Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Empowering Our Warfighter: Using iPhones for Situational Awareness

Steven Borkman, Michael Hoffman Gregory Peele, Jr.
Dignitas Technologies Applied Research Associates
Orlando, FL Orlando, FL

sborkman@dignitastechnologies.com,
mhoffman@dignitastechnologies.com

gpeele@ara.com

ABSTRACT

Meeting mission objectives while ensuring Warfighter safety is a difficult balance to strike. One way to meet this
balance is by leveraging new technologies which can deliver the necessary data to make quick, life saving decisions.
Today, mobile handheld devices, including smart phones, are abundant in our society and offer many features that
can aid the Warfighter including GPS location, integrated maps, and augmented reality. However, for more advanced
applications these devices need to be coupled with highly accurate terrain models which support services such as
designating areas blocked by line of sight or accurately reporting changes in the environment.

Until recently, full terrain services were either too computationally/resource expensive to operate on handheld
devices or operated on data too coarse to provide significant benefit to the frontline soldier. The Army's STTC has
invested in the Layered Terrain Format (LTF), which is specifically designed to be a terrain simulation engine
providing high fidelity terrain representation and services for devices with limited resources. LTF provides the
necessary foundation to build and deploy situational awareness applications on mobile commercial hardware.

To prove our concept of providing detailed situational awareness on mobile platforms we selected both the iPhone
and Android devices based on their price, capabilities, availability, and overall popularity. We leveraged, and further
developed the LTF baseline to meet the needs of a mobile, high resolution situational awareness device.

In this paper we discuss the overall applicability of portable devices to the Warfighter, describe our solution to the
problem, discuss the interesting quirks in developing for different mobile platforms, and describe the future
capabilities that can be achieved with mobile devices supporting Situational Awareness, planning, and
communications.

ABOUT THE AUTHORS

Steven Borkman is a Senior Software Engineer at Dignitas Technologies with over 11 years of experience
developing software for the simulation community. Mr. Borkman currently serves as the project lead for the High
Fidelity Runtime Database Engine and was the co-lead architect of the Layered Terrain Format. Mr. Borkman holds
a Bachelor of Science degree in Computer Science from the University of Central Florida.

Michael Hoffman is a Software Engineer at Dignitas Technologies with over five years of experience. He holds a
Master’s of Science degree from the University of Central Florida. He served as the lead developer of the Tactical
Terrain Analysis iPhone application. Prior to HFRDE he spent many years as a developer on OneSAF, focusing on
models and behaviors development. He also worked on many research topics including the DARPA Urban
Challenge, where he provided a training environment for the robot.

Gregory Peele, Jr. is the Principal Investigator for the Layered Terrain Format at Applied Research Associates, Inc.
He has five years of experience with terrain database production, geospatial information systems (GIS), modeling
and simulation, and computational geometry, and served as one of the two original software architects of the Layered
Terrain Format in 2007. Mr. Peele holds Bachelor of Science degrees in Mathematics and Computer Science from
the University of Central Florida.

2010 Paper No. 10116 Page 1 of 11

mailto:sborkman@dignitastechnologies.com
mailto:mhoffman@dignitastechnologies.com
mailto:gpeele@ara.com

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Empowering Our Warfighter: Using iPhones for Situational Awareness

Steven Borkman, Michael Hoffman
Dignitas Technologies

Orlando, FL
sborkman@dignitastechnologies.com,
mhoffman@dignitastechnologies.com

INTRODUCTION

A clear and complete operational picture is critical to
the success of our military forces. This picture serves as
the basis for all key decisions made, from peacekeeper
to combat unit. In order to meet mission objectives
while at the same time ensuring their safety, it is
imperative that they are utilizing equipment that will
deliver the desired information both efficiently and
effectively. While the need for new technology is
apparent, the ability to quickly and economically
produce the necessary tools has been challenging.

Today, mobile handheld devices, including
smartphones, are abundant in our society and offer the
Warfighter many beneficial capabilities, including GPS
location, integrated maps, and augmented reality. The
technology in these devices, in terms of both hardware
and software, are advancing in a near-daily basis with
no signs of slowing down. These advances are being
driven by not only a competitive consumer market but
very large, successful, and innovative companies (e.g.,
Apple, Google, and Microsoft).

