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ABSTRACT

More computing power allows increases in the fidelity of simulations. Fast networking allows large clusters of high
performance computing resources, often distributed across wide geographic areas, to be brought to bear on the
simulations. This increase in fidelity has correspondingly increased the volumes of data simulations are capable of
generating. Coordinating distant computing resources and making sense of this mass of data is a problem that must
be addressed. Unless data are analyzed and converted into information, simulations will provide no useful
knowledge. This paper reports on experiments using distributed analysis, particularly the Apache Hadoop
framework, to address the analysis issues and suggests directions for enhancing the analysis capabilities to keep pace
with the data generating capabilities found in modern simulation environments. Hadoop provides a scalable, but
conceptually simple, distributed computation paradigm based on map/reduce operations implemented over a highly
parallel, distributed filesystem. We developed map/reduce implementations of K-Means and Expectation-
Maximization data mining algorithms that take advantage of the Hadoop framework. The Hadoop filesystem
dramatically improves the disk scan time needed by these iterative data mining algorithms. We ran these algorithms
across multiple Linux clusters over specially reserved high speed networks. The results of these experiments point to
potential enhancements for Hadoop and other analysis tools.
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INTRODUCTION

More computing power allows increases in the fidelity
of simulations. Fast networking allows large clusters of
high  performance computing resources, often
distributed across wide geographic areas, to be brought
to bear on the simulations. This increase in fidelity has
correspondingly increased the volumes of data that
simulations are capable of generating.

Coordinating distant computing resources and making
sense of this mass of data is a problem that must be
addressed. Unless data are analyzed and converted into
information, simulations will provide no useful
knowledge. For the US Joint Forces Command
(USJFCOM) Urban Resolve exercises we developed a
distributed logging system to capture publish/subscribe
messages from the High-Level Architecture (HLA)
simulation federation.  For a two-week exercise,
omitting nonessential data, we logged over a terabyte of
data [Yao & Wagenbreth 2005].

This paper reports on experiments using distributed
analysis, particularly the Apache Hadoop framework, to
address the analysis issues and suggests directions for
enhancing the analysis capabilities to keep pace with the
data generating capabilities found in modern simulation
environments. Hadoop provides a scalable, but
conceptually simple, distributed computation paradigm
based on map/reduce operations implemented over a
highly parallel, distributed filesystem. We developed
map/reduce  implementations of K-Means and
Expectation-Maximization data mining algorithms that
take advantage of the Hadoop framework. The Hadoop
filesystem dramatically improves the disk scan time
needed by these iterative data mining algorithms. We
ran these algorithms across multiple Linux clusters over
specially reserved high speed networks. The results of
these experiments point to potential enhancements for
Hadoop and other analysis tools.

Data mining Hadoop jobs were created to experiment
with the performance characteristics of Hadoop in an
environment that provided high-speed network
connections to sites across large geographic regions.
High performance Linux Cluster computers were
installed at the Information Sciences Institute (ISI) in
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California, at the University of Illinois — Chicago (UIC)
in Illinois, and ISI East in Virginia. The machine at ISI
served as a control. Special network connectivity was
established between UIC and ISI East to test Hadoop
across a great geographic distance.

OVERVIEW OF HADOOP

Hadoop is an open source system, hosted by the Apache
Software Foundation that provides a reliable, fault
tolerant, distributed file system and application
programming interfaces. These enable its map-reduce
framework for analyzing large volumes of data in
parallel.

We found that the simplicity of the Hadoop
programming model allows for straightforward
implementations of many applications. Java

applications have the most direct access, but Hadoop
also has streaming capabilities that allow for
implementations in any preferred language.

Several organizations that need to handle large amounts
of data are using map-reduce implementations to
manage that data. Google started using a map-reduce
system internally before 2004 [Dean 2004]. Yahoo runs
the largest Hadoop cluster, running over a Linux cluster
of over 10,000 cores [Yahoo 2008]. Vendors, such as
Amazon, utilize Hadoop as part of their cloud
computing service. A growing list of organizations
making use of Hadoop can be found at the Hadoop wiki
[Powered By, 2009]. In the 2008 terabyte sort
challenge, Yahoo won by using Hadoop to sort 1
terabyte of data in 209 seconds [O’Malley 2008]. That
cluster consisted of 910 nodes with 2 quad core 2GHz
Xeons and 4 SATA disks per node.

Hadoop Distributed File System

The Hadoop Distributed Files System (HDFS) runs on
top of a native file system and is only accessible
through the Hadoop Application Programming
Interfaces (APISs).

