or A=false which allows us to handle the
outcome of these atoms in the same way as with the
continuous atoms. But for readability we will ube t
classical notiorA and-A.

Due to the stochastic nature of the sigmoid fumstio

used in our model, the atoms can be regarded ag fuz
sets with a Gaussian membership function. This
allows us to represent fuzzy concepts, like goadl an
bad or fast and slow or approximations of learned
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values, which is especially useful when reasoning
with implicit and subjective rules. In fact, our de

can be regarded as a neural-fuzzy system similar to
the fuzzy systems described in (Kosko, 1992) and
(Sun, 1994).

Example

Now let's take the training task depicted in the
following figure (Figure 3). In this task, the samd
(depicted by the car with letter T) drives on abaur
road and approaches an intersection. In this sigenar
the student has to apply the yield-to-the-righeyul
which can be regarded as a training objective.

i

Figure 3. Example training task for driving simigat The
Trainee drives on an urban road, approaching an
intersection. The Trainee has to apply the yiekh®
right-rule.

Using our extended temporal propositional logic, we
can describe rules about the conditions, scenaudo a
performance assessment related to this task.

Conditions:
(Area=urban)
(Weather> good
(Time> 6) O (Time< 18)

@
@
(©)

Scenario:
(Speed> 0) O Approachinglntersectiop>
Crossintersection
Approachinglntersectiofi O(ApproachingTraffic=
right)
((Speed 0) O (HeadinglIntersectioy) S
(Distancelntersectior x) — Approachinglntersection

4)
Q)
(6)

Assessment:
Approachinglintersectiofl (Distancelntersectior 0) O
(ApproachingTraffic= right) 0 o(Speed-= 0) —
(Evaluation=good
Approachinglintersectiofl (Distancelntersectior 0) O
(ApproachingTraffic= right) O 0(Speed> 0) —
(Evaluation=bad)

™)

®)
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The temporal operatd$, used in rule 6, denotes that
Approachinglntersections true when the driver has
been driving towards an intersection since a aertai
distancex to an intersection was passed. This rule and
the actual value fax can be learned from observation
by clamping the actual speed, heading and distence
the visible units and the valueue to the unit for
Approachingintersection when the trainee is
approaching the intersection. This can be donenby a
assessor or the student, but could also be
automatically inferred by the model, as explained i
the next section.

Rule encoding and extraction

To encode and extract symbolic rules in symmetric
connectionist networks, like the RTRBM, Pinkas
(1995) describes a generic method that directlysmap
these rules to the energy function of such networks
Therefore, he describes an extension to propoaition
logic, called penalty logic that applies a penatly
each rule. This penalty can be regarded as the
“certainty” or “reliability” of a rule and is dirdly
related to the weights of the connections betwaen t
units that form this rule. To apply the encodingl an
extraction algorithms of Pinkas (1995) successfidly
our model we need extend our temporal propositional
logic with the use of penalties. Sun (1994) deswia
method to map atoms with classical modal operators
to real values (a process called fuzzyfication). We
propose to extend this method to create a mapging o
atoms and rules with the modal operators usediin ou
model to penalties.

Furthermore, we need to investigate what changes ar
required to the algorithms to handle the use of
equality formulas and continuous variables. For
example, we need to prove that it is possible ferin
the correct value for unknown continuous varialibes

a rule via pattern reconstruction based on known
values and (previously) applied rules. And to emcod
and extract rules with inequality formulas (e.desu
with < or >) we need to be able to transform these
and from rules that contain only equality formulas
(rules with = or#).

The penalties that are encoded or learned by our
model can also be used to rank the rules accotding
their applicability in a certain context or scepari
giving the students and assessors a ranked overview
of the applied rules. Also they allow us to solve
ambiguities in the application of rules, by usingls

a ranking to select the most applicable (or redipbl
rule in each case.
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ADAPTIVE TRAINING

Because the automated assessment module is capable
of learning the relations between student
competences, constructs being measured in the
simulation and assessments and instructions given
during the training, it can be used for adaptive
training as well. This means that the results & th
assessment module can be used by the instructor
agent to adapt the training scenario and/or
instructions to make the training task easier oreno
challenging. This is possible because of the auto-
associative nature of the neural-symbolic modet tha
is used in the agent, which allows the learnedsrtde

be applied backwards (i.e. from student competences
to changes in behavior of simulation objects and
instructions).

RESEARCH AND EXPERIMENTS

The automated assessment module will be developed
as part of a three year research project on assassm
in driving simulators, carried out by TNO in
cooperation with the Dutch licensing authority
(CBR), Research Center for Examination and
Certification (RCEC), Rozendom Technologies, and
ANWB driving schools. A prototype will be ready at
the end of 2009 which will be used to do experiraent
on the ANWB driving simulators used in their driger
training curriculum (see Figure 4). This allows the
module to be validated in several scenarios omgela
student population using multiple commercial driyin
simulators. If successful, the module will be used
support the Dutch driver training and examination
program.

Figure 4. ANWB Driving Simulators
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Figure 5. TNO Mission Simulation Center (MSC)

In parallel, the module will also be tested in othe
simulation environments, like in TNO’s Mission
Simulation Center (see Figure 5), for jetfightelopi
training and in Cannibal Hector, for strategic
command and control training.

Preliminary results of the experiments will be
presented during the paper session.
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