A decade ago, the Army’s FBCB2 (Force XXI Battle
Command Brigade and Below) represented a huge leap
forward simply by providing vehicle GPS locations on
electronic maps for M1 commanders. Now, UAVs and
vehicle-mounted sensors provide constant streams of
data, including high-resolution LIDAR/LADAR data.
However, it is difficult to push such data forward to the
front line Warfighters in a way that provides critical
information without substantial data overload.
DARPA's Urban Mapping capability provided one
solution for this by providing a 3D visualization of such
data, while TIGR focused on gathering key information
based upon location, event, and associated data.
Unfortunately, such data must be viewed or browsed in
the context of desktop platforms.

These devices, however, are not mobile enough to aid
the individual combatant. Nor do they provide the
needed capability to generate derived terrain analysis
results based on advanced geometric algorithms. In

2010 Paper No. 10116 Page 2 of 11

Gregory Peele, Jr.
Applied Research Associates
Orlando, FL

gpeele@ara.com

short, despite an abundance of complex and potentially
useful geospatial data, the front-line Warfighter still has
no practical way of translating the information into
increased real-time situational awareness. To meet this
objective, the device needs to be coupled with an
accurate terrain model.

Until recently, full terrain services were either too
computationally expensive to operate on handheld
devices or operated on data too coarse to provide
significant benefit to the frontline soldier. The Army's
STTC has invested in the Layered Terrain Format
(LTF), which was specifically designed to provide these
terrain services on mobile devices. LTF provides the
necessary foundation to build and deploy situational
awareness applications on mobile devices.

LAYERED TERRAIN FORMAT OVERVIEW

LTF was originally developed to support the OneTESS
simulation system’s requirement for geopairing on small
man-portable devices. Geopairing is a novel concept for
live force-on-force training, replacing the “laser tag”
model found in other live training systems (MILES)
with an electronic bullet (e-bullet) fly-out in a correlated
virtual environment. As a result, geopairing requires
more from terrain environments than the typical use
case for Modeling and Simulation (M&S) terrain
representations: extremely high-resolution three-
dimensional terrain and feature representation that
correlate as closely as possible with the real world. To
add further complexity, the e-bullet fly-outs are
calculated on mobile devices worn by the trainees, with
limited resources and processing power compared to
desktop workstations.

Key Design Principles of LTF

LTF was designed to meet these unique requirements. It
was designed to be composable, light-weight, accurate,
dynamic, and efficient. The follow provides a brief
overview of each of the architectural principles.

mailto:sborkman@dignitastechnologies.com
mailto:mhoffman@dignitastechnologies.com
mailto:gpeele@ara.com

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Composable Layered Solution

LTF is built on modular layers of data. Each layer
models a specific component of the terrain. By storing
each component in a separate layer, it allows optimized
algorithms and data structures to be developed for each
unique environment feature. For example, the terrain
skin (the ground) and terrain features (buildings, trees,
street signs, etc.) are fundamentally different data. It is
difficult to imagine an optimal storage technique or
traversal algorithm that could handle both disparate data

types.

Perhaps the most important benefit of the layered
architecture is composability. Data layers can be loaded
dynamically and allow for extremely flexible models
which, at runtime, can be augmented to meet the user’s
simulation needs. On a system with limited resources
(e.g. mobile device), LTF can be composed with only
the essential components, as a result saving valuable
resources.

Dynamic Environment

In the real world, the environment around us changes
frequently, either by natural (earthquake) or man-made
(building demolished) forces. In the combat zone, this is
especially true. A virtual environment needs to react to
these changes to be able to correlate with the real world.
LTF is a fully dynamic environment and has the
capability to alter its contents to reflect changes in the
environment.

Accurate

LTF is a high resolution terrain system which has to
correlate with the real world to the extent possible.
Unfortunately, any terrain model is only as good as its
source input. Because of this, LTF was designed to
work with innovative data collection techniques such as
LIDAR. LTF natively operates on 1-meter spaced grids,
with elevation values within decimeter accuracy to the
real world.

LTF Content

LTF currently consists of the Terrain Manager (the core
management layer and interface), and several content
layers: Terrain Skin, Terrain Volume Features, Ground
Cover Features, and Feature Attribution. Each of these
layers was designed to be efficient, lightweight, and
accurate. LTF is still an actively developed product and
the content layers will grow in the future as more types
are supported.

In short, the compact nature, performance
optimizations, and composable aspects of the LTF make
it an ideal candidate for mobile applications. LTF has
proven its ability to meet the performance requirements

2010 Paper No. 10116 Page 3 of 11

of real-time operations on hardware devices with much
less computing power than current generation
smartphones. This section was meant to serve as a brief
introduction to the LTF format, for a more detailed
description of it, please see the paper “An Optimized
Synthetic Environment Representation Developed for
OneTESS Live Training” (Borkman, Peele, and
Campbell, 2007).