HDFS configurations distribute data in equally sized
chunks across the available data nodes. This division of
data works best for large files that can be stored as
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multiples of the chunking size configured for the HDFS.
If the files are smaller than the chunking size, the HDFS
will waste local file system resources with empty,
allocated bytes.

Redundancy and fault tolerance are achieved by
replicating these chunks on multiple nodes. Hadoop
attempts to run the map operations on copies of the data
local the mapping task. This reduces the amount of data
that needs to be moved around.

Our experiments used varying HDFS configurations.
One configuration kept all nodes within a single rack.
Another divided the nodes across half of the continental
United States.

Map-Reduce API

Hadoop exposes three operations for implementing the
map-reduce algorithm, mapping, combining, and
reducing. The system is implemented in Java; however,
Hadoop also exposes a streaming interface that allows
programs written in any language to process each
operation.

The data are divided into chunks by the HDFS. Each
map operation executes on a chunk of data, usually
stored nearby. As the mapper iterates over the chunk, it
assigns values to key elements. These key/value pairs
may then be passed to a combine operation to collect
the keys. A reduce operation combines the values for
each key.

A simple example is counting words in files of English
text.

As each file is processed, each word becomes a key
with the value the count of how many times the word
appeared in the file. These key value pairs, the words
and associated counts, are sorted and passed to combine
operation. (In this simple example, the combine step
does not do anything significant. The K-Means jobs
used for the experiments did take advantage of the
operation.) Finally, the combined pairs are reduced with
each key assigned the sum of the values of the
preceding operations. The tutorial included with the
Hadoop documentation goes into more detail.

Hadoop Node Types
Hadoop has three different node types: nodes for

processing tasks, nodes for storing data, and a single
node, called the name node, to coordinate the others.
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The tasks that are assigned to processing nodes are
monitored for status. If a task appears to fail, it can be
reassigned to another processing node. The assignments
attempt to keep processing and data near each other,
limiting the strain on any underlying communications
resources, such as a network.

DISTRIBUTED DATA MINING ALGORITHMS

Data mining is a way of finding patterns in what
otherwise would be random data. Many data mining
algorithms are iterative in nature. They require the data
to be scanned several times during the mining process.
These algorithms can become prohibitively expensive
for very large data sets that do not fit into memory, and
have to be stored on disk. Sequential disk access on a
single disk can be several orders of magnitude slower
than memory access. Hadoop with its potential to access
thousands of disks in parallel provides a way of
addressing this problem.

In addition, in some situations the data themselves are
stored in a distributed fashion. For example, for
JFCOM’s Urban Resolve exercises, we implemented a
distributed logger that stored High-Level Architecture
Runtime Infrastructure (HLA RTI) messages locally
where the messages were emitted [Yao & Wagenbreth
2005; Graebener et al 2003]. Using Hadoop provides a
convenient way to process the data without having to
move it to a centralized location.

Two Clustering Algorithms

To test the feasibility of this approach we implement
two data mining clustering algorithms in Hadoop: K-
Means and Expectation-Maximization (EM).

K-Means is a popular data mining clustering algorithm
that assigns a set of data instances into clusters (or
subsets) based on some similarity metric. The K-Means
algorithm requires three inputs: an integer k to indicate
the number of desired clusters as output, a distance
function over the data instances, and the set of n data
instances to be clustered. The distance of a data instance
to itself is zero. The greater the distance between two
data instances, the less similar the instances are.
Typically, a data instance is represented as a numerical
vector. The output of the algorithm is a set of k points
representing the mean (or the center) of the k clusters.
Each of the n data instances is assigned to the nearest
cluster mean based on the distance function.

Here is pseudo code for the K-Means algorithm:
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1. Generate an initial guess for the k cluster (for
example, by randomly selecting k points from
the data instances as the k means).

2. Assign each of the n data instances to the
nearest cluster mean.

3. Based on the data instance assignment,
compute the new cluster mean for each of the
k clusters.

4. While not done, go to Step 2.

Figures 1 illustrates some results of K-Means clustering.
Figure 1 shows K-Means correctly finding the means of
the 3 distinct clusters. That is, given a set of points
generated for this dataset, the algorithm correctly
discovered the patterns in the points.

Clustering of 3 Clusters

e ., Sy
-6000 -5000 -4000 -3000 -2000 —IQUQ r ? 000 2000

‘A

Figure 1 K-Means clustering of three distinct
clusters of points.

