

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 1 of 11

Empowering Our Warfighter: Using iPhones for Situational Awareness

Steven Borkman, Michael Hoffman Gregory Peele, Jr.

 Dignitas Technologies Applied Research Associates

 Orlando, FL Orlando, FL

 sborkman@dignitastechnologies.com,

mhoffman@dignitastechnologies.com
gpeele@ara.com

ABSTRACT

Meeting mission objectives while ensuring Warfighter safety is a difficult balance to strike. One way to meet this

balance is by leveraging new technologies which can deliver the necessary data to make quick, life saving decisions.

Today, mobile handheld devices, including smart phones, are abundant in our society and offer many features that

can aid the Warfighter including GPS location, integrated maps, and augmented reality. However, for more advanced

applications these devices need to be coupled with highly accurate terrain models which support services such as

designating areas blocked by line of sight or accurately reporting changes in the environment.

Until recently, full terrain services were either too computationally/resource expensive to operate on handheld

devices or operated on data too coarse to provide significant benefit to the frontline soldier. The Army's STTC has

invested in the Layered Terrain Format (LTF), which is specifically designed to be a terrain simulation engine

providing high fidelity terrain representation and services for devices with limited resources. LTF provides the

necessary foundation to build and deploy situational awareness applications on mobile commercial hardware.

To prove our concept of providing detailed situational awareness on mobile platforms we selected both the iPhone

and Android devices based on their price, capabilities, availability, and overall popularity. We leveraged, and further

developed the LTF baseline to meet the needs of a mobile, high resolution situational awareness device.

In this paper we discuss the overall applicability of portable devices to the Warfighter, describe our solution to the

problem, discuss the interesting quirks in developing for different mobile platforms, and describe the future

capabilities that can be achieved with mobile devices supporting Situational Awareness, planning, and

communications.

ABOUT THE AUTHORS

Steven Borkman is a Senior Software Engineer at Dignitas Technologies with over 11 years of experience

developing software for the simulation community. Mr. Borkman currently serves as the project lead for the High

Fidelity Runtime Database Engine and was the co-lead architect of the Layered Terrain Format. Mr. Borkman holds

a Bachelor of Science degree in Computer Science from the University of Central Florida.

Michael Hoffman is a Software Engineer at Dignitas Technologies with over five years of experience. He holds a

Master’s of Science degree from the University of Central Florida. He served as the lead developer of the Tactical

Terrain Analysis iPhone application. Prior to HFRDE he spent many years as a developer on OneSAF, focusing on

models and behaviors development. He also worked on many research topics including the DARPA Urban

Challenge, where he provided a training environment for the robot.

Gregory Peele, Jr. is the Principal Investigator for the Layered Terrain Format at Applied Research Associates, Inc.

He has five years of experience with terrain database production, geospatial information systems (GIS), modeling

and simulation, and computational geometry, and served as one of the two original software architects of the Layered

Terrain Format in 2007. Mr. Peele holds Bachelor of Science degrees in Mathematics and Computer Science from

the University of Central Florida.

mailto:sborkman@dignitastechnologies.com
mailto:mhoffman@dignitastechnologies.com
mailto:gpeele@ara.com

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 2 of 11

Empowering Our Warfighter: Using iPhones for Situational Awareness

Steven Borkman, Michael Hoffman Gregory Peele, Jr.

 Dignitas Technologies Applied Research Associates

 Orlando, FL Orlando, FL

 sborkman@dignitastechnologies.com,

mhoffman@dignitastechnologies.com
gpeele@ara.com

INTRODUCTION

A clear and complete operational picture is critical to

the success of our military forces. This picture serves as

the basis for all key decisions made, from peacekeeper

to combat unit. In order to meet mission objectives

while at the same time ensuring their safety, it is

imperative that they are utilizing equipment that will

deliver the desired information both efficiently and

effectively. While the need for new technology is

apparent, the ability to quickly and economically

produce the necessary tools has been challenging.

Today, mobile handheld devices, including

smartphones, are abundant in our society and offer the

Warfighter many beneficial capabilities, including GPS

location, integrated maps, and augmented reality. The

technology in these devices, in terms of both hardware

and software, are advancing in a near-daily basis with

no signs of slowing down. These advances are being

driven by not only a competitive consumer market but

very large, successful, and innovative companies (e.g.,

Apple, Google, and Microsoft).