MOBILE DEVICES
Mobile Device Background

In the past few years, there has been an explosion in the
mobile smartphone marketplace. The consumer cellular
phone market evolved in 2002 when RIM introduced
the BlackBerry. The BlackBerry, which was optimized
for wireless email access, excelled in the corporate
world, but did not make a major dent in the consumer
marketplace. The consumer marketplace changed,
however, in 2007 when Apple introduced the iPhone.

The iPhone, in conjunction with iTunes and the App
Store, revolutionized the communication world. The
iPhone not only incorporated common cellular phone
capabilities (phone calls, text messaging, and voice
mail) but also a mobile media player (music and videos)
and internet capabilities (web browsing and email). The
hardware included a multi-touch screen, GPS, camera,
and compass. The App Store contains over 200,000
third party applications developed specifically for the
iPhone of which users worldwide have downloaded
over 2 billion apps (Chen, 2009). The apps available
from the App Store run the gamut from productive to
entertaining. One thing was clear; the iPhone was a
major revolution in the mobile computing industry and
set the trend for future technologies.

In 2008, Google also entered the smartphone market.
Google differentiated itself from the other smartphone
competitors by building only the operating system,
called Android, and not the hardware. Google made
Android available for hardware manufacturers, and by
the end of 2009, there were 18 different phone models
using Android worldwide (Technologizer, 2010). The
Android operating system supported many advanced
capabilities including: media playing, GPS,
accelerometers, multi-touch, Bluetooth, and
multitasking. One thing that clearly separated Android
from the iPhone was that it was truly open, meaning that
developers have access to all core capabilities of the
phone and deliver applications without going through a
centralized application store.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

The market for smartphones continues to grow with
over 42.7 million people in the U.S. owning
smartphones as of January 2010, according to
comScore, Inc., an industry leader in measuring the
digital world (comScore, 2010). As the market increases
S0 too does the number of users that can now develop
and download mobile applications at will. This simple,
yet innovative concept is driving sales of phones,
thereby causing multiple manufactures and distributors
to change their business strategies towards increasing
the amount of available applications. As each new
generation of smartphones is produced the choices for
commercial off the shelf (COTS) products that can be
utilized for government use is increased. By acquiring
COTS products, the military can circumvent research
and development efforts, thereby saving money.
Furthermore, the use of COTS products often reduces
acquisition times, thereby vyielding faster integration
into the field. The use of existing mobile devices gives
soldiers the needed capabilities that historically were
only available at the end of a long and complex future
program.

The Tactical Terrain Analysis App

As a part of the Future Force Warrior project, LTF was
successfully ported to a Nomad ruggedized PDA to
provide terrain analysis and line-of-sight (LOS)
information. Our experience of porting LTF code to an
ARM based mobile platform, sparked interest in
researching the ability to utilize smartphones for a
similar capability.

Building on the lessons learned during the Future Force
Warrior, project we successfully built the Tactical
Terrain Analysis (TTA) app for both the iPhone 3GS
(iPhone SDK 3.1) and HTC G1 (Android SDK 1.5).
The TTA app provides situational awareness
capabilities to the user by leveraging the capabilities of
the device and LTF.

The main user interface for the application uses Google
maps in order to show geo-typical reference information
such as satellite imagery, road networks and other
points of interest (see Figure 1, left image). The
interface allows for all of the platform specific haptic
interactions to control the map and navigate through
features and options. On the iPhone this includes
advanced capabilities such as finger swiping (to pan the
map) and double-tap/multi-touch pinches (to zoom in
and out of the map). At the time, the Android SDK did
not support multi-touch, so buttons were added for
navigation.

2010 Paper No. 10116 Page 4 of 11

In order to use LTF, its source code had to be ported to
both platforms (Android and iPhone). LTF is written in
C++ which is different than either platform’s native
development language. Because of this, there were
issues involved in porting to these devices covered
thoroughly in the Android/iPhone Development
Comparison section.

After a database is selected and loaded in the app, an
outline is overlaid on the map that highlights the areas
where LTF information is available. All of the LTF
reasoning services only function in the outlined area.

Figure 1. LOS capabilities of the iPhone app. The
left image shows a point-to-point LOS query that is
blocked by a building. The right view shows a 360
degree field-of-view LOS with various areas of clear
(green/lighter shade) and blocked (red/darker
shade) LOS.