The EM algorithm can be viewed as a probabilistic
generalization of the K-Means algorithm. Instead of
representing a cluster by just its mean, EM represents a
cluster by its mean and its variance (or covariance
matrix), i.e. each cluster is represented by a Gaussian
distribution. In addition, each cluster is associated with
a weight, representing the probability of selecting the
cluster. The sum of these k cluster weights is equal to
one. This representation is called a Gaussian mixture
model.

The steps of the EM algorithm are similar to the K-
Means algorithm. In Step 1 the initial guess now
includes the k means, k variances, and k cluster weights.
The assignment in Step 2, also known as the
Expectation Step, is now slightly more complicated.
Instead of assigning each data point to one cluster, each
data point is assigned to each cluster with a probability
based on a Gaussian distribution. In Step 3, the
Maximization Step, the k means, k variances, and k
cluster weights are recomputed based on the
probabilistic assignment from Step 2.
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Hadoop Implementation

We shall only describe the Hadoop implementation of
the K-Means algorithm. The structure of the EM
Hadoop implementation is similar.

There exists a variety of ways to generate the initial
guess in Step 1. If there is a priori knowledge of the
range of possible values of the data instance attributes,
then we can generate k means randomly using a uniform
distribution. Otherwise, we can scan the data instances
once to compute the range values. Or, we can scan the
data instances and randomly select k instances as the
means. To simplify the algorithm description we shall
assume there is a priori knowledge.

Step 1:
generate initial guess

Step 2:
corresponds to the map operation. Map functions
have the form:

Map: (in-key, in-value) - list (out-key, out-value).

In this case, the in-key is null, and the in-value is the
data instance vector. The out-key is an integer from 1 to
k representing the cluster identifier, and the out-value is
a list of pairs, where each pair consists of the data
instance vector and the integer one.

K-Means Map: (null, data-instance) > list (cluster-id,
(data-instance, 1))

Step 3:
corresponds to the reduce operation.
functions have the form:

Reduce

Reduce: (in-key, list (in-value)) - list (out-key, out-
value>

In this case the input (in-key, in-value) is the output of
the K-Means Map (cluster-id, (data-instance, 1)). For
each cluster-id, the reduce operation sums all the (data-
instance, 1) pairs associated with that cluster-id.

K-Means Reduce: (cluster-id, (data-instance, count))
-> list (cluster-id, (sum-of- data-instances, number-of-
instances))

Here the sum-of- data-instances divided by number-of-
instances is the mean of the cluster.
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Here is a simple, but naive, Hadoop implementation of
the K-Means algorithm:

1. Random generate k points as initial k means.

2. Apply K-Means Map & Reduce.

3. While not done, go to Step 2.

A slightly more sophisticated Hadoop implementation
would add a Combine operation in between the Map
and the Reduce. In Hadoop the Map and the Reduce
operations typically reside on different compute nodes.
This naive implementation would pass all n data
instance pairs across the network from Map to Reduce.
The Combine operation would reduce the amount of
data that has to be transferred across the network.

K-Means Combine: (cluster-id, (data-instance, count))
- list (cluster-id, (partial-sum-of- data-instances,
partial-count-number-of-instances))

EXERCISING HADOOP
Test Environment Setup

Data mining Hadoop jobs were created for the SIMC-I1C
project to experiment with the performance
characteristics of Hadoop in an environment that
provided high-speed network connections to sites across
large geographic regions. As mentioned before, clusters
in California, Illinois and Virginia were connected via a
high-bandwidth link.

Each cluster machine was comprised of:

10 nodes

5.3 TB local disk

2 Clusters running Fedora 8

1 Cluster running Debian

1 10GigE network card

1 1Gig card for management only

Dual Quad Core (8 cores per node) CPUs

The version of Hadoop used for the experiments was
0.17.2.1. Each cluster used the Java SE Runtime
Environment 1.6 (build 1.6.0_11-b03).

Hadoop clusters were configured using the available
nodes such that both the control Hadoop cluster and the
distributed Hadoop cluster had the same number of
nodes, one name node and nine nodes running data and
job task services. The only difference being that the
control cluster used only local network connections
while the other used wide area network connections.

For the wide area network Hadoop cluster, two
configurations were used. One configuration used the
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default network resources and one used dedicated
Internet 2 high-bandwidth lines reserved for short time
periods.

Data Load

In addition to the data mining jobs developed, the
ability of Hadoop to load and store data was tested. A
simple data load of six 1.2-gigabyte files was performed
using the default settings, each block of data replicated
on three nodes.

Data Load Test Results

All time data was collected from the time(1) command.