A decade ago, the Army’s FBCB2 (Force XXI Battle

Command Brigade and Below) represented a huge leap

forward simply by providing vehicle GPS locations on

electronic maps for M1 commanders. Now, UAVs and

vehicle-mounted sensors provide constant streams of

data, including high-resolution LIDAR/LADAR data.

However, it is difficult to push such data forward to the

front line Warfighters in a way that provides critical

information without substantial data overload.

DARPA's Urban Mapping capability provided one

solution for this by providing a 3D visualization of such

data, while TIGR focused on gathering key information

based upon location, event, and associated data.

Unfortunately, such data must be viewed or browsed in

the context of desktop platforms.

These devices, however, are not mobile enough to aid

the individual combatant. Nor do they provide the

needed capability to generate derived terrain analysis

results based on advanced geometric algorithms. In

short, despite an abundance of complex and potentially

useful geospatial data, the front-line Warfighter still has

no practical way of translating the information into

increased real-time situational awareness. To meet this

objective, the device needs to be coupled with an

accurate terrain model.

Until recently, full terrain services were either too

computationally expensive to operate on handheld

devices or operated on data too coarse to provide

significant benefit to the frontline soldier. The Army's

STTC has invested in the Layered Terrain Format

(LTF), which was specifically designed to provide these

terrain services on mobile devices. LTF provides the

necessary foundation to build and deploy situational

awareness applications on mobile devices.

LAYERED TERRAIN FORMAT OVERVIEW

LTF was originally developed to support the OneTESS

simulation system’s requirement for geopairing on small

man-portable devices. Geopairing is a novel concept for

live force-on-force training, replacing the “laser tag”

model found in other live training systems (MILES)

with an electronic bullet (e-bullet) fly-out in a correlated

virtual environment. As a result, geopairing requires

more from terrain environments than the typical use

case for Modeling and Simulation (M&S) terrain

representations: extremely high-resolution three-

dimensional terrain and feature representation that

correlate as closely as possible with the real world. To

add further complexity, the e-bullet fly-outs are

calculated on mobile devices worn by the trainees, with

limited resources and processing power compared to

desktop workstations.

Key Design Principles of LTF

LTF was designed to meet these unique requirements. It

was designed to be composable, light-weight, accurate,

dynamic, and efficient. The follow provides a brief

overview of each of the architectural principles.

mailto:sborkman@dignitastechnologies.com
mailto:mhoffman@dignitastechnologies.com
mailto:gpeele@ara.com

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 3 of 11

Composable Layered Solution

LTF is built on modular layers of data. Each layer

models a specific component of the terrain. By storing

each component in a separate layer, it allows optimized

algorithms and data structures to be developed for each

unique environment feature. For example, the terrain

skin (the ground) and terrain features (buildings, trees,

street signs, etc.) are fundamentally different data. It is

difficult to imagine an optimal storage technique or

traversal algorithm that could handle both disparate data

types.

Perhaps the most important benefit of the layered

architecture is composability. Data layers can be loaded

dynamically and allow for extremely flexible models

which, at runtime, can be augmented to meet the user’s

simulation needs. On a system with limited resources

(e.g. mobile device), LTF can be composed with only

the essential components, as a result saving valuable

resources.

Dynamic Environment

In the real world, the environment around us changes

frequently, either by natural (earthquake) or man-made

(building demolished) forces. In the combat zone, this is

especially true. A virtual environment needs to react to

these changes to be able to correlate with the real world.

LTF is a fully dynamic environment and has the

capability to alter its contents to reflect changes in the

environment.

Accurate

LTF is a high resolution terrain system which has to

correlate with the real world to the extent possible.

Unfortunately, any terrain model is only as good as its

source input. Because of this, LTF was designed to

work with innovative data collection techniques such as

LIDAR. LTF natively operates on 1-meter spaced grids,

with elevation values within decimeter accuracy to the

real world.

LTF Content

LTF currently consists of the Terrain Manager (the core

management layer and interface), and several content

layers: Terrain Skin, Terrain Volume Features, Ground

Cover Features, and Feature Attribution. Each of these

layers was designed to be efficient, lightweight, and

accurate. LTF is still an actively developed product and

the content layers will grow in the future as more types

are supported.

In short, the compact nature, performance

optimizations, and composable aspects of the LTF make

it an ideal candidate for mobile applications. LTF has

proven its ability to meet the performance requirements

of real-time operations on hardware devices with much

less computing power than current generation

smartphones. This section was meant to serve as a brief

introduction to the LTF format, for a more detailed

description of it, please see the paper “An Optimized

Synthetic Environment Representation Developed for

OneTESS Live Training” (Borkman, Peele, and

Campbell, 2007).

