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ABSTRACT 
 
The challenges faced by today’s warfighter – more agile and innovative adversaries in widely varying operational 
environments – are steadily increasing. To respond effectively, the training and education community must provide 
timely, relevant and efficient training for operators in a resource constrained environment.  The ability to rapidly 
compose Live, Virtual, and Constructive (LVC) environments is central in addressing this challenge.  Current LVC 
infrastructures lack native support for a variety of critical functions, such as fault tolerance, composition, mediation, 
load balancing, and information assurance. As a result, several problems are evident:  development of custom 
solutions is pervasive, making them difficult to reintegrate; lack of support for agile re-use (e.g., algorithms or 
libraries); current Modeling & Simulation (M&S) architectures are not adapted to support net-centric environments 
or enterprise Service-Oriented Architectures (SOAs); and the mixed architecture LVC environments lead to 
throughput limitations, and increased latency,that affect scalability.   
 
A new, converged, composable simulation architecture is needed to facilitate re-use of LVC assets, and optimize 
performance and scalability across the wide range of M&S activities.  In order to enable the transformation and 
evolution, a new approach for harnessing the creative talents of developers supporting the M&S community is 
required.  This paper describes a high-level design, business model, and standards approach for a futuristic LVC 
Architecture Framework (LVCAF). A mixed business model, consisting of Commercial-Off-The-Shelf (COTS) and 
open source, is of particular interest.  New standards governing such a system, and the Communities of Interest 
(COIs), needed to implement the approach are discussed.    
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INTRODUCTION 
 
The training community has made significant progress, 
enabling users to build critical resources through 
distributed architectures. Some experts characterize the 
advance as one of the major success stories of the last 
two decades.  Building on early successes, such as 
SIMNET, different user communities have, over time, 
evolved infrastructure and protocols tailored for the 
unique requirements of their community.  For example, 
the Aggregate Level Simulation Protocol (ALSP), 
dating back to the early 1990’s, built on the SIMNET 
concept of distributed training.  ALSP focused on 
faster-than-real-time simulations, and aggregate level 
representations, to provide a theater-level experience 
for battle staff training.  Roughly in tandem, SIMNET 
evolved into the Distributed Interactive Simulation 
(DIS) standard, IEEE 1278, to provide technical 
interoperability for entity level simulations.   
 
With the goal of integrating the capabilities of DIS and 
ALSP into a single architecture, the High Level 
Architecture (HLA) (Kuhl 2000) was developed. HLA 
had a broadened focus, beyond the training community, 
including many new user and exercise requirements.  
Specifically, DIS and ALSP emerged from the 
requirements of the training community and the HLA 
designers recognized the acquisition and analysis 
communities also had unique requirements for 
combining hardware, models, and simulations.  As 
such, HLA was the first distributed interoperability 
paradigm designed from the ground up to support the 
requirements of the three different communities. 
However, broad design - to meet diverse requirements - 
typically sacrifices performance.   
 
The real-time test range communities - who often 
require precise timing, need high fidelity models, and 
are extremely sensitive to latencies - experienced 
performance issues with HLA.  Consequently, the Test 

and Training Enabling Architecture (TENA) was 
developed as a high-performance, real-time, low-
latency interoperability infrastructure.  TENA was 
designed largely to integrate live assets at test range 
events.  Assets included a variety of systems, and 
numerous models and simulations, capable of 
generating detailed performance and event data.  
Similarly, the Army’s Common Training 
Instrumentation Architecture (CTIA) was developed to 
link assets on an Army training range.  CTIA was 
envisioned to integrate a large number of assets sending 
narrowly bounded data sets over low bandwidth links 
to support After Action Review (AAR).     
 
The above architectures are not inherently technically 
interoperable, although capable of meeting 
requirements for which they were designed.  One 
approach to achieving the needed architectural 
interoperability involves converting assets from one 
paradigm to another.  However, this approach can be 
costly, requires different workforce capabilities, and 
poses risks.  Technical interoperability can also be 
achieved through other methods, including gateways, 
translators, bridges, or embedded middleware solutions. 
However, challenges arise with these methods as well. 
Problems include violation of latency thresholds, 
significantly increased complexity, incorrect translation 
of data, and differences in protocols leading to a lack of 
robustness.  
 
The DoD Modeling and Simulation Steering 
Committee sponsored a study called the Live Virtual 
and Constructive Architecture Roadmap (LVCAR).   
The study identified a core set of technical 
recommendations to potentially mitigate the risk in 
diverging architectures.  Table 1 summarizes several 
important features and capabilities to be considered 
from a technical perspective that are prime candidates 
for convergence.  The subsequent discussion outlines 
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an approach to consider in solving the problems 
identified in LVCAR. 
    

