

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9324 Page 1 of 6

The Application of COTS Physics Engines to CGF Vehicle Dynamics

Jon M. Williams, Eytan Pollak, Steven R. Schwalm

L3 communications

Orlando, Florida

jmwilliams@link.com, epollak@link.com, srschwalm@link.com

ABSTRACT

Computer Generated Force (CGF) systems continue to benefit from the ever increasing computational power offered

by modern computing hardware. These computational resources are often used to provide higher entity counts as

opposed to improving entity fidelity. This is particularly true of vehicle dynamics which, with some exceptions,

continues to lag far behind the fidelity of manned simulators. With CGF-simulated (“constructive”) entities being

asked to participate at close range with manned (“virtual”) simulators in scenarios such as urban operations and

formation flight, the fidelity of CGF vehicle dynamics becomes important.

This paper discusses the use of a commercial-off-the-shelf physics engine to add high fidelity vehicle dynamics to

CGF-simulated entities without impacting entity count. Specifically the NVIDIA PhysX physics engine was applied

to both the Army OTBSAF and Air Force XCITE Computer Generated Force systems. Vehicle dynamics was

modeled on basic vehicle and environmental parameters such as mass, inertia, engine power, torque, lift, drag, thrust,

etc. Dynamics were implemented and evaluated for wheeled and tracked vehicles, life forms, rotary wing and fixed

wing aircraft. Physics augmentation of vehicle dynamics was demonstrated with a single physics engine

simultaneously supporting multiple, dissimilar, CGF systems providing smooth, physically correct, and consistent

dynamics for all vehicles in all of the CGF systems.

ABOUT THE AUTHORS

Jon Williams is employed by L3 Communications as a Principal Systems Engineer. He has 25 years of experience in

simulation, including 10 years in rotorcraft engineering development simulation and 15 years of modeling experience

with Computer Generated Force systems.

Steve Schwalm is employed by L3 Communications as a Senior Systems Architect. He has 26 years of experience in

training simulation, including Image Generator development, 10 years in Command Staff Trainer development and

20 years experience with Distributed Simulation systems.

Eytan Pollak received his B.Sc. and M.Sc. from Technion-I.I.T (Haifa, Israel) and his Ph.D. from Purdue

University, West Lafayette, IN. He has thirty years experience in managing research and development programs, he

holds several patents and has published papers in Control Systems, Robotics, Distributed Flight and Ground

Simulations/Simulators, Embedded Systems, and Cyber Physical Systems. He is a member of the Training

Transformation Collaboration Advisory Group (TTCAG) for the warfighter program. He is currently a research

professor at the UCF School of Electrical Engineering and Computer Science, and he is also the Director of Strategic

Technologies at L-3 Communications Link Simulation & Training..

jmwilliams@link.com
mailto:epollak@link.com
mailto:srschwalm@link.com

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9324 Page 2 of 6

The Application of COTS Physics Engines to CGF Vehicle Dynamics

Jon M. Williams, Eytan Pollak, Steven R. Schwalm

L3 communications

Orlando, Florida

jmwilliams@link.com, epollak@link.com, srschwalm@link.com

Introduction

Simulation interoperability is not just about the

communication of bits back and forth across a network.

The simulation models must also interoperate with each

other to provide a fair fight between entities

participating. This is extremely important in a virtual

training situation where the trainee is provided a visual

representation of the simulated entity to interact with.

In this perspective, the CGF entity is no longer a

constructive entity but rather a virtual entity that just

happens to be generated within a constructive type

system. CGF systems must then generate entities with

enough fidelity to mimic the capabilities and dynamics

of a manned simulator.

With the increases in computational resources at a

lower cost, the capability to provide this higher fidelity

is available. The technology in multi-core CPUs and

GPUs provide this leap in an affordable package.

L-3 began to look at how we could apply these

computational capabilities to CGF systems. Our

customers have spent large sums of money developing

validated behavior models, sensor performance and

weapons deployment characteristics. One area we

found that they could use enhancement was in the

physical movement of entities. So instead of building a

new CGF we looked at methods to improve existing

CGF systems.

Integration with the SAF System

L-3 selected the AVCATT version of OTBSAF to

integrate with this enhanced physical movement

capability. OTBSAF is the precursor to ONESAF and

provides a good basis for verifying this approach.

