Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

Next-Generation Live Virtual Constructive Architecture Framework
(LVCAF)

Warren Bizub Jeffrey Wallace Dr. Andy Ceranowicz
Joint Forces Command J7 Carpe Occasio Technology Systems Alion Science and Technology
Suffolk, VA La Jolla, CA Alexandria, VA
Warren.bizub@jfcom.mil jwallace@cots-llc.com aceranowicz@alionscience.com
Dr. Edward Powell
SAIC
Washington DC
ed@tech.org

ABSTRACT

The challenges faced by today’s warfighter — more agile and innovative adversaries in widely varying operational
environments — are steadily increasing. To respond effectively, the training and education community must provide
timely, relevant and efficient training for operators in a resource constrained environment. The ability to rapidly
compose Live, Virtual, and Constructive (LVC) environments is central in addressing this challenge. Current LVC
infrastructures lack native support for a variety of critical functions, such as fault tolerance, composition, mediation,
load balancing, and information assurance. As a result, several problems are evident: development of custom
solutions is pervasive, making them difficult to reintegrate; lack of support for agile re-use (e.g., algorithms or
libraries); current Modeling & Simulation (M&S) architectures are not adapted to support net-centric environments
or enterprise Service-Oriented Architectures (SOAs); and the mixed architecture LVC environments lead to
throughput limitations, and increased latency,that affect scalability.

A new, converged, composable simulation architecture is needed to facilitate re-use of LVC assets, and optimize
performance and scalability across the wide range of M&S activities. In order to enable the transformation and
evolution, a new approach for harnessing the creative talents of developers supporting the M&S community is
required. This paper describes a high-level design, business model, and standards approach for a futuristic LVC
Architecture Framework (LVCAF). A mixed business model, consisting of Commercial-Off-The-Shelf (COTS) and
open source, is of particular interest. New standards governing such a system, and the Communities of Interest
(COls), needed to implement the approach are discussed.

ABOUT THE AUTHORS

Warren Bizub is the Program Director, Joint Advanced Concepts for the Joint Warfighting Center, USJFCOM. He
has also served as the Technical Management Division Chief of the Joint Training & Education Capability Group
and Director, Advanced Training Technologies Group while at USJFCOM. After serving in the USAF he moved
through various positions in the DoD training community for twenty years as a Project Engineer, Program Manager,
In-Service Engineering Supervisor, and Software Support Facility Manager. Before reporting to the USJFCOM, Mr.
Bizub was the Science Advisor to the Commander, U. S. Naval Air Forces. He has a B.S. degree in Ocean
Engineering, is a graduate of the Navy's Senior Executive Management Development Program, and a MIT fellow of
Seminar XXI: Foreign Politics, International Affairs, and the National Interest.

Jeffrey Wallace is the Chief Technology Officer of Carpe Occasio Technology Systems. He has an M.S. and B.S.
in Mathematics, University of Illinois Urbana-Champaign, and over 25 years experience in unmanned systems,
interoperability, artificial intelligence, modeling and simulation (M&S), and high-performance computing - in a
variety of academic, government, and industry positions. Mr. Wallace has written over 40 technical papers, and
edited several books. He served as the general, or program, chair for numerous International conferences in
artificial intelligence, M&S and high performance computing; was the VP for Membership for the Society for
Modeling and Simulation International, Board of Directors, and chaired the 50th Anniversary conference. He
formed the Modeling and Simulation Professional Certification Commission, and led the team that created the

2009 Paper No. 9015 Page 1 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

Certified M&S Professional examination. He also chaired the Emerging Concepts and Innovative Technologies
subcommittee for the 2008 Interservice/Industry Training, Simulation and Education Conference (the largest DoD
affiliated conference).

Dr. Andy Ceranowicz is a Chief Scientist at Alion and the technical lead for federation and Joint Semi-Automated
Forces (JSAF) development at JFCOM J9. He led the development of the Millennium Challenge 02 federation as
well as the development of JSAF and its predecessors, ModSAF and SIMNET SAF. Andy holds a Ph.D. in
Electrical Engineering from The Ohio State University

Dr. Ed Powell is a Lead Architect from SAIC for the Test and Training Enabling Architecture. After receiving his
Ph.D. in Astrophysics from Princeton University, he worked for the Lawrence Livermore National Laboratory
performing simulation-based analysis. He moved to SAIC in 1994, and participated as lead architect in some of the
most complex distributed simulation programs in DoD, including the Joint Precision Strike Demonstration (JPSD),
the Synthetic Theater of War (STOW), the Joint Simulation System (JSIMS). He then worked in the intelligence
community for two years on architectures for integrating large-scale diverse ISR systems. He has been the lead
architect for TENA for eight years now, and is currently working on expanding the applicability of TENA, and
integrating multiple interoperability architecture approaches using ontology-based systems.

2009 Paper No. 9015 Page 2 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

Next-Generation Live Virtual Constructive Architecture Framework
(LVCAF)

Warren Bizub
Joint Forces Command J7
Suffolk, VA
Warren.bizub@)jfcom.mil

Jeffrey Wallace
Carpe Occasio Technology Systems
La Jolla, CA
jwallace@cots-llc.com

Andy Ceranowicz
Alion Science and Technology
Alexandria, VA
aceranowicz@alionscience.com

Dr. Edward Powell
SAIC
Washington DC
ed@tech.org

INTRODUCTION

The training community has made significant progress,
enabling users to build critical resources through
distributed architectures. Some experts characterize the
advance as one of the major success stories of the last
two decades. Building on early successes, such as
SIMNET, different user communities have, over time,
evolved infrastructure and protocols tailored for the
unique requirements of their community. For example,
the Aggregate Level Simulation Protocol (ALSP),
dating back to the early 1990’s, built on the SIMNET
concept of distributed training. ALSP focused on
faster-than-real-time simulations, and aggregate level
representations, to provide a theater-level experience
for battle staff training. Roughly in tandem, SIMNET
evolved into the Distributed Interactive Simulation
(DIS) standard, IEEE 1278, to provide technical
interoperability for entity level simulations.