Live Virtual Constructive Architecture Roadmap
 

Table 1. LVCAR Technical Convergence Targets 
 

The study explored how cross architecture 
compatibility could be realized, and forward 
momentum restored, in moving to the next generation 
of M&S technologies.  The study recommended against 
another infusion of capital to establish a new 
architecture, stating it was not warranted and would 
produce yet another integrating architecture requiring 
bridging. Rather, a gradual effort to push the existing 
architectures together was recommended. The study 
also noted the need to consider industry’s potential 
contribution in moving simulation technology to bridge 
the gap between the existing architecture environments. 
A significant question was posed: What characteristics 
are needed to enable greater productivity and reuse? 
 
The paper begins by discussing lessons-learned and 
obstacles to reuse. In general, the goal is to provide a 
deeper understanding of the current challenges. Next, 
proposed solutions are outlined, composed of two 
major concepts – an LVC Architecture Framework, and 
a development environment with capabilities and 
characteristics suited towards the rapid assembly of 
LVC exercises and events. 
 

LEARNING FROM PAST LESSONS 
 
The first characteristic that emerges when contrasting 
the development and expansion of the Web and object-
oriented computer languages to that of HLA is the 
grass-roots origins of the former. The HLA was a top 
down driven enterprise with limited bottom up support.  
Without foundational support, many initiatives lose 
traction and falter.  Hence, any new interoperable 
infrastructure must be accepted by the action officers 

and upper management through a process of 
incremental socialization and feedback.  
 
Some industry experts believe the focus on reuse and 
simulation-linkage has been counterproductive. 
Interoperability architectures add considerable 
complexity to simulation (and in general LVC systems) 
development and operation. Ultimately, the goal is to 
allow developers to build simulations with less effort 
and to create more useful products. While reuse 
provides leverage for easier simulation development, it 
must be considered a supporting mechanism rather than 
the primary goal.  Making new simulation development 
easier is the main objective. DoD applications 
constantly require new and better models for an 
increasingly wider range of phenomena (e.g., non-
kinetic and social effects).  
 

OBSTACLES TO REUSE 
 
Reuse can pose several difficulties. The first obstacle 
involves locating the models to use. M&S resource 
catalogs exist, but generally contain large, complicated, 
and multipurpose simulations. Determining whether the 
simulations meet the developers’ goals is difficult and 
labor intensive because the available metadata rarely 
provides all the pertinent/relevant information. The 
next problem involves obtaining the software. Does it 
require a memorandum of agreement (MOA), a license, 
or a fee?  Does it require supporting software with an 
MOA, a license, or a fee? Is a trial version available? 
This complicated process limits the number of 
alternatives to be evaluated, let alone reused. 
 
Gaining sufficient understanding of the simulations is 
necessary before a final selection is made, including: 
 

1. How to operate them 
2. Verifying that they work 
3. Validating that the models represents the 

phenomena of interest or can be adapted to do 
so 

4. Understanding how to interface to them  
5. Verifying that implementations are compatible 

with other LVC assets of interest 
6. Determining if resource requirements fit the 

budget.  
 
While advocates for reuse extol the benefits of not 
having to write new code, they rarely consider the cost 
of trying to understand the capabilities and operation of 
other people’s software. Advocates normally 
recommend spending additional funds to produce code 
and documentation designed for reuse. Time and 
budget constraints often make this impossible. While 
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most simulation software is reused for many 
applications, it is limited to the original development 
team, and those to whom knowledge of the software 
can be transferred, via apprenticeship and oral tradition. 
Ironically, additional documentation quickly becomes a 
maintenance liability. Out of date documentation leads 
to a frustrating experience for developers. 
 
Once LVC components or simulations are selected, 
considerable effort remains to interface, adapt, and 
optimize the resulting simulation to support the target 
exercise or study. Because the cost of integrating 
external simulations is generally high, organizations 
tend to stick with the simulations and federations their 
developers are familiar with, and upgrade them to 
include the new phenomena of interest. Integrating 
external simulations usually requires hiring the external 
simulation’s developers. Organizations that use large 
federations often have to hire different developers for 
each of the simulations in their federations, which 
causes another reuse problem.  When the federation 
needs to represent new systems, doctrine, or areas of 
operation, the changes often cut across the simulations, 
and each federate developer has to be paid to make the 
change. Maintenance for federations is proportional to 
the number of federates. Furthermore, each simulation 
typically has different operator interfaces, recovery 
procedures, and input data. To execute a common 
scenario, the scenario data and simulation inputs need 
to be translated into formats understood by each 
component simulation. In other words, a federation is 
as difficult to operate as it is to build. 
 
Another problem in federating LVC components and 
simulations involves semantic incompatibility. Models 
are abstract representations of the real world.  There are 
many ways abstractions can be developed, resulting in 
many potential incompatible models. For example, one 
can build a model (in simulation A) of traffic based on 
fluid flow; and another developer can model traffic (in 
simulation B), based on entity interactions.   Linking A 
and B is not easy.  Many models do not fit together 
well, and federating them leads to semantic conflict and 
simulation anomalies. Largely, the federation process 
consists of reducing the worst incompatibilities to an 
acceptable level. When putting a number of simulation 
components together, we expect the whole to give us 
more capabilities than the individual parts.  Semantic 
conflict prevents us from realizing the full benefit of 
joining simulations.  Some features are not usable, and 
restrictions are required for valid results.  
 