In addition to the map, the user is presented with several
environment reasoning and manipulation capabilities to
choose from. The core capability of the TTA app is its
line of sight (LOS) service. There are two LOS services
available: point-to-point (PTP LOS) or field-of-view
LOS (FOV LOS). LOS queries can be executed from
either the user’s GPS location or a selected location on
the map. The target location is placed by selecting and
moving the annotation across the touchscreen.

PTP LOS queries consist of a line between two discrete
points (see Figure 1, center image). Here the green star
icon represents the source location and the crosshair
image represents the target location. The elevation of
the start and stop points are chosen by the user. This
flexibility allows the user to use the PTP LOS in many
different situations. For example, users on the ground
are trying to find cover and concealment locations from
an elevated sniper. The user can run LOS queries from

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

the elevated source position to positions on the ground
to help determine areas which provide cover.

The Field-of-view LOS service allows the user to define
a planar arc to query for LOS. It executes a series of
centric point-to-point LOS queries of the same length
starting from the same source location and offset from
the previous query by a user defined angle. Like the
point-to-point LOS service, the source annotation can
be either a chosen location or the user’s GPS position.
The fan’s field of view attributes (orientation, depth and
angle) are all configurable by the user. The results of a
fan LOS query (see Figure 1, right image) are displayed
in a similar manner as the point-to-point LOS, where
the green region represents clear LOS, and the red
region is blocked LOS. In many ways the typical user
will find the field-of-view LOS fan to be more useful
than the point-to-point query. For example, a user needs
to determine the best location to place a sensor in a
dense urban environment. The user could run a series of
field-of-view LOS queries in areas of interest to find the
optimal location with clear LOS.

Both LOS services use the correlated LTF database to
calculate their results. LOS rays are checked against
both the terrain surface and the terrain features. In
figure 1, the point-to-point LOS is clear (green line)
until it intersects a building (remainder of the line is
red). This example also demonstrates the correlation
between the real world (the Google Map’s imagery) and
the LTF.

From the outset, our plan was to prototype the base
LOS capability on both the iPhone and Android
platforms. From there, in order to reduce duplication of
effort and to focus developing new features, we would
down select to a single platform. Due to the overall
community interest of the iPhone and also the better
integration of LTF native code (discussed in more detail
later), we chose to focus new development solely on
iPhone.

By the end of the evaluation stage of development, the
application on both devices had similar capabilities.
The major focus from here was to provide tools which
would enhance the user’s understanding of numerous
LOS results, as well as complement other LTF services,
on the iPhone.

Feature Footprints
The next capability added was the visualization of the
LTF feature content. Before this, besides the database

extents overlay, the user was unable to visualize the
correlation between Google Map’s imagery and

2010 Paper No. 10116 Page 5 of 11

respective LTF databases. In order to give the user an
accurate portrayal of the LTF feature contents, we add
the feature footprint overlay service (see Figure 2).

For each feature (e.g. building, tree, etc.) on the terrain
database, a blue outline is rendered at the appropriate
locations. In most cases, both the LTF and the Google
Map collection of features correlated, while in other
instances a feature footprint might be shifted or missing
completely in either system. These miscorrelations can
occur for many reasons including the angle of
inclination of the satellite imagery collection and the
date of which the data (for both LTF and Google Map)
was collected.

Figure 2. iPhone capture of map with LTF building
footprints turned on. This demonstrates the
correlation between Google Maps and LTF.

Dynamic Environment

Since the environment in the real world is not static,
over time changes will degrade the correlation between
a terrain database, which is built from source collected
at a finite snapshot in time, and the actual world. This is
apparent at locations where the LTF and the Google
Map’s interface miscorrelate. Additionally, due to the
affects of combat operations such as munition
detonations or various military construction projects,
terrain modifications are inevitable, as are correlation
errors.