With the goal of integrating the capabilities of DIS and
ALSP into a single architecture, the High Level
Architecture (HLA) (Kuhl 2000) was developed. HLA
had a broadened focus, beyond the training community,
including many new user and exercise requirements.
Specifically, DIS and ALSP emerged from the
requirements of the training community and the HLA
designers recognized the acquisition and analysis
communities also had unique requirements for
combining hardware, models, and simulations. As
such, HLA was the first distributed interoperability
paradigm designed from the ground up to support the
requirements of the three different communities.
However, broad design - to meet diverse requirements -
typically sacrifices performance.

The real-time test range communities - who often
require precise timing, need high fidelity models, and
are extremely sensitive to latencies - experienced
performance issues with HLA. Consequently, the Test

2009 Paper No. 9015 Page 3 of 14

and Training Enabling Architecture (TENA) was
developed as a high-performance, real-time, low-
latency interoperability infrastructure. TENA was
designed largely to integrate live assets at test range
events. Assets included a variety of systems, and
numerous models and simulations, capable of
generating detailed performance and event data.
Similarly, the Army’s Common Training
Instrumentation Architecture (CTIA) was developed to
link assets on an Army training range. CTIA was
envisioned to integrate a large number of assets sending
narrowly bounded data sets over low bandwidth links
to support After Action Review (AAR).

The above architectures are not inherently technically
interoperable, although capable of meeting
requirements for which they were designed. One
approach to achieving the needed architectural
interoperability involves converting assets from one
paradigm to another. However, this approach can be
costly, requires different workforce capabilities, and
poses risks. Technical interoperability can also be
achieved through other methods, including gateways,
translators, bridges, or embedded middleware solutions.
However, challenges arise with these methods as well.
Problems include violation of latency thresholds,
significantly increased complexity, incorrect translation
of data, and differences in protocols leading to a lack of
robustness.

The DoD Modeling and Simulation Steering
Committee sponsored a study called the Live Virtual
and Constructive Architecture Roadmap (LVCAR).
The study identified a core set of technical
recommendations to potentially mitigate the risk in
diverging architectures. Table 1 summarizes several
important features and capabilities to be considered
from a technical perspective that are prime candidates
for convergence. The subsequent discussion outlines

an approach to consider

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

in solving the problems

identified in LVCAR.
DIS | HLA | TENA| CTIA
Transport types Mo Yes Yes Yes
Information fikering Mo Yes Yes Yes
Transfer af ownership Yes Yes Yes Yes
On-the-wire standard Yes Yes Yes Yes
Comman Object Model camponents Yes Yes Yes Yes
Data farmats Yes Yes Yes Yes

OM Loading (at compile or runtime)

Achieve benefits outside the architecture

Data Marshalling

Achieve benefits outside the architect

Support Multiple Message Types

Include in Ol convergence

Pravide Save & Restore Operations

Costs far outweigh benefits

Synchronize Applications

Very rare use; costs exceed likely bensfit

Object-ariented design

Me justification te rebuild at this level

Glabal Event Ordering

An application-level issue

Specification for Taols & Utilities

Concentrate on common formats

Multiple Reference Frames

Does not impact architecture convergence

Number of Compliance Levels

Does not impact architecture convergence

Live Virtual Constructive Architecture Roadmap

Table 1. LVCAR Technical Convergence Targets

The study explored how cross architecture
compatibility could be realized, and forward
momentum restored, in moving to the next generation
of M&S technologies. The study recommended against
another infusion of capital to establish a new
architecture, stating it was not warranted and would
produce yet another integrating architecture requiring
bridging. Rather, a gradual effort to push the existing
architectures together was recommended. The study
also noted the need to consider industry’s potential
contribution in moving simulation technology to bridge
the gap between the existing architecture environments.
A significant question was posed: What characteristics
are needed to enable greater productivity and reuse?

The paper begins by discussing lessons-learned and
obstacles to reuse. In general, the goal is to provide a
deeper understanding of the current challenges. Next,
proposed solutions are outlined, composed of two
major concepts — an LVC Architecture Framework, and
a development environment with capabilities and
characteristics suited towards the rapid assembly of
LVC exercises and events.

LEARNING FROM PAST LESSONS

The first characteristic that emerges when contrasting
the development and expansion of the Web and object-
oriented computer languages to that of HLA is the
grass-roots origins of the former. The HLA was a top
down driven enterprise with limited bottom up support.
Without foundational support, many initiatives lose
traction and falter. Hence, any new interoperable
infrastructure must be accepted by the action officers

2009 Paper No. 9015 Page 4 of 14

and upper management through a process of
incremental socialization and feedback.

Some industry experts believe the focus on reuse and
simulation-linkage has been counterproductive.
Interoperability architectures add considerable
complexity to simulation (and in general LVC systems)
development and operation. Ultimately, the goal is to
allow developers to build simulations with less effort
and to create more useful products. While reuse
provides leverage for easier simulation development, it
must be considered a supporting mechanism rather than
the primary goal. Making new simulation development
easier is the main objective. DoD applications
constantly require new and better models for an
increasingly wider range of phenomena (e.g., non-
kinetic and social effects).