Existing integrating architectures support connecting 
simulations but not reusable modules. Some integrating 
architectures have different features that can be turned 

on or off for different federations, limiting 
interoperability within a single architecture.  Due to 
complexity on most projects, model developers do not 
deal directly with the integrating architectures. Instead, 
a federation developer hides it under an abstraction 
layer so other developers will not have to deal with it.  
Hence, interoperability architectures require specialized 
knowledge which hinders reuse.  
 

FIXING THE PROBLEM 
 
The LVC architecture framework (LVCAF) is intended 
to provide an environment in which the existing LVC 
architectures can function, providing a forum for 
convergence and a unified approach to multi-
architecture exercises and events.  The goals are three 
fold: 1) to promote convergence, 2) to improve the 
ability of the community to contribute to the evolution 
of an enterprise infrastructure and common net-centric 
data strategy, and 3) to support business model 
approaches that reward innovation.  Key drivers of the 
LVCAF include non-intrusive value- add for enterprise 
capability, to simplify application or component 
integration, and facilitate data integration.   
 
The essential motivation is to improve the economics: 
optimize the use of human capital; address the scarcity 
of talent, funding, and time; and be able to quantify 
return on investment.  The current state of affairs limits 
productivity due to the complications caused by 
competing architectures, meta-data formats, gateways, 
bridges, and infrastructures for the multitude of 
systems. Understanding complexity measurement and 
management is needed; and coordination between many 
organizations and cultures is necessary. A unique 
challenge exists in understanding and managing the 
human aspect of interoperability and integration.  A 
wide variety of factors must be considered to effect 
convergence, as is illustrated in Figure 1 below.   
 

Requirements

Process and
Workflow

Technology

Resource
Allocation

Facilities

Existing 
Assets

 
Figure 1.  Enterprise Architecture Features 

 
An important feature is the Technology element of the 
Enterprise Architecture. The subsequent sections 
provide an overview of technology that can overcome 
the challenges outlined previously. 
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LVC ARCHITECTURE FRAMEWORK 
 
The next generation LVCAF will need to include four 
distinct categories of software, three of which are 
shown below in Figure 2: 
 

• Tools 
• Runtime Framework 
• Unique Applications 

 
The Tool applications simplify planning, management, 
control, and administration of federation execution. The 
Runtime Framework enables participants in a 
federation to integrate federation components 
consisting of LVC assets.  The unique applications 
represent the LVC components to be integrated - to 
interoperate in a federation.  The fourth category is a 
development environment, described later in this paper 
as the Integrated LVC Development Environment 
(IVDE). 
 
The Runtime Framework consists of three main 
categories, the Core API, and External Module API, 
and Internal Module API.  The Core API consists of 

interfaces addressing the needs of tools that are used to 
plan, manage, and control federation components and 
hardware resources executing in the federation.  The 
Internal Module API has interfaces permitting tight 
coupling of federation components from a performance 
and semantic interoperability perspective.  Finally, the 
External Module API is the interfaces allowing loosely 
coupled federation components that can be rapidly and 
economically configured.   
 
Internal Federation Management 
 
Ontology Markup and Composition provide a 
mechanism for describing federation resources and 
operation to permit automation of composition, 
execution and control. The incorporation of 
Information Assurance alleviates the need for 
developers to implement their own approaches 
producing patchwork solutions.   The Persistence API’s 
and Data Loading modules provide support for 
event/exercise persistence across multiple processes 
and support data storage and reload automation. 
Analytic simulation has not been served effectively by 
previous simulation interoperability infrastructures. 
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Figure 2. LVC Architecture Framework
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Analytic studies tend to use multiple simulations 
sequentially rather vs in parallel. For example, a model 
may examine a situation in high resolution and produce 
data to drive models to operate in lower resolution with 
wider scope.  Current interoperability architectures 
retain the training world’s focus on presenting a single 
fused experience.  All the models run in parallel and 
exchange data while running. To be applicable to many 
analysis problems, the LVCAF should address data 
exchange and the coordination between sequential 
simulation executions. Internal Configuration 
Management provides a method for querying and 
managing the configuration of components required to 
instantiate a federation     
 
The Fault Tolerance and Automatic Failover functions 
support the execution of a federation.  The module 
constructs federations to automatically address 
component failure, allowing the federation to run 
without interruption. Checkpoint capabilities permit 
simulation state saving transparently, during run time.  
Restart, via, the defined checkpoints, can return to the 
simulation (in case of unrecoverable events).  
  
LVCAF Core, 
 
Entity Management Services permit various entities, 
represented by the federation components, to share 
states with the whole system.  The Processing Engine 
Algorithms control the entire LVCAF instantiation.  
The algorithms and implementations should be 
optimized for various hardware and system resources.  
Timing and Synchronization are modular, permitting 
the LVCAF core to be configured with several timing, 
synchronization algorithms, and implementations, for 
user optimization.       
 