MOBILE DEVICES

Mobile Device Background

In the past few years, there has been an explosion in the

mobile smartphone marketplace. The consumer cellular

phone market evolved in 2002 when RIM introduced

the BlackBerry. The BlackBerry, which was optimized

for wireless email access, excelled in the corporate

world, but did not make a major dent in the consumer

marketplace. The consumer marketplace changed,

however, in 2007 when Apple introduced the iPhone.

The iPhone, in conjunction with iTunes and the App

Store, revolutionized the communication world. The

iPhone not only incorporated common cellular phone

capabilities (phone calls, text messaging, and voice

mail) but also a mobile media player (music and videos)

and internet capabilities (web browsing and email). The

hardware included a multi-touch screen, GPS, camera,

and compass. The App Store contains over 200,000

third party applications developed specifically for the

iPhone of which users worldwide have downloaded

over 2 billion apps (Chen, 2009). The apps available

from the App Store run the gamut from productive to

entertaining. One thing was clear; the iPhone was a

major revolution in the mobile computing industry and

set the trend for future technologies.

In 2008, Google also entered the smartphone market.

Google differentiated itself from the other smartphone

competitors by building only the operating system,

called Android, and not the hardware. Google made

Android available for hardware manufacturers, and by

the end of 2009, there were 18 different phone models

using Android worldwide (Technologizer, 2010). The

Android operating system supported many advanced

capabilities including: media playing, GPS,

accelerometers, multi-touch, Bluetooth, and

multitasking. One thing that clearly separated Android

from the iPhone was that it was truly open, meaning that

developers have access to all core capabilities of the

phone and deliver applications without going through a

centralized application store.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 4 of 11

The market for smartphones continues to grow with

over 42.7 million people in the U.S. owning

smartphones as of January 2010, according to

comScore, Inc., an industry leader in measuring the

digital world (comScore, 2010). As the market increases

so too does the number of users that can now develop

and download mobile applications at will. This simple,

yet innovative concept is driving sales of phones,

thereby causing multiple manufactures and distributors

to change their business strategies towards increasing

the amount of available applications. As each new

generation of smartphones is produced the choices for

commercial off the shelf (COTS) products that can be

utilized for government use is increased. By acquiring

COTS products, the military can circumvent research

and development efforts, thereby saving money.

Furthermore, the use of COTS products often reduces

acquisition times, thereby yielding faster integration

into the field. The use of existing mobile devices gives

soldiers the needed capabilities that historically were

only available at the end of a long and complex future

program.

The Tactical Terrain Analysis App

As a part of the Future Force Warrior project, LTF was

successfully ported to a Nomad ruggedized PDA to

provide terrain analysis and line-of-sight (LOS)

information. Our experience of porting LTF code to an

ARM based mobile platform, sparked interest in

researching the ability to utilize smartphones for a

similar capability.

Building on the lessons learned during the Future Force

Warrior, project we successfully built the Tactical

Terrain Analysis (TTA) app for both the iPhone 3GS

(iPhone SDK 3.1) and HTC G1 (Android SDK 1.5).

The TTA app provides situational awareness

capabilities to the user by leveraging the capabilities of

the device and LTF.

The main user interface for the application uses Google

maps in order to show geo-typical reference information

such as satellite imagery, road networks and other

points of interest (see Figure 1, left image). The

interface allows for all of the platform specific haptic

interactions to control the map and navigate through

features and options. On the iPhone this includes

advanced capabilities such as finger swiping (to pan the

map) and double-tap/multi-touch pinches (to zoom in

and out of the map). At the time, the Android SDK did

not support multi-touch, so buttons were added for

navigation.

In order to use LTF, its source code had to be ported to

both platforms (Android and iPhone). LTF is written in

C++ which is different than either platform’s native

development language. Because of this, there were

issues involved in porting to these devices covered

thoroughly in the Android/iPhone Development

Comparison section.

 After a database is selected and loaded in the app, an

outline is overlaid on the map that highlights the areas

where LTF information is available. All of the LTF

reasoning services only function in the outlined area.

Figure 1. LOS capabilities of the iPhone app. The

left image shows a point-to-point LOS query that is

blocked by a building. The right view shows a 360

degree field-of-view LOS with various areas of clear

(green/lighter shade) and blocked (red/darker

shade) LOS.