OBSTACLES TO REUSE

Reuse can pose several difficulties. The first obstacle
involves locating the models to use. M&S resource
catalogs exist, but generally contain large, complicated,
and multipurpose simulations. Determining whether the
simulations meet the developers’ goals is difficult and
labor intensive because the available metadata rarely
provides all the pertinent/relevant information. The
next problem involves obtaining the software. Does it
require a memorandum of agreement (MOA), a license,
or a fee? Does it require supporting software with an
MOA, a license, or a fee? Is a trial version available?
This complicated process limits the number of
alternatives to be evaluated, let alone reused.

Gaining sufficient understanding of the simulations is
necessary before a final selection is made, including:

1. How to operate them

2. Verifying that they work

3. Validating that the models represents the
phenomena of interest or can be adapted to do
SO

4. Understanding how to interface to them

5. Verifying that implementations are compatible
with other LVC assets of interest

6. Determining if resource requirements fit the
budget.

While advocates for reuse extol the benefits of not
having to write new code, they rarely consider the cost
of trying to understand the capabilities and operation of
other people’s software. Advocates normally
recommend spending additional funds to produce code
and documentation designed for reuse. Time and
budget constraints often make this impossible. While

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

most simulation software is reused for many
applications, it is limited to the original development
team, and those to whom knowledge of the software
can be transferred, via apprenticeship and oral tradition.
Ironically, additional documentation quickly becomes a
maintenance liability. Out of date documentation leads
to a frustrating experience for developers.

Once LVC components or simulations are selected,
considerable effort remains to interface, adapt, and
optimize the resulting simulation to support the target
exercise or study. Because the cost of integrating
external simulations is generally high, organizations
tend to stick with the simulations and federations their
developers are familiar with, and upgrade them to
include the new phenomena of interest. Integrating
external simulations usually requires hiring the external
simulation’s developers. Organizations that use large
federations often have to hire different developers for
each of the simulations in their federations, which
causes another reuse problem. When the federation
needs to represent new systems, doctrine, or areas of
operation, the changes often cut across the simulations,
and each federate developer has to be paid to make the
change. Maintenance for federations is proportional to
the number of federates. Furthermore, each simulation
typically has different operator interfaces, recovery
procedures, and input data. To execute a common
scenario, the scenario data and simulation inputs need
to be translated into formats understood by each
component simulation. In other words, a federation is
as difficult to operate as it is to build.

Another problem in federating LVC components and
simulations involves semantic incompatibility. Models
are abstract representations of the real world. There are
many ways abstractions can be developed, resulting in
many potential incompatible models. For example, one
can build a model (in simulation A) of traffic based on
fluid flow; and another developer can model traffic (in
simulation B), based on entity interactions. Linking A
and B is not easy. Many models do not fit together
well, and federating them leads to semantic conflict and
simulation anomalies. Largely, the federation process
consists of reducing the worst incompatibilities to an
acceptable level. When putting a number of simulation
components together, we expect the whole to give us
more capabilities than the individual parts. Semantic
conflict prevents us from realizing the full benefit of
joining simulations. Some features are not usable, and
restrictions are required for valid results.

Existing integrating architectures support connecting

simulations but not reusable modules. Some integrating
architectures have different features that can be turned

2009 Paper No. 9015 Page 5 of 14

on or off for different federations, limiting
interoperability within a single architecture. Due to
complexity on most projects, model developers do not
deal directly with the integrating architectures. Instead,
a federation developer hides it under an abstraction
layer so other developers will not have to deal with it.
Hence, interoperability architectures require specialized
knowledge which hinders reuse.

FIXING THE PROBLEM

The LVC architecture framework (LVCAF) is intended
to provide an environment in which the existing LVC
architectures can function, providing a forum for
convergence and a unified approach to multi-
architecture exercises and events. The goals are three
fold: 1) to promote convergence, 2) to improve the
ability of the community to contribute to the evolution
of an enterprise infrastructure and common net-centric
data strategy, and 3) to support business model
approaches that reward innovation. Key drivers of the
LVCATF include non-intrusive value- add for enterprise
capability, to simplify application or component
integration, and facilitate data integration.

The essential motivation is to improve the economics:
optimize the use of human capital; address the scarcity
of talent, funding, and time; and be able to quantify
return on investment. The current state of affairs limits
productivity due to the complications caused by
competing architectures, meta-data formats, gateways,
bridges, and infrastructures for the multitude of
systems. Understanding complexity measurement and
management is needed; and coordination between many
organizations and cultures is necessary. A unique
challenge exists in understanding and managing the
human aspect of interoperability and integration. A
wide variety of factors must be considered to effect
convergence, as is illustrated in Figure 1 below.

Reﬁuiremeni‘

Existing
Resource
Allocation

Figure 1. Enterprise Architecture Features

Facilities

An important feature is the Technology element of the
Enterprise Architecture. The subsequent sections
provide an overview of technology that can overcome
the challenges outlined previously.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

LVC ARCHITECTURE FRAMEWORK

The next generation LVCAF will need to include four
distinct categories of software, three of which are
shown below in Figure 2:

e Tools
e Runtime Framework
e Unique Applications

The Tool applications simplify planning, management,
control, and administration of federation execution. The
Runtime Framework enables participants in a
federation to integrate federation components
consisting of LVC assets. The unique applications
represent the LVC components to be integrated - to
interoperate in a federation. The fourth category is a
development environment, described later in this paper
as the Integrated LVC Development Environment
(IVDE).