The LVCAF Communications framework permits the 
LVCAF middleware to utilize multiple communication 
protocols simultaneously (e.g., shared memory utilized 
between federation components executing on a multi-
core computer, TCP/IP between networked computers, 
and several communication protocols with operational 
or live participants such as Link-16 and Joint Tactical 
Radio System (JTRS). Message and Data Distribution 
supports various methods to optimize communications 
for particular hardware configurations.  The methods 
adapt to many network loading and traffic scenarios.     
 
The Module Integration API’s provide easy integration 
of new components to the system.  They simplify 
timing, synchronization, and message passing between 
federation components and resources.  Encryption and 
Compression provide third party security, and ensures 

security of messages and data to optimize available 
band-width via advanced compression techniques.   
 
Common Utilities 
 
Data Modeling and Definition simplify the process, and 
shorten integrate time with all components in the 
federation, into an interoperable system, including LVC 
component modules.   Similarly, a Net-Centric 
Enterprise Services – The ability to utilize and comply 
with DISA’s Net-Centric Enterprise Services (NCES), 
Net-Enable Command Capability (NECC), and Net-
Centric Data Strategy (NCDS) should be built into the 
LVCAF middleware.    
 
The Legacy LVC Engine and Processing Plug-Ins is a 
significant aspect. In order to ensure a smooth 
transition from legacy LVC federation components, a 
set of plug-ins can be built to permit a high 
performance interface between the new LVCAF 
middleware and legacy components. Interfaces to DIS, 
HLA, TENA, and CTIA systems will be available. 
Load Balancing functions provide the federation to 
dynamically adjust allocation of certain federation 
components to hardware resources, based on overall 
computational and communication loading.     
 
Unique Applications 
 
The Live Interface Modules enable live system 
resources to be integrated into a federation, with special 
emphasis on timing and synchronization, data and 
message transfer - especially analog-to-digital and 
digital-to-analog conversions.  Virtual Interface 
Modules provide an ability to integrate next-generation 
realistic virtual components into federations facilitated 
by the internal module API’s.    Constructive Interface 
Modules improve integration of large scale portrayals 
of many phenomena. Scalability and fault 
tolerance/automatic failover are prime considerations.    
 
In certain scenarios, the internal communication 
modules provide live system communication protocols 
integration, particularly for embedded training and 
experimentation, in which the boundary between LVC 
components is obscured.   Live translation modules 
allow rapid integration of loosely coupled live 
components into a federation.  The external module 
API’s represent a set of simplified interfaces for 
situations in which limited timing, synchronization, 
message, and data distribution are adequate.  Hence, the 
approach permits rapid integration. Virtual translation 
modules ease the integration of virtual systems not 
requiring tight coupling and a moderate volume of data 
exchange.  Constructive translation modules permit 
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loosely coupled constructive federation components 
with a simplified set of interfaces for timing, 
synchronization, message, and data distribution. The 
external communication modules are provided to 
quickly integrate live system communication protocols, 
in which integration with operational Warfighters is 
required.   
 
Tools 
 
Resource mapping tools assess federation execution 
requirements against the hardware assets available.  
The resource mapping tools can manage and optimize 
network bandwidth and processor loading.   
Configuration control tools provide a system-wide 
capability to assess and manage all aspects of 
federation components, and hardware resources, 
available to execute the federation. 
    
Monitoring and Logging – The ability to monitor all 
aspects of federation components and the hardware 
resources executing the federation are needed.  In 
addition to monitoring, all the information should be 
logged in a way that permits ready analysis and 
inspection via a suite of query utilities. A single central 
logger is a scalability bottleneck. Hence, distributed 
logging and queries are essential for large scale 
simulations. The user should also have a choice 
between the efficiency of binary logging and the 
understandability of text logs. Support for calculating 
metrics and visualization of results at runtime and for 
post processing is needed.  
 
Finally, the Run-time execution and control tools 
manage and control all federation components and 
hardware resources executing the federation. GUIs 
tools are needed to provide  interfaces for exercise 
participants. 
 

SOLVING THE KNOWLEDGE PROBLEM 
 
The LVCAF provides all the pieces and tools required 
to connect components from a large number of sources 
into a single combined simulation federation. Yet the 
previous analysis of obstacles suggests - even if a 
painless way existed to connect any set of simulations, 
the primary problem would remain: acquiring sufficient 
knowledge of the available simulations to select, adapt, 
and operate them. An approach to the problem has been 
historically employed in other domains, but not the 
M&S community.  This is due to the unique problem in 
M&S presented by the need to represent time and 
system evolution.  The approach has been behind 
subroutines, databases, and object-oriented 
methodologies, which is to decompose the problem up 

into small components which can then be more easily 
understood and reused.   
 
Currently, the only reusable assets in the M&S 
community are complete models and simulations 
typically composed of thousands of components. 
Ideally, even if developers followed code reuse 
development practices, a significant problem still exists 
in determining how all the pieces fit together and 
interact.  Many modern software techniques, such as 
event-based and thread-based programming, make the 
software difficult to figure out compared to the 
traditional static calling sequences of procedural 
programming. Moving toward loosely coupled M&S, 
and more generally LVC, assets with smaller 
meaningful components is positive.  
 