In addition to the map, the user is presented with several

environment reasoning and manipulation capabilities to

choose from. The core capability of the TTA app is its

line of sight (LOS) service. There are two LOS services

available: point-to-point (PTP LOS) or field-of-view

LOS (FOV LOS). LOS queries can be executed from

either the user’s GPS location or a selected location on

the map. The target location is placed by selecting and

moving the annotation across the touchscreen.

PTP LOS queries consist of a line between two discrete

points (see Figure 1, center image). Here the green star

icon represents the source location and the crosshair

image represents the target location. The elevation of

the start and stop points are chosen by the user. This

flexibility allows the user to use the PTP LOS in many

different situations. For example, users on the ground

are trying to find cover and concealment locations from

an elevated sniper. The user can run LOS queries from

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 5 of 11

the elevated source position to positions on the ground

to help determine areas which provide cover.

The Field-of-view LOS service allows the user to define

a planar arc to query for LOS. It executes a series of

centric point-to-point LOS queries of the same length

starting from the same source location and offset from

the previous query by a user defined angle. Like the

point-to-point LOS service, the source annotation can

be either a chosen location or the user’s GPS position.

The fan’s field of view attributes (orientation, depth and

angle) are all configurable by the user. The results of a

fan LOS query (see Figure 1, right image) are displayed

in a similar manner as the point-to-point LOS, where

the green region represents clear LOS, and the red

region is blocked LOS. In many ways the typical user

will find the field-of-view LOS fan to be more useful

than the point-to-point query. For example, a user needs

to determine the best location to place a sensor in a

dense urban environment. The user could run a series of

field-of-view LOS queries in areas of interest to find the

optimal location with clear LOS.

Both LOS services use the correlated LTF database to

calculate their results. LOS rays are checked against

both the terrain surface and the terrain features. In

figure 1, the point-to-point LOS is clear (green line)

until it intersects a building (remainder of the line is

red). This example also demonstrates the correlation

between the real world (the Google Map’s imagery) and

the LTF.

From the outset, our plan was to prototype the base

LOS capability on both the iPhone and Android

platforms. From there, in order to reduce duplication of

effort and to focus developing new features, we would

down select to a single platform. Due to the overall

community interest of the iPhone and also the better

integration of LTF native code (discussed in more detail

later), we chose to focus new development solely on

iPhone.

By the end of the evaluation stage of development, the

application on both devices had similar capabilities.

The major focus from here was to provide tools which

would enhance the user’s understanding of numerous

LOS results, as well as complement other LTF services,

on the iPhone.

Feature Footprints

The next capability added was the visualization of the

LTF feature content. Before this, besides the database

extents overlay, the user was unable to visualize the

correlation between Google Map’s imagery and

respective LTF databases. In order to give the user an

accurate portrayal of the LTF feature contents, we add

the feature footprint overlay service (see Figure 2).

For each feature (e.g. building, tree, etc.) on the terrain

database, a blue outline is rendered at the appropriate

locations. In most cases, both the LTF and the Google

Map collection of features correlated, while in other

instances a feature footprint might be shifted or missing

completely in either system. These miscorrelations can

occur for many reasons including the angle of

inclination of the satellite imagery collection and the

date of which the data (for both LTF and Google Map)

was collected.

Figure 2. iPhone capture of map with LTF building

footprints turned on. This demonstrates the

correlation between Google Maps and LTF.

Dynamic Environment

Since the environment in the real world is not static,

over time changes will degrade the correlation between

a terrain database, which is built from source collected

at a finite snapshot in time, and the actual world. This is

apparent at locations where the LTF and the Google

Map’s interface miscorrelate. Additionally, due to the

affects of combat operations such as munition

detonations or various military construction projects,

terrain modifications are inevitable, as are correlation

errors.

However, since LTF is a dynamic environment model,

it has the necessary capabilities to react and reflect

environment changes. Although a full implementation

of dynamic capabilities was outside the scope of this

project, we were able to introduce a couple of

capabilities as a proof of concept.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 6 of 11

The first dynamic environment capability developed

was the ability to create new building features from the

iPhone. This capability can be useful for many reasons.

