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ABSTRACT 

 

Computer Generated Force (CGF) systems continue to benefit from the ever increasing computational power offered 

by modern computing hardware. These computational resources are often used to provide higher entity counts as 

opposed to improving entity fidelity. This is particularly true of vehicle dynamics which, with some exceptions, 

continues to lag far behind the fidelity of manned simulators. With CGF-simulated (“constructive”) entities being 

asked to participate at close range with manned (“virtual”) simulators in scenarios such as urban operations and 

formation flight, the fidelity of CGF vehicle dynamics becomes important. 

 

This paper discusses the use of a commercial-off-the-shelf physics engine to add high fidelity vehicle dynamics to 

CGF-simulated entities without impacting entity count. Specifically the NVIDIA PhysX physics engine was applied 

to both the Army OTBSAF and Air Force XCITE Computer Generated Force systems. Vehicle dynamics was 

modeled on basic vehicle and environmental parameters such as mass, inertia, engine power, torque, lift, drag, thrust, 

etc. Dynamics were implemented and evaluated for wheeled and tracked vehicles, life forms, rotary wing and fixed 

wing aircraft. Physics augmentation of vehicle dynamics was demonstrated with a single physics engine 

simultaneously supporting multiple, dissimilar, CGF systems providing smooth, physically correct, and consistent 

dynamics for all vehicles in all of the CGF systems. 
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Introduction 

 

Simulation interoperability is not just about the 

communication of bits back and forth across a network.  

The simulation models must also interoperate with each 

other to provide a fair fight between entities 

participating.  This is extremely important in a virtual 

training situation where the trainee is provided a visual 

representation of the simulated entity to interact with. 

 

In this perspective, the CGF entity is no longer a 

constructive entity but rather a virtual entity that just 

happens to be generated within a constructive type 

system.  CGF systems must then generate entities with 

enough fidelity to mimic the capabilities and dynamics 

of a manned simulator. 

 

With the increases in computational resources at a 

lower cost, the capability to provide this higher fidelity 

is available. The technology in multi-core CPUs and 

GPUs provide this leap in an affordable package. 

 

L-3 began to look at how we could apply these 

computational capabilities to CGF systems.  Our 

customers have spent large sums of money developing 

validated behavior models, sensor performance and 

weapons deployment characteristics.   One area we 

found that they could use enhancement was in the 

physical movement of entities. So instead of building a 

new CGF we looked at methods to improve existing 

CGF systems. 

 

Integration with the SAF System 

 

L-3 selected the AVCATT version of OTBSAF to 

integrate with this enhanced physical movement 

capability.  OTBSAF is the precursor to ONESAF and 

provides a good basis for verifying this approach.  

Other CGF systems like OneSAF or XCITE can be 

enhanced in a similar way. Figure 1 shows the 

connection between OTBSAF and what is now called 

the Physics Based Environment Generator (PBEG)
5
.  

 
 

Figure 1.  System Configuration 

 

As can be seen from the diagram, PBEG is loosely 

coupled to the CGF system.  This was done for several 

reasons.  The first reason of which was the use of the 

NVIDIA PhysX SDK
1
, discussed below, which only 

ran in Microsoft Windows and OTBSAF which ran in 

Linux.  The loosely coupled capability also allows us to 

choose among multiple CGF systems. 

 

To obtain the loose coupling, the SAF/CGF system 

sends routes to the PBEG system from which goal 

points can be determined. The goal points are 

deterministically calculated each frame.  The 

controllers discussed below then try to obtain the goal 

point based on the individual entities performance.  To 

minimize the communication between the systems, 

OTBSAF was updated to plan an intended path that 

could be passed once versus incrementally.  If the 

CGFs goal changes, then the system just sends the new 

goal and the PBEG adapts.  

 

PhysX Terrain 

 

The PhysX SDK provides a means for defining objects 

within the environment.  This capability was utilized to 

define an urban terrain database. A process was written 

to convert from L-3’s common database format to the 

internal format of the PhysX SDK.  This allowed the 

PhysX database to have a one to one polygon 

correlation with the visual rendering system.  Figure 2 

shows an example of the correlated PhysX terrain. The 

buildings were defined as static objects within the 
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PhysX environment. The same source was then used to 

generate a correlated CTDB for OTBSAF. 

 

 
 

Figure 2.  PhysX Terrain Database Example 

 

Additional work has been done to provide a dynamic 

database capability.  Destructible buildings were 

modeled within the PBEG environment and damaged 

based on detonations provided from the external 

simulations.  The initial models were based on the 

visual polygon representation.  The polygons were 

fractured into smaller pieces which were then impacted 

by the detonation.  This produced an adequate effect 

but some of the polygons would eject themselves into 

space thus making the detonations unrealistic.  By 

fixing the polygons to a simple frame within the 

building, adding physical properties to and between the 

polygons most of these anomalies were corrected. 