Other CGF systems like OneSAF or XCITE can be

enhanced in a similar way. Figure 1 shows the

connection between OTBSAF and what is now called

the Physics Based Environment Generator (PBEG)
5
.

Figure 1. System Configuration

As can be seen from the diagram, PBEG is loosely

coupled to the CGF system. This was done for several

reasons. The first reason of which was the use of the

NVIDIA PhysX SDK
1
, discussed below, which only

ran in Microsoft Windows and OTBSAF which ran in

Linux. The loosely coupled capability also allows us to

choose among multiple CGF systems.

To obtain the loose coupling, the SAF/CGF system

sends routes to the PBEG system from which goal

points can be determined. The goal points are

deterministically calculated each frame. The

controllers discussed below then try to obtain the goal

point based on the individual entities performance. To

minimize the communication between the systems,

OTBSAF was updated to plan an intended path that

could be passed once versus incrementally. If the

CGFs goal changes, then the system just sends the new

goal and the PBEG adapts.

PhysX Terrain

The PhysX SDK provides a means for defining objects

within the environment. This capability was utilized to

define an urban terrain database. A process was written

to convert from L-3’s common database format to the

internal format of the PhysX SDK. This allowed the

PhysX database to have a one to one polygon

correlation with the visual rendering system. Figure 2

shows an example of the correlated PhysX terrain. The

buildings were defined as static objects within the

mailto:epollak@link.com

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9324 Page 3 of 6

PhysX environment. The same source was then used to

generate a correlated CTDB for OTBSAF.

Figure 2. PhysX Terrain Database Example

Additional work has been done to provide a dynamic

database capability. Destructible buildings were

modeled within the PBEG environment and damaged

based on detonations provided from the external

simulations. The initial models were based on the

visual polygon representation. The polygons were

fractured into smaller pieces which were then impacted

by the detonation. This produced an adequate effect

but some of the polygons would eject themselves into

space thus making the detonations unrealistic. By

fixing the polygons to a simple frame within the

building, adding physical properties to and between the

polygons most of these anomalies were corrected.

General Entity Modeling

The SDK also allows the modeling of dynamic objects

within the PhysX environment as per Figure 3. The

system provides a set of primitive objects or allows the

user to define more complex objects. Each object has

physical characteristics such as mass, inertia and

coefficients of friction. Additionally, joints or

connections can be defined between objects to compose

more complex objects with each joint having its own

characteristics such as damping and spring coefficients.

Figure 3. PhysX Control Loop

Once a vehicle is defined within the PhysX

environment, forces can be applied to move it through

the environment. The positions and attitudes of the

vehicles/objects are computed by the PhysX system.

Different forces or torques are applied to each object

from the controlling application prior to each iteration

of the system.

Vehicle Performance Modeling

Within many CGF systems today the entities are moved

through the environment as point masses by the basic

equations of Force equals Mass times Acceleration.

The vehicle dynamics often take into account other

characteristics but it still comes down to moving around

the point mass. In PBEG the vehicle dynamics are

modeled as a rigid body based on a series of

components that make up the vehicle. Each component

then has variable parameters such as mass, inertia,

engine power, torque, lift, drag, and thrust. Forces are

applied to these components individually and the

physics environment accumulates the forces to provide

the proper movement. Later areas of this paper discuss

the different vehicle classes we investigated.

The performance data for the vehicles was derived

from known vehicle data. For ground vehicles we used

the existing CGF data and augmented it with data from

the Internet. For helicopters and fixed wing entities we

utilized the vehicle dash 10 data. The model is data

driven and thus can be easily adjusted for specific

vehicles.

Modeling the Driver

To successfully separate the physical models from the

high level behaviors, the low level “driving” functions

also needed to be moved into the PBEG system. This

provided an interface that allowed OTBSAF to pass

routes from which goal points could be calculated by

PBEG for the physical models to try to achieve. The

vehicle moves to obtain the goal based on it’s defined

physical capabilities as well as the environment

conditions. The driver function also performs obstacle

avoidance to avoid other objects within the simulated

environment.