However, since LTF is a dynamic environment model,
it has the necessary capabilities to react and reflect
environment changes. Although a full implementation
of dynamic capabilities was outside the scope of this
project, we were able to introduce a couple of
capabilities as a proof of concept.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

The first dynamic environment capability developed
was the ability to create new building features from the
iPhone. This capability can be useful for many reasons.
Imagine a situation where a soldier on patrol notices a
new building has been erected since the LTF terrain
source was captured. Using the TTA app, the soldier is
able to add the building on the fly. He/she would do this
by first entering “draw mode” on the TTA app. From
this mode each of the building’s exterior vertices are
entered at the appropriate geospatial locations using the
touchscreen. Finally, the user enters the building height
(in meters) and selects to save the feature. Once the
feature is created, it is committed to the LTF database
and is fully integrated into the system. The new feature
works in the system just like all of the pre-existing
features, it is visible when feature footprints are
displayed and capable of blocking LOS calls (see figure
3). In the future, we envision the app to be able to
communicate with the TTA apps of other teammates.
Therefore in this example, the feature created by the
patrolling soldier would not only be updated in their
LTF database, but also sent out to the entire team or up
the command chain for further analysis on the
operational affects.

Figure 3. iPhone captures of the dynamic feature
capability. Left image shows an LOS fan that is
mostly clear. A new building was created in the area
(right). Now the LOS fan query is blocked by the
new building.

The “add building” service was used to prove the
dynamic editing capability of the feature layer. But like
features, the terrain surface is also capable of
modification. One common occurrence in the battle
zone is terrain cratering. The TTA app allows users to
generate craters in the LTF terrain database.

2010 Paper No. 10116 Page 6 of 11

The interface for creating craters is nearly identical to
the feature creation interface. In a similar manner to
feature creation, the user creates new craters in “Draw
Mode.” The center of the crater is inputted on the map
with the touchscreen. The user then is prompted for the
depth and radius of the crater. Like dynamic features,
craters are completely integrated into the LTF and
affect LOS queries. Craters may also prove useful for
other decision-making purposes. For example, route
planning of a convoy may need to change (due to
impassible roads) or crater information can be used to
determine trends in insurgent activities by tracking IED
(improvised explosive device) detonation locations.

Terrain Elevation View

The top-down Google Map view portrays topographical
information quite well, but is not an effective way to
portray terrain elevation information. While testing the
cratering service, this became quite apparent when we
were unable to visualize any of the terrain deformations.
To compensate an additional view, the height map
display, was developed.

Figure 4. Screen capture of height map display on
the iPhone 3GS. The height map displays elevation
changes in the area, with darker regions signifying
lower elevations and lighter areas signifying higher

elevations. In this example, a crater was created
dynamically and is visible in the height map.

A height map is a gray-scale raster image used to
display the elevation of the terrain. Terrain elevation is
shaded in a gray-scale range, with pure black signifying
the lowest elevation in the range, and pure white
signifying the highest elevation. Figure 4, shows a
screenshot of the height map view. In this example, a
crater was created using the dynamic cratering
capability. The image clearly shows that the terrain

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

elevation was altered as a result of the crater. Since the
crater lowers the terrain, its location is much darker
than the surrounding area.

Military Map View

Google Maps currently lacks high resolution imagery
for areas of military interest (Irag and Afghanistan for
example). It also requires constant network connectivity
(Wi-Fi or 3G) for map updates, a situation that may not
be guaranteed in the field. For this reason, an alternate
map view using the Compressed ARC Digitized Raster
Graphics (CADRG) format was introduced into the
application (see Figure 5). CADRG is a general-purpose
product, comprised of maps and images derived directly
from numerous digital sources through filtering,
compression and re-formatting to support various
weapons, C3l theater battle management, mission
planning, and digital moving map systems. CADRG is a
standard defense format and closely resembles printed
military maps. Since CADRG closely resembles
standard military maps, the Warfighter will have a
natural comfort level with the view.

Figure 5. Screen capture of the CADRG view on the
iPhone 3GS. The CADRG view can be used as an
alternative view to Google Maps in areas where high
resolution Google Map data is non-existent.

Additional Usability Enhancements

Additional usability enhancements built specifically to
take advantage of the iPhone’s hardware were added to
improve the user experience. For example, to quickly
clear the screen and erase any previous LOS results, the
“Shake-to-Clear” capability was introduced. By simply
shaking the device, all overlay information (including
LOS results) is erased.

2010 Paper No. 10116 Page 7 of 11

Shortcuts were also added for screen navigation. As a
user navigates around the map, they can move away
from the LOS display. To quickly return to the LOS
results, they can use the pan and zoom capability. By
selecting the source or target icons on the toolbar, the
screen is updated to focus on the selected corresponding
location. If both annotation buttons are selected (using a
multi-touch gesture) the map window will zoom/pan to
display both the source and target LOS annotations. An
additional capability was added to snap the source or
target LOS location to a selected spot by first touching
the appropriate LOS button and then selecting a point
on the map. Both of these LOS annotation movements
enhance the user’s ability to position the LOS field of
view, thus enabling quicker querying capabilities.