 

General Entity Modeling 

 

The SDK also allows the modeling of dynamic objects 

within the PhysX environment as per Figure 3.  The 

system provides a set of primitive objects or allows the 

user to define more complex objects.  Each object has 

physical characteristics such as mass, inertia and 

coefficients of friction. Additionally, joints or 

connections can be defined between objects to compose 

more complex objects with each joint having its own 

characteristics such as damping and spring coefficients.  

 
 

Figure 3.  PhysX Control Loop 

Once a vehicle is defined within the PhysX 

environment, forces can be applied to move it through 

the environment. The positions and attitudes of the 

vehicles/objects are computed by the PhysX system. 

Different forces or torques are applied to each object 

from the controlling application prior to each iteration 

of the system.   

 

Vehicle Performance Modeling 

 

Within many CGF systems today the entities are moved 

through the environment as point masses by the basic 

equations of Force equals Mass times Acceleration.  

The vehicle dynamics often take into account other 

characteristics but it still comes down to moving around 

the point mass.  In PBEG the vehicle dynamics are 

modeled as a rigid body based on a series of 

components that make up the vehicle.  Each component 

then has variable parameters such as mass, inertia, 

engine power, torque, lift, drag, and thrust.  Forces are 

applied to these components individually and the 

physics environment accumulates the forces to provide 

the proper movement.  Later areas of this paper discuss 

the different vehicle classes we investigated.  

 

The performance data for the vehicles was derived 

from known vehicle data.  For ground vehicles we used 

the existing CGF data and augmented it with data from 

the Internet.  For helicopters and fixed wing entities we 

utilized the vehicle dash 10 data.  The model is data 

driven and thus can be easily adjusted for specific 

vehicles. 

 

Modeling the Driver 

 

To successfully separate the physical models from the 

high level behaviors, the low level “driving” functions 

also needed to be moved into the PBEG system.  This 

provided an interface that allowed OTBSAF to pass 

routes from which goal points could be calculated by 

PBEG for the physical models to try to achieve.  The 

vehicle moves to obtain the goal based on it’s defined 

physical capabilities as well as the environment 

conditions. The driver function also performs obstacle 

avoidance to avoid other objects within the simulated 

environment. 

 

Since the driver behaviors run in the PBEG 

environment, they execute at a much faster rate than 

was previously provided within OTBSAF.  Where 

before, the CGF driver behaviors may have run a 2 to 3 

times a second, they now run at between 30Hz and 

60Hz.  This higher update rate provides better 

movement control and avoidance of objects within the 

environment. 
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Control Loop 

 

The goal of the system was to loosely couple the parent 

CGF with the PBEG environment. To minimize the 

communication, the PBEG system needed to implement 

a control system for each entity.  This was complicated 

by the need for the PhysX environment to be supplied 

with forces that should be applied to the entity rather 

than a simple position and orientation.  To solve this, 

PBEG implements a control loop system for each 

entity.  Figure 4 shows how the control fits into the 

system.  The Control takes the goal that has been 

provided by the CGF system and determines where the 

entity should be at any given time.  

   

 
 

Figure 4  PBEG Control Mechanism 

 

The control then adjusts the entity forces and torques to 

obtain that goal.  The forces and torques that can be 

generated are limited by the specific capabilities of 

each individual vehicle.  If the control mechanism 

determines it can’t achieve the specified goal, it notifies 

the CGF system to take corrective action.   

 

Groups of entities provide a different control problem.  

As the number of entities groups increases so does the 

CGF operator workload as he tries to control them.  To 

address this issue, L-3 in conjunction with UCF 

implemented a cooperative control mechanism to allow 

the entities to work as a unit but still interact as 

individuals.
2,3,4

 

 

Wheeled Entity Control 

 

We began the ground vehicle by first modeling the 

wheels and by applying torques to the wheels to pull 

the vehicle through the environment.  Through the use 

of the physics environment the traction provided is 

based on the friction between the wheels and the 

ground. 

 

 
 

Figure 5.  Wheeled Vehicle 

 

This approach allows us to model different terrain 

surfaces and provide the appropriate affects.  Figure 5 

provides a graphical representation of the vehicle 

model within the physics engine. 

To make the entity turn, the steering of the wheels had 

to be modeled. With this method the entity is pulled 

through the turns and thus if the entity turns too fast the 

vehicle can slide through the turn.  

 

To increase the fidelity of the ground vehicle, the 

suspension of the vehicle was modeled.  Figure 6 shows 

the basic configuration which includes a spring and 

shock absorber.  With the addition of the suspension, 

the wheeled vehicle hull also dynamically moves. 

These dynamics provide the pitch of the vehicle when it 

accelerates and brakes while rocking when it goes 

around turns.  

 

 
 

Figure 6.  Vehicle Suspension 

 

Tracked Entity Control 

 

Tracked entities follow the basic principles of the 

wheeled vehicles.  The number of wheels was increased 

to support all of the road wheels of the vehicles.  The 

control was changed to support the different mode 

types of steering that are possible with a tracked 

vehicle. 
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Human Entity Control 

 

The human entities required a large number of 

instances provide crowds.  To enable this, the entities 

were not modeled with individual limbs.  The first 

model built the human as if he were riding a unicycle 

with a single wheel which was then controlled.  As the 

system was scaled to a larger number of entities, the 

wheel calculation within the PhysX system required too 

many resources. The human entity was then changed to 

be an upright capsule representation that was moved 

through the environment.  This increased the 

performance since the capsule is a PhysX primitive that 

is hardware accelerated.   