A fine-grained, component-based development 
approach would enable more developers to contribute 
innovations. Intuitively, the more LVC components 
become available, the more useful combinations can be 
integrated to more easily solve problems. The 
infrastructure must encourage LVC developers to 
create smaller LVC components that can integrate 
together, and then make those pieces available to 
others. However, in order to be able to quickly find and 
arrange very large numbers of LVC components into 
useful systems, the reality that human intellect alone is 
insufficient must be faced. Composition assistance 
using machine intelligence will be required. 
Unfortunately, the coding of M&S components is 
generally obscure, and does not permit what is being 
modeled to be understood. The domain concepts are 
represented in the software in a way that the 
relationship to the real-world phenomena is obfuscated 
by the machinery required to make the simulation 
work. The domain is barely recognizable to humans 
much less to machines. In the ideal case models would 
be documented along with the real-world referents in 
an implementation independent format.  
 
The larger software development community has 
realized this and moved to the Model Driven 
Architecture (Gasevic 2006) to capture how software 
components interact with each other and with the world 
in formats such as the Unified Modeling Language 
(UML) and other related techniques such as the 
Schlaer-Mellor method dating back to the 1990’s 
(Schlaer 1991, Wallace 1998, Mellor 2002). In the C4I 
community the DoD Architecture Framework 
(DODAF) is now required for systems documentation.  
These techniques have a more understandable structure, 
but are still human-oriented representations. 
Representations manipulated and matched in intelligent 
ways by computers are needed.  



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2009 

2009 Paper No. 9015 Page 9 of 14 

 
Dating back to the 1990’s (Berners-Lee 1999), 
numerous R&D efforts have converged to create a body 
of knowledge and technology now known as the 
Semantic Web (Allemang 2008). The goal of these 
efforts was to describe and represent the meaning, or 
semantics, embedded in web pages in a way that 
software agents can understand and interact with them. 
This is very similar to the capability that is required to 
understand M&S and LVC components, and provides a 
hierarchy of tools capable of capturing semantics of 
M&S assets and how they represent and relate to the 
world. These tools include: 
 

• RDF, the resource description framework 
• RDFS, the RDF schema language 
• SPARQL, a query language for RDF 
• OWL, the web ontology language 
• SWRL, the Semantic Web rule language 

 
RDF provides a way to build distributed database tables 
defining how concepts relate. RDFS permit machines to 
infer relations not specified explicitly.  SPARQL allows 
distributed databases to be queried to retrieve explicit 
and inferred data. OWL provides additional inference 
mechanisms; and SWRL allows the application of 
automated logic to the semantic representations and the 
database of knowledge.  
 
Any knowledge representation presents a grounding 
problem (e.g., the meanings of the terminal nodes need 
to be defined).  As such, the words suggest real world 
meanings to humans, but software does not have human 
experience to call upon.  To software, an ‘F-16’ is not 
the same as an ‘F16’.  Fortunately, the Semantic Web 
addresses exactly the same problem. The Semantic 
Web community is solving the problem by building 
publicly available ontologies describing the real world, 
including these equivalency and translation elements. 
This permits machine inference to match and interface, 
if we can agree on common ontologies to use, or 
specify the mappings between the ontologies used by 
different models.  Employing different ontologies to 
provide a mapping between equivalent concepts 
improves developer efficiency. This allows innovation 
to continue simultaneously with standardization. 
 
The Semantic Web developers are creating tools 
needed to describe model components for computer 
reasoning. Thus, model compatibility, translations 
between data exchange elements, and developer 
conflicts can be identified.  However, building 
ontologies is more difficult than writing natural 
language documentation. If time does not permit 
general documentation, building ontologies will pose a 

problem. Part of the answer can be found in the data 
exchange specifications of current interoperable 
simulations. Interoperability architectures like HLA and 
TENA require machine readable specifications of the 
data exchange elements or ‘object model’ for the 
federation.    These can be converted into model 
specific ontologies and related to standardized 
ontologies for the real world, enabling evaluation on 
how two simulations can interoperate with each other. 
   
A primary goal of the objective interoperability 
infrastructure is to encourage model developers to 
break up simulations and LVC assets, and create 
smaller model components. The result will be that most 
of the meaning of the composite model will be captured 
in the interfaces between the model components, and 
making the additional step to documenting the internals 
of the models manageable. The availability of public 
and authoritative ontologies for the subject matter 
domains will cause developers to use them in the 
process of new model and LVC assets creation, since 
less work is required via resuse. The same ontologies 
can also be applied to sharing source data and scenarios 
between simulations. The ontologies can eventually be 
used to support human instruction, decision-making, 
and real systems engineering. Enormous potential for 
reuse exists, if common ontologies are employed. 
 