App Configuration

Included with the app is a preferences menu to help
configure the system for a user’s needs. The preferences
menu consists of all of the definable application
variables. Preferences can be set for a variety of
capabilities, including LOS. Important LOS variables
include: fan step (degrees between each LOS query in a
fan), source and elevation heights (offset from terrain
skin for the locations of the ray), and LOS mode (sets to
use point-to-point or field-of-view LOS queries). Other
preferences include the ability to choose the map type
(Google Map or CADRG), to show the elevation map
(and its transparency level), use the compass for field-
of-view orientation, or to turn on capabilities like GPS
positioning.

ANDROID/IPHONE DEVELOPMENT
COMPARISION

At program inception our goal was to prototype an
application on both the Android and iPhone platforms.
We used the most current (at the time of development)
APIs for both the Android (NDK rev 1, SDK 1.5) and
iPhone (SDK 3.1). We deployed the apps to a HTC G1
(Android) and iPhone 3GS.

The TTA app consists of two layers: the user interface,
which is developed in the platform’s native language,
and the LTF code, which is in C++. The Android
platform utilizes Java for its core development
language, and the iPhone uses Obijective-C. Both
platforms are capable of executing code developed in
C++, but it is not their preferred language.

Complicating matters, devices for both platforms have
ARM architectures. This requires the use of a cross-

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

compiler when code development occurs on a typical
Intel-based workstation.

Android Development

Cross-compiling C++ source code, for NDK rev. 1,
proved to be a difficult and complicated process. Since
Android interface code has to be developed in Java, a
JNI layer needs to be developed to integrate C++/Java
code.

Unfortunately, the C++ compiler provided in Android
NDK rev. 1 did not fully support the C++ standard,
such as /O streams. Because of this, to get LTF to build
with the NDK compiler would have meant major re-
writes of LTF source, which was not possible. Without
the NDK, it would be impossible to connect Java and
C++ through JNI.

With the ideal solution determined to be impossible
(using that version of the NDK), we moved on to a less
desirable solution. Unlike the iPhone OS, the Android
OS allowed for the execution of background apps. We
determined that we could create an LTF backend
application (operating in the background) that
connected to the main Java application through inter-
process communication (sockets). Utilizing a third-party
cross-compiling toolchain (from Code Sourcery) we
successfully built an ARM compliant LTF executable.
With this workaround in place, we successfully
developed the TTA Android app.

iPhone Development

Compiling native code for the iPhone was significantly
easier than the Android counterpart. The Apple
compilers are based on GNU C/C++ compilers.
Objective-C is a superset of C/C++, meaning that the
Objective-C compiler successfully compiles C, C++,
and Objective-C code. C++ code can be called directly
from Objective-C applications.

Xcode, unfortunately, uses its own build environment
forcing projects which use standard makefiles to be
ported into Xcode projects. However since LTF uses
CMake to manage the build system and CMake can
produce Xcode project files without modification, the
level of effort normally required was diminished. With
Xcode project files in place, compiling native code was
simple.

Although porting native code to the iPhone was straight
forward, the same cannot be said in general for iPhone
development. The first issue is that all development
must take place on an Intel-based Mac computer, and be

2010 Paper No. 10116 Page 8 of 11

compiled using Xcode. This can become an obstacle,
with most companies using either Windows and/or
Linux systems as their development workstations.

Another obstacle is Objective-C. Android uses Java as
its native development language, a modern, popular
language used in development of many popular
applications. IPhone development, however, is done in
Objective-C, a C based language with heavy Smalltalk
influences. Objective-C uses interesting (and perhaps
unusual) syntax notation that is quite unfamiliar to
C/C++/Java developers. As a result, there is certainly a
bigger learning curve to iPhone development compared
to Android development.

Configuration management of the iPhone development
environment also proved to be difficult. Minor changes
of either Xcode or the iPhone OS happened on a near
weekly basis. Our app was deployed to numerous
devices for testing and demonstration purposes. Each
device was managed independently by their owner and
updated to different OS versions on an ad-hoc basis.
There were even instances where we bought multiple
iPod touches on the same day, and they were delivered
with different OS versions. Regardless of the reason
why the OS was different, if the OS is newer than those
supported by our current version of Xcode, an update to
Xcode is needed. Unfortunately, Xcode does not have
an update feature, which meant an entire new instance
of Xcode has to be downloaded (nearly a gigabyte of
data) and installed. Depending on network speed and
traffic, developers have reported download times in the
several of hours.