The Runtime Framework consists of three main
categories, the Core API, and External Module API,
and Internal Module API. The Core API consists of

Tools

Runtime Framework

Internal Management Framewol

interfaces addressing the needs of tools that are used to
plan, manage, and control federation components and
hardware resources executing in the federation. The
Internal Module API has interfaces permitting tight
coupling of federation components from a performance
and semantic interoperability perspective. Finally, the
External Module API is the interfaces allowing loosely
coupled federation components that can be rapidly and
economically configured.

Internal Federation Management

Ontology Markup and Composition provide a
mechanism for describing federation resources and
operation to permit automation of composition,
execution and control. The incorporation of
Information Assurance alleviates the need for
developers to implement their own approaches
producing patchwork solutions. The Persistence API’s
and Data Loading modules provide support for
event/exercise persistence across multiple processes
and support data storage and reload automation.
Analytic simulation has not been served effectively by
previous simulation interoperability infrastructures.

Unique
Applications

Common Utilities

Standard Components

External Standards

Figure 2. LVC Architecture Framework

2009 Paper No. 9015 Page 6 of 14

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

Analytic studies tend to use multiple simulations
sequentially rather vs in parallel. For example, a model
may examine a situation in high resolution and produce
data to drive models to operate in lower resolution with
wider scope. Current interoperability architectures
retain the training world’s focus on presenting a single
fused experience. All the models run in parallel and
exchange data while running. To be applicable to many
analysis problems, the LVCAF should address data
exchange and the coordination between sequential
simulation executions. Internal Configuration
Management provides a method for querying and
managing the configuration of components required to
instantiate a federation

The Fault Tolerance and Automatic Failover functions
support the execution of a federation. The module
constructs federations to automatically address
component failure, allowing the federation to run
without interruption. Checkpoint capabilities permit
simulation state saving transparently, during run time.
Restart, via, the defined checkpoints, can return to the
simulation (in case of unrecoverable events).

LVCAF Core,

Entity Management Services permit various entities,
represented by the federation components, to share
states with the whole system. The Processing Engine
Algorithms control the entire LVCAF instantiation.
The algorithms and implementations should be
optimized for various hardware and system resources.
Timing and Synchronization are modular, permitting
the LVCAF core to be configured with several timing,
synchronization algorithms, and implementations, for
user optimization.

The LVCAF Communications framework permits the
LVCAF middleware to utilize multiple communication
protocols simultaneously (e.g., shared memory utilized
between federation components executing on a multi-
core computer, TCP/IP between networked computers,
and several communication protocols with operational
or live participants such as Link-16 and Joint Tactical
Radio System (JTRS). Message and Data Distribution
supports various methods to optimize communications
for particular hardware configurations. The methods
adapt to many network loading and traffic scenarios.

The Module Integration API’s provide easy integration
of new components to the system. They simplify
timing, synchronization, and message passing between
federation components and resources. Encryption and
Compression provide third party security, and ensures

2009 Paper No. 9015 Page 7 of 14

security of messages and data to optimize available
band-width via advanced compression techniques.

Common Utilities

Data Modeling and Definition simplify the process, and
shorten integrate time with all components in the
federation, into an interoperable system, including LVC
component modules. Similarly, a Net-Centric
Enterprise Services — The ability to utilize and comply
with DISA’s Net-Centric Enterprise Services (NCES),
Net-Enable Command Capability (NECC), and Net-
Centric Data Strategy (NCDS) should be built into the
LVCAF middleware.

The Legacy LVC Engine and Processing Plug-Ins is a
significant aspect. In order to ensure a smooth
transition from legacy LVC federation components, a
set of plug-ins can be built to permit a high
performance interface between the new LVCAF
middleware and legacy components. Interfaces to DIS,
HLA, TENA, and CTIA systems will be available.
Load Balancing functions provide the federation to
dynamically adjust allocation of certain federation
components to hardware resources, based on overall
computational and communication loading.

Unique Applications

The Live Interface Modules enable live system
resources to be integrated into a federation, with special
emphasis on timing and synchronization, data and
message transfer - especially analog-to-digital and
digital-to-analog conversions. Virtual Interface
Modules provide an ability to integrate next-generation
realistic virtual components into federations facilitated
by the internal module API’s. Constructive Interface
Modules improve integration of large scale portrayals
of many phenomena. Scalability and fault
tolerance/automatic failover are prime considerations.

In certain scenarios, the internal communication
modules provide live system communication protocols
integration, particularly for embedded training and
experimentation, in which the boundary between LVC
components is obscured. Live translation modules
allow rapid integration of loosely coupled live
components into a federation. The external module
API’s represent a set of simplified interfaces for
situations in which limited timing, synchronization,
message, and data distribution are adequate. Hence, the
approach permits rapid integration. Virtual translation
modules ease the integration of virtual systems not
requiring tight coupling and a moderate volume of data
exchange. Constructive translation modules permit

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

loosely coupled constructive federation components
with a simplified set of interfaces for timing,
synchronization, message, and data distribution. The
external communication modules are provided to
quickly integrate live system communication protocols,
in which integration with operational Warfighters is
required.

Tools

Resource mapping tools assess federation execution
requirements against the hardware assets available.
The resource mapping tools can manage and optimize
network bandwidth and processor loading.
Configuration control tools provide a system-wide
capability to assess and manage all aspects of
federation components, and hardware resources,
available to execute the federation.

Monitoring and Logging — The ability to monitor all
aspects of federation components and the hardware
resources executing the federation are needed. In
addition to monitoring, all the information should be
logged in a way that permits ready analysis and
inspection via a suite of query utilities. A single central
logger is a scalability bottleneck. Hence, distributed
logging and queries are essential for large scale
simulations. The wuser should also have a choice
between the efficiency of binary logging and the
understandability of text logs. Support for calculating
metrics and visualization of results at runtime and for
post processing is needed.