Table 1: Data Load Test Results

User |System| Elapsed

ISI Local 44.85| 22.09 | 2:05.69

ISIE/UIC (standard) |46.98| 18.38 |14:27.75

ISIE/UIC (fastnet) 49.18| 18.94 |29:20.78

As would be expected, the quickest data loads were
with the local nodes configuration. The actual
processing times were not that much different for each
configuration. The major difference was in clock time
indicating that the distributed systems spent significant
time in suspended wait states while the network
subsystems performed their functions. The Fastnet
version using Internet 2 actual took longer elapsed time
than the standard version. However, during the
execution of the Fastnet version, we did observe Java
network exceptions being thrown. We will address this
anomaly in the next section.

Data Mining Jobs

Two implementations of the K-Means algorithm were
used to test the processing capabilities of Hadoop. An
expectation-maximization job was also developed, but
this job was not used for this experiment. The UIC
Angle dataset was searched for points within the data
where the data clustered. One implementation used a
“naive” approach while the other used a more efficient,
“smart” approach. The naive implementation did not
use the combine step allowed by the Hadoop API. This
resulted in much more network usage as more data had
to be passed around between the task nodes. The smart
implementation made use of this step and greatly
reduced the amount of data exchanged.
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The K-Means jobs iterated over the data set with an
initial set of cluster points, each time updating the set of
cluster points to better fit the data, each resulting set of
cluster points becoming the input for the next iteration.
When either the points stopped significantly changing
or the maximum number of iterations was reached, the
job stopped.

For development and initial testing, the job was tested
using points randomly generated using known center
coordinates. The results of a run were expected to
match the input provided to the random point generator.

Table 2: K-Means Results

User | System Elapsed
ISI Local (smart) 1.68 0.18 1:37.76
ISI Local (naive) 6.55 0.92 40:38.64
ISIE/UIC (smart/stand) 1.67 0.19 1:52.80
ISIE/UIC (smart/fastnet) | 2.25 0.27 8:25.08
ISIE/UIC (naive/stand) 5.35 0.96 1:12:03
. 2:14:16
ISIE/UIC (naive/fastnet) | 8.40 1.72 KILLED®

As with the data loads, the data mining jobs performed
best on the local nodes setup. The differences between
local and networked systems are not as pronounced as
with the data loads. This is likely due to the ability of
Hadoop to process chunks of data in a “rack-aware”
manner. The smart implementations tended to not
require long haul network services and were able to
process data in what to them was a local manner. Again,
the Fastnet version took longer elapsed time than the
standard version. We will address this anomaly in the
next section.

NETWORK UTILIZATION

In the previous section our experiments exercised
Hadoop across differing network configurations. One
configuration used the “normal” connectivity found in
the network while another ran Hadoop over special
high-speed links with a theoretical peak throughput of
10 Gbps. But, Hadoop results did not reflect the
advantage of the high-speed links.

! The naive run was killed at the elapsed time in the
seventh job iteration. The maximum number for a run is
32.
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To rule out the possibility the high-speed links were
faulty we used another software system to get
independent measurements. The tool used to test this
capability was the Meshrouter, which was designed for
high throughput HLA RTI communications [Barrett &
Gottschalk 2004; Brunett & Gottschalk 1998]. The
tests show the Meshrouter application is capable of
achieving 1.5Gbps with a single TCP stream, and up to
5 Gbps with combined streams.

Based on this throughput experiment we reasoned that
Hadoop is not able to take advantage of the high-speed
network. As mentioned previously we observed Java
network exceptions during the execution. Although
Hadoop is designed to be fault tolerant, the exceptions
most likely slow downed its execution.

Moreover, in order to achieve 50% capacity of the high-
speed network, the Meshrouter application required
several TCP streams. We suspect that even without the
network exceptions Hadoop will not be able to take full
advantage of the high-speed network.

Below, we describe the details of the high-speed
network throughput experiment using the Meshrouter.
The Meshrouter and associated applications implement
interest managed communication (RTI) utilized by
several entity simulators in general use. Test programs
named publish and subscribe were used to exercise the
network in a controlled and repeatable manner. The
Meshrouter is a complex real-world application.

The bandwidth experiments were done using the
standard ISI MeshRouter formalism for interest-
managed communications. A schematic of the
MeshRouter is shown in Figure 3.