The process of deploying an app on Android is simple
and straightforward, Apple’s deployment process, on
the other hand, is anything but simple. There are
multiple forums and videos online dedicated to the
process. Even Apple's developer website contains a web
based "Development Provisioning Assistant" tool to
help the developer. In order to run an application on an
iPhone or iPod, a developer must get a provisioning
profile and a development certificate on their device
and their development Mac. After completing the
necessary steps to link a device (iPhone or iPod Touch)
with an Xcode project, they have to enable it to be used
as a development device. Depending on the type of
developer account that was setup, the provisioning
profile expires every 90 days forcing each device to be
reunited with the Xcode project periodically.

Development Conclusions

Clearly, at the time of our initial foray into mobile app
development, the Android platform was too immature

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

for real native code development. On the other hand,
beyond the possible headaches involved in porting a
C++ project over to Xcode, the iPhone platform worked
with native C++ code seamlessly. The Android NDK is
under constant development with several new releases
since our effort, so native code development may now
be significantly easier.

However, iPhone development is not without its own
headaches. Difficult configuration — management,
Objective-C, and the necessity for a Mac all are hurdles
to overcome.

On a hardware/software level, the iPhone and Android
platforms are similar, and will most likely continue to
be competitive with one another in the future. In
addition, as the Android SDK/NDK continues to
evolve, it will eventually support the entire breadth of
the C++ language. In the end, which platform is right
for the military is going to come down to how
unrestricted the underlying system is. Android is a truly
open platform where apps can be delivered to the user
through the Android Market and/or installed directly on
the device. Unless a special agreement is made between
Apple and the U.S. Military, all iPhone apps (outside of
the limited development deployments allowed) have to
be acquired through the App Store. All of these apps are
subject to Apple approval and must follow certain
guidelines before they are available for download.

BENCHMARK COMPARISON

One of the hallmark qualities of LTF is its LOS
performance, which was designed to operate on lower-
powered, mobile platforms. Although it was easy to tell
that the LOS performance on the iPhone 3G was
acceptable and responsive, it was still interesting to see
how it compared to LTF performance on desktop
platforms. Desktop LTF performance numbers were
captured in an earlier publication, “An Optimized
Synthetic Environment Representation Developed for
OneTESS Live Training” (Borkman, Peele, Campbell
2007). Those tests were conducted on a workstation
with the following specs (Table 1).

Table 1. Linux Desktop Specs

CPU Intel Pentium D EM64T
CPU Speed 3.00 Ghz (HT on)

RAM 2 GB DDR

(O] Kubuntu Linux 7.04 (i386)

Two 9 km? terrain databases were produced for testing
purposes, both from Barstow, California. The grids

2010 Paper No. 10116 Page 9 of 11

were set to one meter post spacing, with 10 and 100
meter culling grids. The representative terrain contains
over 1,255 volumetric features including trees and
buildings. Table 2 displays the results from variously
placed LOS queries. Each length of the query ray was
selected based on an analysis of weapon ranges for
OneTESS. The actual distances traveled by the
algorithm are less due to LOS blockage by either the
terrain or a feature. For each query distance a total of
10,000 different rays were randomly generated for the
terrain, and each ray was queried 1,000 times.

Table 2. Linux Desktop LOS Query Results

Query | Actual Rep. Dense
Ray Distance Terrain Terrain
Length | Traveled Query Query

Time Time

150 m 76.8 m 12.5 ps 67.8 us
300 m 121 m 13.2 ps 70.9 ps
500 m 160 m 14.6 ps 81.5 us
1000m | 235m 16.9 ps 83.9 us
1800m | 348 m 18.0 ps 104.9 us
2000m | 375m 18.4 ps 115.1 us

At the end of the TTA application’s short development
cycle, a series of similar benchmark scenarios were
executed on the iPhone. For each query ray distance, a
single random location was selected. Then the LOS
query was executed 1,000 times. In an effort to compare
and contrast the iPhone simulator on the Mac and the
iPhone 3GS, performance metrics where collected for
both. The timing results are shown in Table 3 and 4. In
every scenario the iPhone Simulator, which utilizes an
Intel architecture and the host system’s resources,
outperformed the iPhone by a factor of 20. This contrast
in performance is due to the difference between the
iPhone test environment and deployed hardware (i.e.
iPhone, iPod). In some instances the differences can
introduce unexpected issues such as when deploying an
application that performs well on the simulator during
hours of testing but not on the device. Although the
query times on the iPhone are higher, the delay from
query to displaying results is minimal. In the near
future, as both the devices hardware and software
capabilities increase, the TTA application will have the
ability to produce faster and more complex queries on
mobile platforms.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Table 3. iPhone Simulator LOS Query Results