DEVELOPMENT ENVIRONMENT 
REQUIREMENTS 

 
The interoperability architecture needs to gain 
sufficient adoption to generate a network effect for 
LVC and simulation components creation and reuse.  It 
should be attractive for the majority of LVC system and 
simulation users, including those who do not need to 
network assets together. The interoperability 
infrastructure must replace general purpose 
programming languages, and specialized simulation 
languages, as the medium for expressing models. There 
is no reduction of effort for the developer creating a 
single use standalone simulation, if it is necessary to 
first express the model in a general purpose 
programming language and then interface it to an 
interoperability framework to make it work. 
Furthermore, the infrastructure has to capture the 
meaning of the models in such a way that machines can 
intelligently make use of it for matching and linking 
with other models without further burdening the 
developer.   
 
This leads to the requirement to build an Integrated 
LVC Development Environment (IVDE) that can 
capture the user’s model specifications at a high level 
and implement them as executable LVC systems or 
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distributed LVC system components that combine new 
and existing model components together with the 
LVCAF to create new products.  In reality, this will 
encourage innovation, while allowing specialized 
solutions where sufficient benefit exists. What is 
needed is a way to define families of integrated 
development environments that share ontologies and 
can build compatible models.  
Despite the previous focus on the standalone LVC 
system or simulation user, to achieve the stated goals 
the IVDE must be capable of producing products that 
are executable in a wide range of environments.  The 
resulting LVC components need to be easily changed to 
work in a networked environment based on protocols 
compatible with existing HLA, TENA, DIS and CTIA 
environments.  The LVC components also need to be 
usable as parts of embedded training systems, decision 
support systems and command and control systems.  
Capturing the model and component definitions in an 
architecture independent form provides the best 
opportunity to compile the model definition into 
executables compatible with different systems.   
 
This in itself is a huge reuse 
advantage over trying to 
combine modules already 
specialized for a particular 
environment.  The challenge 
is that the code generation 
software becomes more 
complex with increasing 
levels of abstraction from the 
executable software.  
Accordingly, there is an 
optimal level of model 
specification that will depend 
on the code generation 
capabilities available. Success 
depends on not being too far 
away from that optimal level. 
 
Most modern computer 
languages have benefited 
enormously from having the 
ability to download libraries 
of source code that can be 
reused.  The source code is 
publicly available on the web 
(known as open source code).  
For example, the R language 
(Chambers 2008) enables the 
developer to just enter a 
command and the interpreter 
will go out find a mirror, 
fetch the software, and install 

it onto the developer’s computer.  This ease of reuse is 
needed in the objective environment.  
 
The R language is especially interesting from the 
perspective of modeling and simulation.  It is a 
statistical data processing language that allows users to 
not only access and apply statistical models; it also 
provides access to a large number of source data sets.  
This is relevant to modeling and simulation because 
right now most LVC system and simulation developers 
have very little access to source data which could 
provide the necessary context for understanding some 
models, as well as support better verification and 
validation.  Our IVDE should give the developer 
similar access to a wide variety of models, data, and 
solution tools without the impediments of manual 
searching of registries and repositories, requesting 
software, getting approvals, and waiting for it to arrive. 
The ontologies provide the key for finding what the 
user needs. A necessary component of the IVDE is a 
semantic search engine for relevant ontologies, models, 
simulation components, LVC components, and support 
modules. This semantic search engine must have the 

Figure 3. Integrated Simulation Development

Environment

Integrated LVC 
Development 
Environment
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ability to express what the system must do, what assets 
are available to use, and the ability to reason about 
these inputs and produce solution suggestions in the 
form of suggested components and data sets.  
 
INTEGRATED SIMULATION DEVELOPMENT 

ENVIRONMENT 
 
The next generation of LVC interoperability tools is 
envisioned to be accessed via IVDEs (there may be 
many such systems) as shown in Figure 3.  An IVDE 
will first capture the developer’s descriptions of the 
desired model, simulation, or LVC component. The 
IVDE will then accept specifications of the interfaces 
for the systems or federations to be employed, plus the 
interface specifications of any foreign code modules 
that the developer wishes to include, and use this 
information to produce an LVC or simulation 
application.   
 
In the process of creating the application the IVDE will 
help the developer discover and reuse:  
 

• Ontologies 
• Simulation Models 
• LVCAR components 
• Custom communications interfaces 
• Custom tools and utilities 
 

These resources will be located on a network, either the 
World Wide Web, or perhaps a DoD or organization 
intranet, for sensitive systems. The LVCAF 
components do not need to be located in one place or 
delivered on a DVD. The IVDE can be implemented as 
a service oriented web application. This makes the 
capture of simulation artifacts much easier than relying 
on users to upload their products. Using the mechanism 
of Semantic Web ontologies, the IVDE will search the 
appropriate network to find and download the resources 
that fit the specifications of the application.  
 
The ontologies will also help the developer reuse 
standardized concepts that already exist for the domain 
of reference. If the developer finds the available 
conceptual models to be inadequate, the IVDE allows 
the developer to define new ontologies and map them 
to the existing ones.  The key improvement is that the 
developer does so knowing what is already out there. 
The ontologies are then used to create translation 
routines between all the subcomponents in that 
application and to any external LVC components, 
applications, or federations with which the new 
application must interact.  
 