Finally, the Run-time execution and control tools
manage and control all federation components and
hardware resources executing the federation. GUIs
tools are needed to provide interfaces for exercise
participants.

SOLVING THE KNOWLEDGE PROBLEM

The LVCATF provides all the pieces and tools required
to connect components from a large number of sources
into a single combined simulation federation. Yet the
previous analysis of obstacles suggests - even if a
painless way existed to connect any set of simulations,
the primary problem would remain: acquiring sufficient
knowledge of the available simulations to select, adapt,
and operate them. An approach to the problem has been
historically employed in other domains, but not the
M&S community. This is due to the unique problem in
M&S presented by the need to represent time and
system evolution. The approach has been behind
subroutines, databases, and object-oriented
methodologies, which is to decompose the problem up

2009 Paper No. 9015 Page 8 of 14

into small components which can then be more easily
understood and reused.

Currently, the only reusable assets in the M&S
community are complete models and simulations
typically composed of thousands of components.
Ideally, even if developers followed code reuse
development practices, a significant problem still exists
in determining how all the pieces fit together and
interact. Many modern software techniques, such as
event-based and thread-based programming, make the
software difficult to figure out compared to the
traditional static calling sequences of procedural
programming. Moving toward loosely coupled M&S,

and more generally LVC, assets with smaller
meaningful components is positive.
A fine-grained, component-based development

approach would enable more developers to contribute
innovations. Intuitively, the more LVC components
become available, the more useful combinations can be
integrated to more easily solve problems. The
infrastructure must encourage LVC developers to
create smaller LVC components that can integrate
together, and then make those pieces available to
others. However, in order to be able to quickly find and
arrange very large numbers of LVC components into
useful systems, the reality that human intellect alone is
insufficient must be faced. Composition assistance
using machine intelligence will be required.
Unfortunately, the coding of M&S components is
generally obscure, and does not permit what is being
modeled to be understood. The domain concepts are
represented in the software in a way that the
relationship to the real-world phenomena is obfuscated
by the machinery required to make the simulation
work. The domain is barely recognizable to humans
much less to machines. In the ideal case models would
be documented along with the real-world referents in
an implementation independent format.

The larger software development community has
realized this and moved to the Model Driven
Architecture (Gasevic 2006) to capture how software
components interact with each other and with the world
in formats such as the Unified Modeling Language
(UML) and other related techniques such as the
Schlaer-Mellor method dating back to the 1990’s
(Schlaer 1991, Wallace 1998, Mellor 2002). In the C41
community the DoD Architecture Framework
(DODAF) is now required for systems documentation.
These techniques have a more understandable structure,
but are still human-oriented representations.
Representations manipulated and matched in intelligent
ways by computers are needed.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

Dating back to the 1990’s (Berners-Lee 1999),
numerous R&D efforts have converged to create a body
of knowledge and technology now known as the
Semantic Web (Allemang 2008). The goal of these
efforts was to describe and represent the meaning, or
semantics, embedded in web pages in a way that
software agents can understand and interact with them.
This is very similar to the capability that is required to
understand M&S and LVC components, and provides a
hierarchy of tools capable of capturing semantics of
M&S assets and how they represent and relate to the
world. These tools include:

RDF, the resource description framework
RDFS, the RDF schema language
SPARQL, a query language for RDF
OWL, the web ontology language
SWRL, the Semantic Web rule language

RDF provides a way to build distributed database tables
defining how concepts relate. RDFS permit machines to
infer relations not specified explicitly. SPARQL allows
distributed databases to be queried to retrieve explicit
and inferred data. OWL provides additional inference
mechanisms; and SWRL allows the application of
automated logic to the semantic representations and the
database of knowledge.

Any knowledge representation presents a grounding
problem (e.g., the meanings of the terminal nodes need
to be defined). As such, the words suggest real world
meanings to humans, but software does not have human
experience to call upon. To software, an ‘F-16’ is not
the same as an ‘F16’. Fortunately, the Semantic Web
addresses exactly the same problem. The Semantic
Web community is solving the problem by building
publicly available ontologies describing the real world,
including these equivalency and translation elements.
This permits machine inference to match and interface,
if we can agree on common ontologies to use, or
specify the mappings between the ontologies used by
different models. Employing different ontologies to
provide a mapping between equivalent concepts
improves developer efficiency. This allows innovation
to continue simultaneously with standardization.

The Semantic Web developers are creating tools
needed to describe model components for computer
reasoning. Thus, model compatibility, translations
between data exchange elements, and developer
conflicts can be identified. = However, building
ontologies is more difficult than writing natural
language documentation. If time does not permit
general documentation, building ontologies will pose a

2009 Paper No. 9015 Page 9 of 14

problem. Part of the answer can be found in the data
exchange specifications of current interoperable
simulations. Interoperability architectures like HLA and
TENA require machine readable specifications of the
data exchange clements or ‘object model’ for the
federation. These can be converted into model
specific ontologies and related to standardized
ontologies for the real world, enabling evaluation on
how two simulations can interoperate with each other.

A primary goal of the objective interoperability
infrastructure is to encourage model developers to
break up simulations and LVC assets, and create
smaller model components. The result will be that most
of the meaning of the composite model will be captured
in the interfaces between the model components, and
making the additional step to documenting the internals
of the models manageable. The availability of public
and authoritative ontologies for the subject matter
domains will cause developers to use them in the
process of new model and LVC assets creation, since
less work is required via resuse. The same ontologies
can also be applied to sharing source data and scenarios
between simulations. The ontologies can eventually be
used to support human instruction, decision-making,
and real systems engineering. Enormous potential for
reuse exists, if common ontologies are employed.