Since the driver behaviors run in the PBEG

environment, they execute at a much faster rate than

was previously provided within OTBSAF. Where

before, the CGF driver behaviors may have run a 2 to 3

times a second, they now run at between 30Hz and

60Hz. This higher update rate provides better

movement control and avoidance of objects within the

environment.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9324 Page 4 of 6

Control Loop

The goal of the system was to loosely couple the parent

CGF with the PBEG environment. To minimize the

communication, the PBEG system needed to implement

a control system for each entity. This was complicated

by the need for the PhysX environment to be supplied

with forces that should be applied to the entity rather

than a simple position and orientation. To solve this,

PBEG implements a control loop system for each

entity. Figure 4 shows how the control fits into the

system. The Control takes the goal that has been

provided by the CGF system and determines where the

entity should be at any given time.

Figure 4 PBEG Control Mechanism

The control then adjusts the entity forces and torques to

obtain that goal. The forces and torques that can be

generated are limited by the specific capabilities of

each individual vehicle. If the control mechanism

determines it can’t achieve the specified goal, it notifies

the CGF system to take corrective action.

Groups of entities provide a different control problem.

As the number of entities groups increases so does the

CGF operator workload as he tries to control them. To

address this issue, L-3 in conjunction with UCF

implemented a cooperative control mechanism to allow

the entities to work as a unit but still interact as

individuals.
2,3,4

Wheeled Entity Control

We began the ground vehicle by first modeling the

wheels and by applying torques to the wheels to pull

the vehicle through the environment. Through the use

of the physics environment the traction provided is

based on the friction between the wheels and the

ground.

Figure 5. Wheeled Vehicle

This approach allows us to model different terrain

surfaces and provide the appropriate affects. Figure 5

provides a graphical representation of the vehicle

model within the physics engine.

To make the entity turn, the steering of the wheels had

to be modeled. With this method the entity is pulled

through the turns and thus if the entity turns too fast the

vehicle can slide through the turn.

To increase the fidelity of the ground vehicle, the

suspension of the vehicle was modeled. Figure 6 shows

the basic configuration which includes a spring and

shock absorber. With the addition of the suspension,

the wheeled vehicle hull also dynamically moves.

These dynamics provide the pitch of the vehicle when it

accelerates and brakes while rocking when it goes

around turns.

Figure 6. Vehicle Suspension

Tracked Entity Control

Tracked entities follow the basic principles of the

wheeled vehicles. The number of wheels was increased

to support all of the road wheels of the vehicles. The

control was changed to support the different mode

types of steering that are possible with a tracked

vehicle.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9324 Page 5 of 6

Human Entity Control

The human entities required a large number of

instances provide crowds. To enable this, the entities

were not modeled with individual limbs. The first

model built the human as if he were riding a unicycle

with a single wheel which was then controlled. As the

system was scaled to a larger number of entities, the

wheel calculation within the PhysX system required too

many resources. The human entity was then changed to

be an upright capsule representation that was moved

through the environment. This increased the

performance since the capsule is a PhysX primitive that

is hardware accelerated.

Rotary Wing Control

Next we moved onto rotary wing control as shown in

Figure 7. This modeling added the complexity of

flight. The rotary wing control models the force from

the main rotor to lift the aircraft. To provide an

accurate model that would provide the proper visual

effects the control also had to model the torque from

the main rotor spinning plus the tail rotor which is used

to counter act this torque. Closed loop control for each

of these forces is provided to generate the movement

models. As discussed above, the model uses the

published aircraft performance data to model the

capabilities of the helicopter.

Figure 7. Helicopter Model

Integration of XCITE

With the modeling of fixed wing entities, OTBSAF

only had minimal fixed wing behaviors so we

integrated XCITE with the PBEG system. Figure 8

show the system configuration with both OTBSAF and

XCITE utilizing the same PBEG system.

With the integration of XCITE, the instantiation,

control, and behaviors remained within XCITE but the

physical movement of the entities was transferred to

PBEG control. PBEG then passed the entity locations

and orientations back to XCITE just as was done with

OTBSAF.

This provided a common environment for all of the

entities to interact within. With the low level driver

functions placed within PBEG the entities avoided each

other without any interactions from the controlling CGF

systems.

Figure 8. Hybrid CGFs with Physics Environment

Fixed Wing Control

With a fixed wing aircraft the four basic forces are

weight (mass x gravity), lift, forward thrust and drag.