The developer can also download custom utilities and 
tools for runtime federation control, monitoring and 
logging, resource mapping and configuration control. 
The IVDE will produce linked applications containing 
only those models, tools, and components needed for a 
given purpose and optimized for a particular 
environment. Federations can be built by having 
participants compile with the same federation 
specification. Running in new environments would 
require recompiling with a specification for that 
environment. 
 
IVDEs should make it easier to integrate models at a 
fine level of granularity to help avoid many semantic 
conflicts by linking only models from independent 
domains.  Most semantic conflict occurs because 
simulations are complete so that they can execute in a 
standalone mode. Thus they each need to have their 
own representation of all relevant domains, such as 
terrain.  Currently, if two simulations are linked their 
representations of terrain will probably be different, 
inducing anomalies and what are known as “fair fight” 
issues. However, if models from different domains are 
employed, those problems do not usually occur. For 
example, if a model of shopping is created along with a 
model of traffic, and then combine them to produce a 
model of a shopping mall, there should be few 
incompatibilities.  In general, linking existing 
simulations, and other LVC assets, almost always 
results in overlapping domains.  Clearly, the focus 
should be on assembling and linking models from 
different domains into new simulations and LVC 
components. This will lead to far less semantic conflict 
than the current practice of linking entire LVC and 
simulation applications, and therefore better results.  
 
Of course, just building an IVDE is not sufficient. 
There needs to be enough content to attract users. This 
means that the vast store of M&S material currently 
existing cannot be abandoned. At a minimum, users 
will want to take advantage of existing simulation 
resources.  That means that the IVDE will need to be 
able to link in existing LVC assets and simulation code.  
This will require the users to specify the interface to 
those code modules in an ontology, similar to wrapping 
functions in one language so that they can be called 
from another, but with a higher level of meaning. The 
same capability would be used to interface to 
specialized simulation hardware such as might be 
required in virtual simulations.  Variants of the IVDE 
are envisioned to support construct of virtual 
simulations as well as hardware in the loop systems – 
that is serving the entire LVC community. 
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INFRASTRUCTURE OBSTACLES 
 
Besides obstacles to reuse that have to be overcome, the 
obstacles to fielding and getting acceptance of a new 
interoperability infrastructure or IVDE must be 
considered.  When people propose a Swiss Army Knife 
approach to a problem, there is natural skepticism as to 
the achievability of the approach, its ease of use, its 
reliability, and its efficiency. These are valid questions 
for the IVDE. Achieving the IVDE will require 
research and development in a number of related areas, 
including the integration of ontology-based reasoning 
engines with code-generation capabilities.   
 
The progress being made in Semantic Web 
technologies indicates integration of an IVDE is 
possible in the near future.  For ease of use, the IVDE 
should allow users to employ the system at a variety of 
levels of difficulty with proportional levels of 
capability.  At the entry level users might access 
existing LVC assets, simulations, and data, then 
customize and run them.  At the next level they might 
create standalone LVC applications or simulations. The 
key is that knowledge to execute each task needs to be 
carefully separated in such a way that as users enter 
more complex environments they have the mechanisms 
to get tasks done.   
 
Reliability requires a consistent underlying structure 
that is properly matched to the target functionalities of 
the system.  To achieve this, ontologies can be 
leveraged to create an underlying model of the 
architecture which can support semi-automated testing. 
It is also essential that to provide sufficient debugging 
tools for the users’ applications. It will not be practical 
for the user to pull out a C++ debugger and try to figure 
out where the design failed. The price of creating high-
level definition languages is the need to also provide all 
the tools required to debug the output, including 
logging, assertions, watch points, and break points. 
 
Many complicated interface solutions sacrifice 
efficiency and scalability to generality.  Almost 
anything can be interfaced as long as the scope of the 
simulation is small and only a few runs are required. 
Moving the definition of the models up to as high a 
level as practical allows the minimization of what is 
included in the resulting executables.  For example, if 
interfacing with DIS systems is not required, there 
won’t be DIS components in the generated product. 
Compiling the model specifically for particular 
architectures with significantly more knowledge about 
the model to be simulated than possessed by 
conventional compilers should also enable significant 
optimizations.   

Availability is a critical issue. If the LVC component or 
simulation developer has to pay a substantial amount of 
money to obtain the infrastructure, the number of users 
will be limited, as will the network effect.  Ideally the 
infrastructure would be used as part of most college 
courses that include simulation development. As such, 
a free infrastructure would be best. In the same spirit, 
the ability to leverage all the talent in the community is 
also essential – another aspect of the network effect. It 
is essential that mechanisms are found to engage 
academia, industry, and government by providing ways 
that each can contribute to the solution in a manner 
compatible with their operating principles. This leads to 
the realization that open source development must be 
considered as a viable approach. 
 