Query Ray | Actual Distance | Dense Terrain
Length Traveled Query Time
150 m 139.5m 195 ps
300 m 193 m 221 ps
500 m 232.3m 229 ps
1000 m 399 m 261 ps

Table 4. iPhone 3GS LOS Query Results

Query Ray Actual Distance | Dense Terrain
Length Traveled Query Time
150 m 1147 m 4055 ps
300 m 198.9m 4129 ps
500 m 266.2 m 4504 ps
1000 m 352.4 m 5287 us

FUTURE WORK

The current TTA application is only the first phase in an
ongoing effort to provide to the Warfighter a state of the
art situational awareness device on commercial
hardware. At this point it is a novel approach to
conducting very high-resolution LOS routines on a
correlated environment, a service itself that would
greatly benefit the Warfighter. However, the potential
of the app is far greater.

The Warfighter is seldom alone in combat. Their
eventual success, and safety, is generally a product how
their team functions. Communication is typically the
main driving factor of team success. Therefore, adding
Intra-team communication services would be a key
component for a true situational awareness device.

The possibilities of new capabilities built upon the
communication infrastructure are exciting. One
important capability needed is real time unit position at
an individual level. This would give the user a new
perspective on the theater of operation. But the
capabilities could go far beyond that. For example,
when a member of a combat unit has intelligence about
the exact location of an enemy combatant, that
information could be placed on the map and
broadcasted to the team. The user could take a photo of
the combatant’s location and which can be geo-tagged
with geospatial information and shared. All of these
features and more can easily be built on top of LTF and
TTA foundations.

2010 Paper No. 10116 Page 10 of 11

CONCLUSION

Over the last decade, geospatial data capture
capabilities have outpaced the ability to get that data to
the people most in need of the information, the
Warfighter. The TTA Analysis app reverses that trend.
It allows the Warfighter to leverage detailed geospatial
information “on the go”, going beyond just a map of the
world by providing derived terrain analysis on a
correlated, virtual environment. Since the LTF system is
easily loaded onto the device, requires little processing
power, and maintains a small memory footprint, the
TTA application is able to increase the user’s situational
awareness by augmenting the amount of environmental
information in hand. Although it is currently a prototype
capability, we envision that it will continue to grow into
a tool that will be able to provide our Warfighter with a
clear and complete operational picture and aid in their
safety and eventual success.

ACKNOWLEDGEMENTS

This work was made possible by the U.S. Army’s
STTC, through SBIR Topic A08-013 “High-Fidelity
Runtime Database Engine.” The government POC for
this work is Mr. Julio de la Cruz. The work also built
on capabilities developed for the OneTESS program.

REFERENCES

Borkman, Peele, Campbell (2007) “An Optimized
Synthetic Environment Representation Developed for
OneTESS Live Training,” Interservice/Industry
Training, Simulation and Education Conference.
Orlando, FL November 26-29 2007.

Campos, Borkman, Peele, Campbell (2008) “Towards
Cross Domain Terrain Services”,
Interservice/Industry Training, Simulation, and
Education Conference. Orlando, FL December 1-4,
2008.

Chen, Brian (2009). Apple’s App Store Hits Six Digits;
How Many Apps Do You Need?. Retrieved from
http://www.wired.com/gadgetlab/2009/appstore/

ComScore (2010). ComScore Reports January 2010
U.S. Mobile Subscriber Market Share. Retrieved
from
http://www.comscore.com/Press_Events/Press_Relea
ses/2010/3/comScore_Reports_January 2010 _U.S._
Mobile_Subscriber_Market_Share

FMEpedia. (n.d.). Compressed ARC Digitized Raster
Graphics. Retrieved from http://www.fmepedia.com/

http://www.wired.com/gadgetlab/2009/appstore/
http://www.fmepedia.com/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Open Handset Alliance (n.d.), Retrieved from
http://www.openhandsetalliance.com

Technologizer (2010). Google: Expect 18 Android
Phones by Year’s End. Retrieved from
http://www.technologizer.com

2010 Paper No. 10116 Page 11 of 11

http://www.openhandsetalliance.com/
http://www.technologizer.com/