Imagine a situation where a soldier on patrol notices a

new building has been erected since the LTF terrain

source was captured. Using the TTA app, the soldier is

able to add the building on the fly. He/she would do this

by first entering “draw mode” on the TTA app. From

this mode each of the building’s exterior vertices are

entered at the appropriate geospatial locations using the

touchscreen. Finally, the user enters the building height

(in meters) and selects to save the feature. Once the

feature is created, it is committed to the LTF database

and is fully integrated into the system. The new feature

works in the system just like all of the pre-existing

features, it is visible when feature footprints are

displayed and capable of blocking LOS calls (see figure

3). In the future, we envision the app to be able to

communicate with the TTA apps of other teammates.

Therefore in this example, the feature created by the

patrolling soldier would not only be updated in their

LTF database, but also sent out to the entire team or up

the command chain for further analysis on the

operational affects.

Figure 3. iPhone captures of the dynamic feature

capability. Left image shows an LOS fan that is

mostly clear. A new building was created in the area

(right). Now the LOS fan query is blocked by the

new building.

The “add building” service was used to prove the

dynamic editing capability of the feature layer. But like

features, the terrain surface is also capable of

modification. One common occurrence in the battle

zone is terrain cratering. The TTA app allows users to

generate craters in the LTF terrain database.

The interface for creating craters is nearly identical to

the feature creation interface. In a similar manner to

feature creation, the user creates new craters in “Draw

Mode.” The center of the crater is inputted on the map

with the touchscreen. The user then is prompted for the

depth and radius of the crater. Like dynamic features,

craters are completely integrated into the LTF and

affect LOS queries. Craters may also prove useful for

other decision-making purposes. For example, route

planning of a convoy may need to change (due to

impassible roads) or crater information can be used to

determine trends in insurgent activities by tracking IED

(improvised explosive device) detonation locations.

Terrain Elevation View

The top-down Google Map view portrays topographical

information quite well, but is not an effective way to

portray terrain elevation information. While testing the

cratering service, this became quite apparent when we

were unable to visualize any of the terrain deformations.

To compensate an additional view, the height map

display, was developed.

Figure 4. Screen capture of height map display on

the iPhone 3GS. The height map displays elevation

changes in the area, with darker regions signifying

lower elevations and lighter areas signifying higher

elevations. In this example, a crater was created

dynamically and is visible in the height map.

A height map is a gray-scale raster image used to

display the elevation of the terrain. Terrain elevation is

shaded in a gray-scale range, with pure black signifying

the lowest elevation in the range, and pure white

signifying the highest elevation. Figure 4, shows a

screenshot of the height map view. In this example, a

crater was created using the dynamic cratering

capability. The image clearly shows that the terrain

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 7 of 11

elevation was altered as a result of the crater. Since the

crater lowers the terrain, its location is much darker

than the surrounding area.

Military Map View

Google Maps currently lacks high resolution imagery

for areas of military interest (Iraq and Afghanistan for

example). It also requires constant network connectivity

(Wi-Fi or 3G) for map updates, a situation that may not

be guaranteed in the field. For this reason, an alternate

map view using the Compressed ARC Digitized Raster

Graphics (CADRG) format was introduced into the

application (see Figure 5). CADRG is a general-purpose

product, comprised of maps and images derived directly

from numerous digital sources through filtering,

compression and re-formatting to support various

weapons, C3I theater battle management, mission

planning, and digital moving map systems. CADRG is a

standard defense format and closely resembles printed

military maps. Since CADRG closely resembles

standard military maps, the Warfighter will have a

natural comfort level with the view.

Figure 5. Screen capture of the CADRG view on the

iPhone 3GS. The CADRG view can be used as an

alternative view to Google Maps in areas where high

resolution Google Map data is non-existent.

Additional Usability Enhancements

Additional usability enhancements built specifically to

take advantage of the iPhone’s hardware were added to

improve the user experience. For example, to quickly

clear the screen and erase any previous LOS results, the

“Shake-to-Clear” capability was introduced. By simply

shaking the device, all overlay information (including

LOS results) is erased.

Shortcuts were also added for screen navigation. As a

user navigates around the map, they can move away

from the LOS display. To quickly return to the LOS

results, they can use the pan and zoom capability. By

selecting the source or target icons on the toolbar, the

screen is updated to focus on the selected corresponding

location. If both annotation buttons are selected (using a

multi-touch gesture) the map window will zoom/pan to

display both the source and target LOS annotations. An

additional capability was added to snap the source or

target LOS location to a selected spot by first touching

the appropriate LOS button and then selecting a point

on the map. Both of these LOS annotation movements

enhance the user’s ability to position the LOS field of

view, thus enabling quicker querying capabilities.