STANDARDS SOLUTIONS 
 
Clearly the ontologies used for automating the search 
and integration of components for LVC systems and 
simulations must be standardized.  The ontologies will 
make it possible to get away from the developer 
intensive task of finding and understanding the 
available models. Machine support of this process is 
essential and standard ontologies are needed to make it 
work. Standards for the interfaces and functions for the 
tools and utilities in the LVCAF are also critical.  
Without standardization, dealing with different 
offerings from many sources would become intractable.  
Standards for user interfaces would allow the creation 
of uniform control interfaces while utilizing the 
products of multiple developers. This would allow 
LVC systems and simulations to be run by fewer 
operators. 
 
Other areas for potential standardization include 
making sure that the outputs from the code generation 
processes are linkable between different IVDEs.    We 
need to standardize the format and required content of 
the specifications used for interfaces so multiple IVDEs 
can employ the same specifications. Similar 
standardization is required for the way scenarios and 
parametric data are specified. In general, creating 
environments where competing products can be easily 
interchanged is desirable.  In particular, enabling 
commercial ventures to create plug-ins and add-ons to 
the base system should be a goal. In order to achieve 
this end state, a progression thorough multiple 
standards as the community learns how to solve 
problems until solutions are created that are good 
enough to justify a single approach will likely be the 
case. 
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BUSINESS MODEL SOLUTIONS 

 
A complicated technology thrust like this, which seeks 
to change the landscape of modeling and simulation 
and the LVC community is clearly beyond a single 
project or organization. This will be realized through 
the contributions of many different organizations over 
an extended period.  The business model needs to 
support this and avoid shutting out any group. The core 
of the environment, enough to create useful LVC 
components and simulations that can be used in 
production environments should be free and open 
source.  This opens up the technology to universities 
for research purposes and for use in courses that train 
future practitioners in the art of simulation. It also 
brings in open source developers and innovation.  
While the core should be open source, it should not 
prevent government and commercial organizations 
from building on the core and creating value-added 
restricted-distribution products from it. Government 
organizations may want to protect certain innovations, 
such as information assurance features, from 
foreign/hostile agents. The key is for the open source 
core to contain enough functionality to remain viable as 
a standalone application.  
 
In general, a large body of existing software is 
excluded when open source is required. For some 
components a new Government Open Source license 
might be created.  The majority of government software 
development is conducted under contracts that simply 
provide for free use for government purposes. This 
approach appears to lead to stovepipes where 
development resides with the primary contractor and 
does not encourage reuse and research investment 
across contractors. For each application a secondary 
development contractor needs a government sponsor to 
certify the application often ruling out Internal 
Research & Development investment.  
 
In most cases, new product development is not built on 
GOTS applications because secondary companies are 
not guaranteed the right to reuse the software in new 
projects.  Nor do they know if their changes will be 
incorporated into the government baseline.  One thing 
to explore is a possibility to provide the contractor a 
license that allowed them to maintain their own version 
of the Government software and propose it for any new 
Government contract they bid on, and then perhaps 
more reuse of Government software would likely 
occur. How to integrated new software developed 
products (as open source) by the contractor back into 
the baseline application requires future investigation as 
well.   

 
Technology transfer concerns, especially with 
developed software related to defense applications, can 
be extremely complicated and are beyond the scope of 
this paper.  However, when dealing with DoD 
applications we need to recognize that moving toward 
an open source environment will require close scrutiny 
to intellectual property and technology transfer issues.   
 

COMMUNITIES OF INTEREST 
 
The expectation exists that user and developer 
organizations will form communities of interest around 
different applications and aspects of the IVDE. From 
the application side, a major problem exists that 
Semantic Web technology can’t solve: figuring out the 
relative value of different models and components. The 
anticipated solution is that different LVC components 
and simulation domains will develop communities of 
interest (COI) that will evaluate and rank components 
that are applicable to their interests. Another 
expectation is that COIs devoted to different LVC asset 
and simulation user interfaces would emerge.   
 
For example, one user interface might specialize in 
expressing models as Petri nets and be graphically 
oriented while another might be procedure and text 
oriented. They could both produce compatible models 
but their users would want to form different 
communities of interest to share techniques. Virtual 
simulation users, hardware in the loop users, and live 
system and simulation users will also want to share 
their experiences in their own COIs. The underlying 
LVCAF technologies will also require a number of 
development COIs. There will probably be one or more 
compiler groups, a group for the semantics of models, 
and perhaps others on the semantics of scenarios and 
source data. In addition, the development and use of 
IVDEs will produce more than one COI. 
 

SUMMARY 
 
DoD needs faster and more efficient methods for 
producing new simulation environments to support its 
operations. Interoperability approaches have diverged 
and multiplied. A common LVC Architecture 
Framework can provide an environment in which the 
existing LVC architectures can function, a forum for 
convergence and a unified approach to multi-
architecture exercises and events. Higher level 
integration support is required to allow simulation 
developers to take advantage of all interoperability 
approaches under a family of compatible Integrated 
LVC Development Environments.  By focusing these 
IVDEs on making simulations easier for all simulation 
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developers, we can achieve the network effect that will 
motivate widespread adoption.  Semantic Web tools 
will allow us to catalog, find, and interface simulation 
components with much more automation than is 
currently available, lowering the time and cost of 
fielding new LVC environments. 
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