DEVELOPMENT ENVIRONMENT
REQUIREMENTS

The interoperability architecture needs to gain
sufficient adoption to generate a network effect for
LVC and simulation components creation and reuse. It
should be attractive for the majority of LVC system and
simulation users, including those who do not need to
network assets together. The interoperability
infrastructure must replace general purpose
programming languages, and specialized simulation
languages, as the medium for expressing models. There
is no reduction of effort for the developer creating a
single use standalone simulation, if it is necessary to
first express the model in a general purpose
programming language and then interface it to an
interoperability framework to make it work.
Furthermore, the infrastructure has to capture the
meaning of the models in such a way that machines can
intelligently make use of it for matching and linking
with other models without further burdening the
developer.

This leads to the requirement to build an Integrated
LVC Development Environment (IVDE) that can
capture the user’s model specifications at a high level
and implement them as executable LVC systems or

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

distributed LVC system components that combine new
and existing model components together with the
LVCAF to create new products. In reality, this will
encourage innovation, while allowing specialized
solutions where sufficient benefit exists. What is
needed is a way to define families of integrated
development environments that share ontologies and
can build compatible models.

Despite the previous focus on the standalone LVC
system or simulation user, to achieve the stated goals
the IVDE must be capable of producing products that
are executable in a wide range of environments. The
resulting LVC components need to be easily changed to
work in a networked environment based on protocols
compatible with existing HLA, TENA, DIS and CTIA
environments. The LVC components also need to be
usable as parts of embedded training systems, decision
support systems and command and control systems.
Capturing the model and component definitions in an
architecture independent form provides the best
opportunity to compile the model definition into
executables compatible with different systems.

This in itself is a huge reuse
advantage over trying to
combine modules already
specialized for a particular

Model or

it onto the developer’s computer. This ease of reuse is
needed in the objective environment.

The R language is especially interesting from the
perspective of modeling and simulation. It is a
statistical data processing language that allows users to
not only access and apply statistical models; it also
provides access to a large number of source data sets.
This is relevant to modeling and simulation because
right now most LVC system and simulation developers
have very little access to source data which could
provide the necessary context for understanding some
models, as well as support better verification and
validation. Our IVDE should give the developer
similar access to a wide variety of models, data, and
solution tools without the impediments of manual
searching of registries and repositories, requesting
software, getting approvals, and waiting for it to arrive.
The ontologies provide the key for finding what the
user needs. A necessary component of the IVDE is a
semantic search engine for relevant ontologies, models,
simulation components, LVC components, and support
modules. This semantic search engine must have the

environment. The challenge Component
is that the code generation Definition
software becomes more
complex with increasing J
levels of abstraction from the C Discovery | SOA
executable software. User R N ‘ Wrappers| IF IF
Accordingly, there is an GUl Scenario
optimal level of model C4l
specification that will depend Integrated LVC IF |F 2
on the code generation \[Controf
capabilities available. Success Development IF .Lmke.d C4l
depends on not being too far Environment L SImL!Iatlpn IF 1
- 09981 Application

away from that optimal level. IF

HW
Most modern computer Web Interface w Search Debug F
languages have benefited IF
enormously from having the DIS TENA
ability to download libraries IF IF1 | IF2 IF
of source code that can be

reused. The source code is
publicly available on the web

Ontologies

Definitions
& Objects

Definitions
& Objects

Utilities

it

(known as open source code).
For example, the R language
(Chambers 2008) enables the
developer to just enter a
command and the interpreter
will go out find a mirror,
fetch the software, and install

Environment

2009 Paper No. 9015 Page 10 of 14

STANDARDS

Cosctive

Figure 3. Integrated Simulation Development

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

ability to express what the system must do, what assets
are available to use, and the ability to reason about
these inputs and produce solution suggestions in the
form of suggested components and data sets.

INTEGRATED SIMULATION DEVELOPMENT
ENVIRONMENT

The next generation of LVC interoperability tools is
envisioned to be accessed via IVDEs (there may be
many such systems) as shown in Figure 3. An IVDE
will first capture the developer’s descriptions of the
desired model, simulation, or LVC component. The
IVDE will then accept specifications of the interfaces
for the systems or federations to be employed, plus the
interface specifications of any foreign code modules
that the developer wishes to include, and use this
information to produce an LVC or simulation
application.

In the process of creating the application the IVDE will
help the developer discover and reuse:

e Ontologies

e Simulation Models

e LVCAR components

e Custom communications interfaces
e Custom tools and utilities

These resources will be located on a network, either the
World Wide Web, or perhaps a DoD or organization
intranet, for sensitive systems. The LVCAF
components do not need to be located in one place or
delivered on a DVD. The IVDE can be implemented as
a service oriented web application. This makes the
capture of simulation artifacts much easier than relying
on users to upload their products. Using the mechanism
of Semantic Web ontologies, the IVDE will search the
appropriate network to find and download the resources
that fit the specifications of the application.

The ontologies will also help the developer reuse
standardized concepts that already exist for the domain
of reference. If the developer finds the available
conceptual models to be inadequate, the IVDE allows
the developer to define new ontologies and map them
to the existing ones. The key improvement is that the
developer does so knowing what is already out there.
The ontologies are then used to create translation
routines between all the subcomponents in that
application and to any external LVC components,
applications, or federations with which the new
application must interact.