App Configuration

Included with the app is a preferences menu to help

configure the system for a user’s needs. The preferences

menu consists of all of the definable application

variables. Preferences can be set for a variety of

capabilities, including LOS. Important LOS variables

include: fan step (degrees between each LOS query in a

fan), source and elevation heights (offset from terrain

skin for the locations of the ray), and LOS mode (sets to

use point-to-point or field-of-view LOS queries). Other

preferences include the ability to choose the map type

(Google Map or CADRG), to show the elevation map

(and its transparency level), use the compass for field-

of-view orientation, or to turn on capabilities like GPS

positioning.

.

ANDROID/IPHONE DEVELOPMENT

COMPARISION

At program inception our goal was to prototype an

application on both the Android and iPhone platforms.

We used the most current (at the time of development)

APIs for both the Android (NDK rev 1, SDK 1.5) and

iPhone (SDK 3.1). We deployed the apps to a HTC G1

(Android) and iPhone 3GS.

The TTA app consists of two layers: the user interface,

which is developed in the platform’s native language,

and the LTF code, which is in C++. The Android

platform utilizes Java for its core development

language, and the iPhone uses Objective-C. Both

platforms are capable of executing code developed in

C++, but it is not their preferred language.

Complicating matters, devices for both platforms have

ARM architectures. This requires the use of a cross-

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 8 of 11

compiler when code development occurs on a typical

Intel-based workstation.

Android Development

Cross-compiling C++ source code, for NDK rev. 1,

proved to be a difficult and complicated process. Since

Android interface code has to be developed in Java, a

JNI layer needs to be developed to integrate C++/Java

code.

Unfortunately, the C++ compiler provided in Android

NDK rev. 1 did not fully support the C++ standard,

such as I/O streams. Because of this, to get LTF to build

with the NDK compiler would have meant major re-

writes of LTF source, which was not possible. Without

the NDK, it would be impossible to connect Java and

C++ through JNI.

With the ideal solution determined to be impossible

(using that version of the NDK), we moved on to a less

desirable solution. Unlike the iPhone OS, the Android

OS allowed for the execution of background apps. We

determined that we could create an LTF backend

application (operating in the background) that

connected to the main Java application through inter-

process communication (sockets). Utilizing a third-party

cross-compiling toolchain (from Code Sourcery) we

successfully built an ARM compliant LTF executable.

With this workaround in place, we successfully

developed the TTA Android app.

iPhone Development

Compiling native code for the iPhone was significantly

easier than the Android counterpart. The Apple

compilers are based on GNU C/C++ compilers.

Objective-C is a superset of C/C++, meaning that the

Objective-C compiler successfully compiles C, C++,

and Objective-C code. C++ code can be called directly

from Objective-C applications.

Xcode, unfortunately, uses its own build environment

forcing projects which use standard makefiles to be

ported into Xcode projects. However since LTF uses

CMake to manage the build system and CMake can

produce Xcode project files without modification, the

level of effort normally required was diminished. With

Xcode project files in place, compiling native code was

simple.

Although porting native code to the iPhone was straight

forward, the same cannot be said in general for iPhone

development. The first issue is that all development

must take place on an Intel-based Mac computer, and be

compiled using Xcode. This can become an obstacle,

with most companies using either Windows and/or

Linux systems as their development workstations.

Another obstacle is Objective-C. Android uses Java as

its native development language, a modern, popular

language used in development of many popular

applications. IPhone development, however, is done in

Objective-C, a C based language with heavy Smalltalk

influences. Objective-C uses interesting (and perhaps

unusual) syntax notation that is quite unfamiliar to

C/C++/Java developers. As a result, there is certainly a

bigger learning curve to iPhone development compared

to Android development.

Configuration management of the iPhone development

environment also proved to be difficult. Minor changes

of either Xcode or the iPhone OS happened on a near

weekly basis. Our app was deployed to numerous

devices for testing and demonstration purposes. Each

device was managed independently by their owner and

updated to different OS versions on an ad-hoc basis.

There were even instances where we bought multiple

iPod touches on the same day, and they were delivered

with different OS versions. Regardless of the reason

why the OS was different, if the OS is newer than those

supported by our current version of Xcode, an update to

Xcode is needed. Unfortunately, Xcode does not have

an update feature, which meant an entire new instance

of Xcode has to be downloaded (nearly a gigabyte of

data) and installed. Depending on network speed and

traffic, developers have reported download times in the

several of hours.