A,
Pop-Up gU! " SPP-Wide Router Network
Pull-Down =t Links Individual Triads
Primary

Local Data
Distribution:

One Primary Router
Many SAFs

Triad 1

Triad 2
|

Figure 2 Schematic MeshRouter Topology

The overall communications scheme consists of
collections of processors (labeled “SAFs” in this legacy
diagram) each communicating with a specified
“Primary” router (P). Interest-limited message exchange
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among the various basic “Triads” is done using a
network of additional “Pop-Up” and “Pull-Down”
routers. As is described in [Barrett & Gottschalk 2004],
the three routers on a triad are instanced as separate
objects within a single MeshRouter process.

The execution of actual message transfer s
implemented by a software stack as shown in Figure 4.

Schematic Object Hierarchy

Comms

Router Process

Figure 3 Factored MeshRouter implementation,
with application-specific communications primitives.

The results reported here use an RTI-s implementation
for both interest enumeration and the lowest-level
communications primitives (“dataflow nodes”). While
this has enormous advantages, it does have the generic
disadvantage of any general purpose “plug and play”
system in terms of significant, incompletely understood,
overheads.

Standard RTI-s dataflow implementations exist for both
TCP and UDP communications. The results presented
here use the TCP implementation.

The application processes for the benchmark tests are of
two forms:

Publish Processors: Send out messages of specified
length and interest state. The nominal total publication
rate (Mbyte/sec) is controlled by a data file that is re-
read periodically (by all publish processors). This means
that the nominal experimental data rate can be
controlled dynamically.

Subscribe Processors: Receive messages for a specified
interest state, collecting messages from multiple
publishers, as appropriate. The subscribe processes are
instrumented to measure actual incoming message rates
and to detect missed messages.

The routers in Figure 3 direct individual messages from

publishers to subscribers according to the interest
declarations. The router processes are also instrumented
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to determine the fraction of (wall clock) time spend in
communications management (versus simply waiting for
input).

Two modes were tested. In the first mode, a single TCP
connection was setup between a pair of meshrouters at
distant locations. The measured bandwidth was
approximately 300 megabits per second. The second
mode used eight mesh routers at each site, each with
multiple clients and multiple TCP connections.
Measured aggregate bandwidth was approximately 4.6
gigabits per second.

This test demonstrated that 50% of the capacity of the
high speed wide area network can be effectively
employed by a real world application.

PROGRAMMING HADOOP

Hadoop was an easy system to use. Installation was
straightforward. Although the rapid changes in Hadoop
releases made keeping up problematic; some releases
broke existing code. We did not install every updated
release.

Shell scripts were needed to reduce the complexity of
setup, change, and maintenance of the various Hadoop
configurations across sites. Once these were in place,
changing configurations was a quick operation.

Developing was convenient for Hadoop jobs. Running
and debugging standalone Hadoop jobs in the Eclipse
IDE allowed rapid turnaround on application bug fixes.

CONCLUSIONS

This paper reported on experiments using distributed
data analysis/data mining implemented over the Apache
Hadoop framework. We experienced that Hadoop
provided a scalable, but conceptually simple, distributed
computation paradigm based on map/reduce operations
implemented over a highly parallel, distributed
filesystem. We found it practical to develop map/reduce
implementations of K-Means and Expectation-
Maximization data mining algorithms that take
advantage the Hadoop framework. The Hadoop
filesystem dramatically improved the disk scan time
needed by these iterative data mining algorithms. We
successfully ran these algorithms across multiple Linux
clusters over high speed networks which had been
reserved. We hold that the results of these experiments
point to potential enhancements for Hadoop and other
analysis tools.
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SUGGESTIONS FOR FUTURE WORK

It was our experience that the K-Means and EM
Hadoop jobs are too tightly bound to a particular data
set. Extending and generalizing these classes would
make them amenable to a broader range of data.
Hadoop’s Map operation actually is made up of a
sequence of finer grained stages. These stages include a
file splitter that splits large files into smaller chunks,
and a recorder reader that extract records from the
chunks based on a given input format specification. We
plan to make use of these preprocessing stages as a way
to decouple the data parsing from the actual data mining
algorithm.

The underlying network subsystem of Hadoop could be
extended so that it allows Hadoop to take full advantage
of the network resources. The high-bandwidth
configurations used in the experiments slowed down
Hadoop. Possible approaches to enhance the
capabilities of Hadoop when deployed on wide-area,
high-speed networks include:

e Adjusting how Hadoop utilizes the java.net
and java.nio libraries such that, as with
Meshrouters, Hadoop is able to treat one
connection as a pipe with multiple TCP
connections.

e Add support for the UDT protocol, a reliable
transport protocol built on UDP [Yunhong
2007].

With these additional capabilities, Hadoop could more
effectively support the data collection needs of
complex, modern simulations
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