2009 Paper No. 9015 Page 11 of 14

The developer can also download custom utilities and
tools for runtime federation control, monitoring and
logging, resource mapping and configuration control.
The IVDE will produce linked applications containing
only those models, tools, and components needed for a
given purpose and optimized for a particular
environment. Federations can be built by having
participants compile with the same federation
specification. Running in new environments would
require recompiling with a specification for that
environment.

IVDEs should make it easier to integrate models at a
fine level of granularity to help avoid many semantic
conflicts by linking only models from independent
domains. Most semantic conflict occurs because
simulations are complete so that they can execute in a
standalone mode. Thus they each need to have their
own representation of all relevant domains, such as
terrain. Currently, if two simulations are linked their
representations of terrain will probably be different,
inducing anomalies and what are known as “fair fight”
issues. However, if models from different domains are
employed, those problems do not usually occur. For
example, if a model of shopping is created along with a
model of traffic, and then combine them to produce a
model of a shopping mall, there should be few
incompatibilities. In general, linking existing
simulations, and other LVC assets, almost always
results in overlapping domains. Clearly, the focus
should be on assembling and linking models from
different domains into new simulations and LVC
components. This will lead to far less semantic conflict
than the current practice of linking entire LVC and
simulation applications, and therefore better results.

Of course, just building an IVDE is not sufficient.
There needs to be enough content to attract users. This
means that the vast store of M&S material currently
existing cannot be abandoned. At a minimum, users
will want to take advantage of existing simulation
resources. That means that the IVDE will need to be
able to link in existing LVC assets and simulation code.
This will require the users to specify the interface to
those code modules in an ontology, similar to wrapping
functions in one language so that they can be called
from another, but with a higher level of meaning. The
same capability would be wused to interface to
specialized simulation hardware such as might be
required in virtual simulations. Variants of the IVDE
are envisioned to support construct of virtual
simulations as well as hardware in the loop systems —
that is serving the entire LVC community.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

INFRASTRUCTURE OBSTACLES

Besides obstacles to reuse that have to be overcome, the
obstacles to fielding and getting acceptance of a new
interoperability infrastructure or IVDE must be
considered. When people propose a Swiss Army Knife
approach to a problem, there is natural skepticism as to
the achievability of the approach, its ease of use, its
reliability, and its efficiency. These are valid questions
for the IVDE. Achieving the IVDE will require
research and development in a number of related areas,
including the integration of ontology-based reasoning
engines with code-generation capabilities.

The progress being made in Semantic Web
technologies indicates integration of an IVDE is
possible in the near future. For ease of use, the IVDE
should allow users to employ the system at a variety of
levels of difficulty with proportional levels of
capability. At the entry level users might access
existing LVC assets, simulations, and data, then
customize and run them. At the next level they might
create standalone LVC applications or simulations. The
key is that knowledge to execute each task needs to be
carefully separated in such a way that as users enter
more complex environments they have the mechanisms
to get tasks done.

Reliability requires a consistent underlying structure
that is properly matched to the target functionalities of
the system. To achieve this, ontologies can be
leveraged to create an underlying model of the
architecture which can support semi-automated testing.
It is also essential that to provide sufficient debugging
tools for the users’ applications. It will not be practical
for the user to pull out a C++ debugger and try to figure
out where the design failed. The price of creating high-
level definition languages is the need to also provide all
the tools required to debug the output, including
logging, assertions, watch points, and break points.

Many complicated interface solutions sacrifice
efficiency and scalability to generality. Almost
anything can be interfaced as long as the scope of the
simulation is small and only a few runs are required.
Moving the definition of the models up to as high a
level as practical allows the minimization of what is
included in the resulting executables. For example, if
interfacing with DIS systems is not required, there
won’t be DIS components in the generated product.
Compiling the model specifically for particular
architectures with significantly more knowledge about
the model to be simulated than possessed by
conventional compilers should also enable significant
optimizations.

2009 Paper No. 9015 Page 12 of 14

Availability is a critical issue. If the LVC component or
simulation developer has to pay a substantial amount of
money to obtain the infrastructure, the number of users
will be limited, as will the network effect. Ideally the
infrastructure would be used as part of most college
courses that include simulation development. As such,
a free infrastructure would be best. In the same spirit,
the ability to leverage all the talent in the community is
also essential — another aspect of the network effect. It
is essential that mechanisms are found to engage
academia, industry, and government by providing ways
that each can contribute to the solution in a manner
compatible with their operating principles. This leads to
the realization that open source development must be
considered as a viable approach.

STANDARDS SOLUTIONS

Clearly the ontologies used for automating the search
and integration of components for LVC systems and
simulations must be standardized. The ontologies will
make it possible to get away from the developer
intensive task of finding and understanding the
available models. Machine support of this process is
essential and standard ontologies are needed to make it
work. Standards for the interfaces and functions for the
tools and utilities in the LVCAF are also critical.
Without standardization, dealing with different
offerings from many sources would become intractable.
Standards for user interfaces would allow the creation
of uniform control interfaces while utilizing the
products of multiple developers. This would allow
LVC systems and simulations to be run by fewer
operators.