 

Rotary Wing Control 

 

Next we moved onto rotary wing control as shown in 

Figure 7.  This modeling added the complexity of 

flight.  The rotary wing control models the force from 

the main rotor to lift the aircraft.  To provide an 

accurate model that would provide the proper visual 

effects the control also had to model the torque from 

the main rotor spinning plus the tail rotor which is used 

to counter act this torque.  Closed loop control for each 

of these forces is provided to generate the movement 

models.  As discussed above, the model uses the 

published aircraft performance data to model the 

capabilities of the helicopter.  

 

 
 

Figure 7.  Helicopter Model 

 

Integration of XCITE 

 

With the modeling of fixed wing entities, OTBSAF 

only had minimal fixed wing behaviors so we 

integrated XCITE with the PBEG system. Figure 8 

show the system configuration with both OTBSAF and 

XCITE utilizing the same PBEG system. 

 

With the integration of XCITE, the instantiation, 

control, and behaviors remained within XCITE but the 

physical movement of the entities was transferred to 

PBEG control.  PBEG then passed the entity locations 

and orientations back to XCITE just as was done with 

OTBSAF. 

 

This provided a common environment for all of the 

entities to interact within.  With the low level driver 

functions placed within PBEG the entities avoided each 

other without any interactions from the controlling CGF 

systems. 

 

 
 

Figure 8.  Hybrid CGFs with Physics Environment 

 

Fixed Wing Control 

 

With a fixed wing aircraft the four basic forces are 

weight (mass x gravity), lift, forward thrust and drag.  

These forces are each controlled based on the aircraft 

performance specifications except for weight which is 

computed by the PhysX engine.  If aircraft just flew 

straight and level, these would be fairly easy 

calculations.  The control issue is that the affect of the 

forces vary based on the aircraft angle of attack.  This 

adds induced and parasitic drag to the flight 

calculations increasing the complexity. These impacts 

were added by coupling the control loops into a more 

complex control system.   

 

Additional work was performed on the control of fixed 

wing formations.
4
  This allows the vehicles to work as a 

unit and provide for the high fidelity formation flight 

that pilots can perform.  These controls utilize robot 

control theory that was developed for the control of 

UAV systems. 

 

The takeoff and landing of the aircraft also needed to 

be provided.  This required providing control for the 

aircraft on the ground and during take-off by taking 

into account the runway length, rotation speed, and 

gross weight in accordance with the maximum thrust 

and take of acceleration. 
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Performance Improvements 

 

The specific CPU performance impacts within each 

CGF system have been hard to measure.  The main 

performance increase comes from the extraction of the 

entity movement out of the CGF into the PBEG system.  

This decoupling of the entity movement returns the 

processing that is normally done back to the CGF for 

execution of the behaviors.  The issue is, within the 

OTBSAF the modeling of the entity movement was 

minimal to begin with and thus it may only return 5% 

to 10% back to the CGF system after the transfer of the 

positions is taken into account.  We have not yet done 

any analysis on the XCITE system but it could have a 

greater impact due the dynamics requirements of the 

aircraft it models. 

 

The real performance impact of this method comes 

from the fidelity of the movement that can be provided 

to the training audience.  The movement dynamics 

provide the subtle nuisances that immerse the trainee 

into a believable training exercise.  The ground 

vehicles provided no longer ice skate across the terrain 

but dynamically interact with it depending on the speed 

of the entity and the roughness of the terrain. 

 

Un-intended Benefits 

 

During testing, scenarios were built for the OTBSAF 

with PBEG based on scenarios that were used for 

AVCATT.  These scenarios included some dense urban 

areas with the entities negotiating down streets and 

between buildings.  Previously on AVCATT the 

definition of the scenario in this type environment was 

a very tedious task that took around a week to test and 

get a usable scenario.  This was mainly due to the 

OTBSAF entities not being able to avoid each other 

efficiently and thus having to correct and re-correct 

which eventually lead to a traffic jam at some 

intersection.   

 

With the inclusion of the PBEG system this scenario 

setup time was cut. By moving the collision avoidance 

to the PBEG system and increasing its iteration rate the 

entities could make decisions quicker based on current 

data.   

 

Conclusion 

 

By applying commercial game technology to existing 

training simulation components L-3 Communications 

increased the fidelity of existing CGF systems while 

maintaining the entity count supported by the parent 

CGF system.  Through the use of control techniques we 

were able to adapt the commercial technology and 

enhance our training capabilities.   Separate control 

instances are provided for different vehicle classes to 

support the unique aspects of each type of vehicle.  

These data driven control classes are populated with 

vehicle data derived from real world measured 

performance specifications. Additionally, we showed 

that multiple existing CGF systems can interact in this 

common augmented physical environment with this 

increased fidelity.   
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