The process of deploying an app on Android is simple

and straightforward, Apple’s deployment process, on

the other hand, is anything but simple. There are

multiple forums and videos online dedicated to the

process. Even Apple's developer website contains a web

based "Development Provisioning Assistant" tool to

help the developer. In order to run an application on an

iPhone or iPod, a developer must get a provisioning

profile and a development certificate on their device

and their development Mac. After completing the

necessary steps to link a device (iPhone or iPod Touch)

with an Xcode project, they have to enable it to be used

as a development device. Depending on the type of

developer account that was setup, the provisioning

profile expires every 90 days forcing each device to be

reunited with the Xcode project periodically.

Development Conclusions

Clearly, at the time of our initial foray into mobile app

development, the Android platform was too immature

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 9 of 11

for real native code development. On the other hand,

beyond the possible headaches involved in porting a

C++ project over to Xcode, the iPhone platform worked

with native C++ code seamlessly. The Android NDK is

under constant development with several new releases

since our effort, so native code development may now

be significantly easier.

However, iPhone development is not without its own

headaches. Difficult configuration management,

Objective-C, and the necessity for a Mac all are hurdles

to overcome.

On a hardware/software level, the iPhone and Android

platforms are similar, and will most likely continue to

be competitive with one another in the future. In

addition, as the Android SDK/NDK continues to

evolve, it will eventually support the entire breadth of

the C++ language. In the end, which platform is right

for the military is going to come down to how

unrestricted the underlying system is. Android is a truly

open platform where apps can be delivered to the user

through the Android Market and/or installed directly on

the device. Unless a special agreement is made between

Apple and the U.S. Military, all iPhone apps (outside of

the limited development deployments allowed) have to

be acquired through the App Store. All of these apps are

subject to Apple approval and must follow certain

guidelines before they are available for download.

BENCHMARK COMPARISON

One of the hallmark qualities of LTF is its LOS

performance, which was designed to operate on lower-

powered, mobile platforms. Although it was easy to tell

that the LOS performance on the iPhone 3G was

acceptable and responsive, it was still interesting to see

how it compared to LTF performance on desktop

platforms. Desktop LTF performance numbers were

captured in an earlier publication, “An Optimized

Synthetic Environment Representation Developed for

OneTESS Live Training” (Borkman, Peele, Campbell

2007). Those tests were conducted on a workstation

with the following specs (Table 1).

Table 1. Linux Desktop Specs

Two 9 km
2
 terrain databases were produced for testing

purposes, both from Barstow, California. The grids

were set to one meter post spacing, with 10 and 100

meter culling grids. The representative terrain contains

over 1,255 volumetric features including trees and

buildings. Table 2 displays the results from variously

placed LOS queries. Each length of the query ray was

selected based on an analysis of weapon ranges for

OneTESS. The actual distances traveled by the

algorithm are less due to LOS blockage by either the

terrain or a feature. For each query distance a total of

10,000 different rays were randomly generated for the

terrain, and each ray was queried 1,000 times.

Table 2. Linux Desktop LOS Query Results

Query

Ray

Length

Actual

Distance

Traveled

Rep.

Terrain

Query

Time

Dense

Terrain

Query

Time

150 m 76.8 m 12.5 μs 67.8 μs

300 m 121 m 13.2 μs 70.9 μs

500 m 160 m 14.6 μs 81.5 μs

1000 m 235 m 16.9 μs 83.9 μs

1800 m 348 m 18.0 μs 104.9 μs

2000 m 375 m 18.4 μs 115.1 μs

At the end of the TTA application’s short development

cycle, a series of similar benchmark scenarios were

executed on the iPhone. For each query ray distance, a

single random location was selected. Then the LOS

query was executed 1,000 times. In an effort to compare

and contrast the iPhone simulator on the Mac and the

iPhone 3GS, performance metrics where collected for

both. The timing results are shown in Table 3 and 4. In

every scenario the iPhone Simulator, which utilizes an

Intel architecture and the host system’s resources,

outperformed the iPhone by a factor of 20. This contrast

in performance is due to the difference between the

iPhone test environment and deployed hardware (i.e.

iPhone, iPod). In some instances the differences can

introduce unexpected issues such as when deploying an

application that performs well on the simulator during

hours of testing but not on the device. Although the

query times on the iPhone are higher, the delay from

query to displaying results is minimal. In the near

future, as both the devices hardware and software

capabilities increase, the TTA application will have the

ability to produce faster and more complex queries on

mobile platforms.