Other areas for potential standardization include
making sure that the outputs from the code generation
processes are linkable between different IVDEs. We
need to standardize the format and required content of
the specifications used for interfaces so multiple IVDEs
can employ the same specifications. Similar
standardization is required for the way scenarios and
parametric data are specified. In general, creating
environments where competing products can be easily
interchanged is desirable. In particular, enabling
commercial ventures to create plug-ins and add-ons to
the base system should be a goal. In order to achieve
this end state, a progression thorough multiple
standards as the community learns how to solve
problems until solutions are created that are good
enough to justify a single approach will likely be the
case.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

BUSINESS MODEL SOLUTIONS

A complicated technology thrust like this, which seeks
to change the landscape of modeling and simulation
and the LVC community is clearly beyond a single
project or organization. This will be realized through
the contributions of many different organizations over
an extended period. The business model needs to
support this and avoid shutting out any group. The core
of the environment, enough to create useful LVC
components and simulations that can be used in
production environments should be free and open
source. This opens up the technology to universities
for research purposes and for use in courses that train
future practitioners in the art of simulation. It also
brings in open source developers and innovation.
While the core should be open source, it should not
prevent government and commercial organizations
from building on the core and creating value-added
restricted-distribution products from it. Government
organizations may want to protect certain innovations,
such as information assurance features, from
foreign/hostile agents. The key is for the open source
core to contain enough functionality to remain viable as
a standalone application.

In general, a large body of existing software is
excluded when open source is required. For some
components a new Government Open Source license
might be created. The majority of government software
development is conducted under contracts that simply
provide for free use for government purposes. This
approach appears to lead to stovepipes where
development resides with the primary contractor and
does not encourage reuse and research investment
across contractors. For each application a secondary
development contractor needs a government sponsor to
certify the application often ruling out Internal
Research & Development investment.

In most cases, new product development is not built on
GOTS applications because secondary companies are
not guaranteed the right to reuse the software in new
projects. Nor do they know if their changes will be
incorporated into the government baseline. One thing
to explore is a possibility to provide the contractor a
license that allowed them to maintain their own version
of the Government software and propose it for any new
Government contract they bid on, and then perhaps
more reuse of Government software would likely
occur. How to integrated new software developed
products (as open source) by the contractor back into
the baseline application requires future investigation as
well.

2009 Paper No. 9015 Page 13 of 14

Technology transfer concerns, especially with
developed software related to defense applications, can
be extremely complicated and are beyond the scope of
this paper. However, when dealing with DoD
applications we need to recognize that moving toward
an open source environment will require close scrutiny
to intellectual property and technology transfer issues.

COMMUNITIES OF INTEREST

The expectation exists that user and developer
organizations will form communities of interest around
different applications and aspects of the IVDE. From
the application side, a major problem exists that
Semantic Web technology can’t solve: figuring out the
relative value of different models and components. The
anticipated solution is that different LVC components
and simulation domains will develop communities of
interest (COI) that will evaluate and rank components
that are applicable to their interests. Another
expectation is that COls devoted to different LVC asset
and simulation user interfaces would emerge.

For example, one user interface might specialize in
expressing models as Petri nets and be graphically
oriented while another might be procedure and text
oriented. They could both produce compatible models
but their users would want to form different
communities of interest to share techniques. Virtual
simulation users, hardware in the loop users, and live
system and simulation users will also want to share
their experiences in their own COIs. The underlying
LVCAF technologies will also require a number of
development COlIs. There will probably be one or more
compiler groups, a group for the semantics of models,
and perhaps others on the semantics of scenarios and
source data. In addition, the development and use of
IVDEs will produce more than one COI.

SUMMARY

DoD needs faster and more efficient methods for
producing new simulation environments to support its
operations. Interoperability approaches have diverged
and multiplied. A common LVC Architecture
Framework can provide an environment in which the
existing LVC architectures can function, a forum for
convergence and a unified approach to multi-
architecture exercises and events. Higher level
integration support is required to allow simulation
developers to take advantage of all interoperability
approaches under a family of compatible Integrated
LVC Development Environments. By focusing these
IVDEs on making simulations easier for all simulation

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009

developers, we can achieve the network effect that will
motivate widespread adoption. Semantic Web tools
will allow us to catalog, find, and interface simulation
components with much more automation than is
currently available, lowering the time and cost of
fielding new LVC environments.

ACKNOWLEDGEMENTS AND DISCLAIMER

The authors would like to thank Barbara and Jaclyn
Hannibal for their editing, graphic arts, and production
support of this paper.

The opinions expressed in this article are those of the
authors and do not represent the opinions or views of
the Department of Defense or the United States
Government.

REFERENCES
Allemang, D. and Hendler J. (2008) Semantic Web for

the Working Ontologist, Effective Modeling in RDFS
and OWL, Boston: Morgan Kaufmann

2009 Paper No. 9015 Page 14 of 14

Berners-Lee, Tim, and Fischetti, Mark (1999) Weaving
the Web, Harper Collins Publishers.

Chambers, J. M. (2008). Software for Data Analysis,
New York: Springer.

Gasevic, D., Djuric D., and Devedzic, V. (2006). Model
Driven Architecture and Ontology Development,
Berlin: Springer.

Kuhl, F., Weatherly, R., and Dahmann, J. (2000).
Creating Computer Simulation Systems, An
Introduction to the High Level Architecture, Upper
Saddle River: Prentice Hall PTR.

Mellor, Stephen, and Mark Balcer (2002) Executable
UML, A Foundation for Model Driven Architecture,
Addison Wesley.

Shlaer, Sally, and Stephen Mellor (1991) Object
Lifecycles: Modeling the World in States, Yourdon
Press.

Wallace, Jeffrey; G. Leonard; L. Peterson; A. Vagus; C.
Kropp, 1998. "Using IMPORT to Develop
Wargames," In The Proceedings of the 1998 Object-
Oriented Simulation Conference, The Society for
Computer Simulation, San Diego, CA, January 11-
14, 1998.