These forces are each controlled based on the aircraft

performance specifications except for weight which is

computed by the PhysX engine. If aircraft just flew

straight and level, these would be fairly easy

calculations. The control issue is that the affect of the

forces vary based on the aircraft angle of attack. This

adds induced and parasitic drag to the flight

calculations increasing the complexity. These impacts

were added by coupling the control loops into a more

complex control system.

Additional work was performed on the control of fixed

wing formations.
4
 This allows the vehicles to work as a

unit and provide for the high fidelity formation flight

that pilots can perform. These controls utilize robot

control theory that was developed for the control of

UAV systems.

The takeoff and landing of the aircraft also needed to

be provided. This required providing control for the

aircraft on the ground and during take-off by taking

into account the runway length, rotation speed, and

gross weight in accordance with the maximum thrust

and take of acceleration.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

2009 Paper No. 9324 Page 6 of 6

Performance Improvements

The specific CPU performance impacts within each

CGF system have been hard to measure. The main

performance increase comes from the extraction of the

entity movement out of the CGF into the PBEG system.

This decoupling of the entity movement returns the

processing that is normally done back to the CGF for

execution of the behaviors. The issue is, within the

OTBSAF the modeling of the entity movement was

minimal to begin with and thus it may only return 5%

to 10% back to the CGF system after the transfer of the

positions is taken into account. We have not yet done

any analysis on the XCITE system but it could have a

greater impact due the dynamics requirements of the

aircraft it models.

The real performance impact of this method comes

from the fidelity of the movement that can be provided

to the training audience. The movement dynamics

provide the subtle nuisances that immerse the trainee

into a believable training exercise. The ground

vehicles provided no longer ice skate across the terrain

but dynamically interact with it depending on the speed

of the entity and the roughness of the terrain.

Un-intended Benefits

During testing, scenarios were built for the OTBSAF

with PBEG based on scenarios that were used for

AVCATT. These scenarios included some dense urban

areas with the entities negotiating down streets and

between buildings. Previously on AVCATT the

definition of the scenario in this type environment was

a very tedious task that took around a week to test and

get a usable scenario. This was mainly due to the

OTBSAF entities not being able to avoid each other

efficiently and thus having to correct and re-correct

which eventually lead to a traffic jam at some

intersection.

With the inclusion of the PBEG system this scenario

setup time was cut. By moving the collision avoidance

to the PBEG system and increasing its iteration rate the

entities could make decisions quicker based on current

data.

Conclusion

By applying commercial game technology to existing

training simulation components L-3 Communications

increased the fidelity of existing CGF systems while

maintaining the entity count supported by the parent

CGF system. Through the use of control techniques we

were able to adapt the commercial technology and

enhance our training capabilities. Separate control

instances are provided for different vehicle classes to

support the unique aspects of each type of vehicle.

These data driven control classes are populated with

vehicle data derived from real world measured

performance specifications. Additionally, we showed

that multiple existing CGF systems can interact in this

common augmented physical environment with this

increased fidelity.

ACKNOWLEDGEMENTS

We would like to thank the L-3 Technologies team for

working diligently to implement the PBEG

infrustracture and modeling algorithms and integrating

it with the CGF systems. Additionally, thanks to the

NVIDIA development team for providing the toolkit

and hardware acceleration to make the modeling

possible in real time.

REFERENCES

1. NVIDIA Corporation, (2008). NVIDIA Physx SDK

2.8

2. J.Chunyu, Z.Qu, E.Pollak, M.Falash, "A New

Reactive Target-tracking Control with Obstacle

Avoidance in a Dynamic Environment", 2009

American Control Conference, St. Louis, Missouri,

USA.

3. J.Chunyu, Z.Qu, E.Pollak, M.Falash, "A New

Reactive Target-tracking Control with Obstacle

Avoidance in a Dynamic Environment", 2009

American Control Conference, St. Louis, Missouri,

USA.

4. H.Yuan, V.Gottesman, M.Falash, Z.Qu, E.Pollak,

and J.Chunyu, ``Cooperative Formation Flying in

Autonomous Unmanned Air Systems with

Application to Training," the 7th International

Conference on Cooperative Control and

Optimization, University of Florida, Gainesville,

Florida, January 31 to February 2, 2007.

5. Falash; Mark ; et al. “Distributed Physics Based

Training System and Methods” US Patent Application

20090099824.