CPU Intel Pentium D EM64T

CPU Speed 3.00 Ghz (HT on)

RAM 2 GB DDR

OS Kubuntu Linux 7.04 (i386)

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 10 of 11

Table 3. iPhone Simulator LOS Query Results

Query Ray

Length

Actual Distance

Traveled

Dense Terrain

Query Time

150 m 139.5 m 195 μs

300 m 193 m 221 μs

500 m 232.3 m 229 μs

1000 m 399 m 261 μs

Table 4. iPhone 3GS LOS Query Results

Query Ray

Length

Actual Distance

Traveled

Dense Terrain

Query Time

150 m 114.7 m 4055 μs

300 m 198.9 m 4129 μs

500 m 266.2 m 4504 μs

1000 m 352.4 m 5287 μs

FUTURE WORK

The current TTA application is only the first phase in an

ongoing effort to provide to the Warfighter a state of the

art situational awareness device on commercial

hardware. At this point it is a novel approach to

conducting very high-resolution LOS routines on a

correlated environment, a service itself that would

greatly benefit the Warfighter. However, the potential

of the app is far greater.

The Warfighter is seldom alone in combat. Their

eventual success, and safety, is generally a product how

their team functions. Communication is typically the

main driving factor of team success. Therefore, adding

Intra-team communication services would be a key

component for a true situational awareness device.

The possibilities of new capabilities built upon the

communication infrastructure are exciting. One

important capability needed is real time unit position at

an individual level. This would give the user a new

perspective on the theater of operation. But the

capabilities could go far beyond that. For example,

when a member of a combat unit has intelligence about

the exact location of an enemy combatant, that

information could be placed on the map and

broadcasted to the team. The user could take a photo of

the combatant’s location and which can be geo-tagged

with geospatial information and shared. All of these

features and more can easily be built on top of LTF and

TTA foundations.

CONCLUSION

Over the last decade, geospatial data capture

capabilities have outpaced the ability to get that data to

the people most in need of the information, the

Warfighter. The TTA Analysis app reverses that trend.

It allows the Warfighter to leverage detailed geospatial

information “on the go”, going beyond just a map of the

world by providing derived terrain analysis on a

correlated, virtual environment. Since the LTF system is

easily loaded onto the device, requires little processing

power, and maintains a small memory footprint, the

TTA application is able to increase the user’s situational

awareness by augmenting the amount of environmental

information in hand. Although it is currently a prototype

capability, we envision that it will continue to grow into

a tool that will be able to provide our Warfighter with a

clear and complete operational picture and aid in their

safety and eventual success.

ACKNOWLEDGEMENTS

This work was made possible by the U.S. Army’s

STTC, through SBIR Topic A08-013 “High-Fidelity

Runtime Database Engine.” The government POC for

this work is Mr. Julio de la Cruz. The work also built

on capabilities developed for the OneTESS program.

REFERENCES

Borkman, Peele, Campbell (2007) “An Optimized

Synthetic Environment Representation Developed for

OneTESS Live Training,” Interservice/Industry

Training, Simulation and Education Conference.

Orlando, FL November 26-29 2007.

Campos, Borkman, Peele, Campbell (2008) “Towards

Cross Domain Terrain Services”,

Interservice/Industry Training, Simulation, and

Education Conference. Orlando, FL December 1-4,

2008.

Chen, Brian (2009). Apple’s App Store Hits Six Digits;

How Many Apps Do You Need?. Retrieved from

http://www.wired.com/gadgetlab/2009/appstore/

ComScore (2010). ComScore Reports January 2010

U.S. Mobile Subscriber Market Share. Retrieved

from

http://www.comscore.com/Press_Events/Press_Relea

ses/2010/3/comScore_Reports_January_2010_U.S._

Mobile_Subscriber_Market_Share

FMEpedia. (n.d.). Compressed ARC Digitized Raster

Graphics. Retrieved from http://www.fmepedia.com/

http://www.wired.com/gadgetlab/2009/appstore/
http://www.fmepedia.com/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10116 Page 11 of 11

Open Handset Alliance (n.d.), Retrieved from

http://www.openhandsetalliance.com

Technologizer (2010). Google: Expect 18 Android

Phones by Year’s End. Retrieved from

http://www.technologizer.com

http://www.openhandsetalliance.com/
http://www.technologizer.com/

