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ABSTRACT

In this paper, we describe a model of intelligent agent that learns BLUEFOR’s mission structure and develops
highly effective counteractions for Opposing Forces over time. The model consists of three main components. First,
the agent aggregates data about movements, actions, and interactions of BLUEFOR actors to infer the sequence and
types of operations that BLUEFOR is conducting. Second, the agent develops a plan to counteract BLUEFOR’s
operations or adjusts its mission to improve the rate of success. Finally, the agent learns over time the effects of its
actions on the BLUE operations, incorporating terrain constraints and tactical effects. The main distinction of the
model from standard Al techniques is in how local and global information about multiple BLUE actors and terrain
features are used to make estimates about space-time activities composing coordinated BLUE tactics and learn
effects of agent’s actions with every experience.

Our model has been integrated with 3D virtual world to control OPFOR avatars. It provides a unique capability to
train adaptation skills in urban combat. This technology can also be utilized during intelligence analysis,
Wargaming, and mission rehearsals, allowing more accurate estimation of enemy courses of action and reduction of
OPFOR manning footprint.
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INTRODUCTION

A key challenge for battlefield simulation is the
estimation of enemy courses of action (COAs). Current
adversarial COA development is a manual time-
consuming process prone to errors due to limited
knowledge about the adversary and its ability to adapt.
Development of decision aids that can predict
adversary’s intent and range of possible behaviors, as
well as automation of such technologies within
battlefield simulations, would also greatly enhance the
efficacy of training and mission rehearsal solutions.

Presently, the game-based training and mission
rehearsal technologies use one of the three methods to
represent opposing forces (OPFOR):

= Scripted OPFOR uses manually defined set of
actions of OPFOR and/or tasks for friendly forces
(BLUEFOR) to be executed during the simulation.
These events are define by subject-matter experts
(SMEs) and associated with (a range of) locations
and times of execution. The event types and
sequences are determined based on the knowledge
of possible hostile tactics and the objectives of
training sessions. This approach is challenging
because it requires significant manpower in
defining detailed scenarios with realistic behavior
variations, and does not allow training local and
global adaptive behaviors in participating team
members.

» Controlled OPFOR entities are used when a
single human player (sometimes referred to as
“puckster”) performing a role on OPFOR team
(e.g. a leader of the enemy cell) can manipulate the
actions and movements of multiple OPFOR
characters (referred to as “pucks”). This method
still requires presence of skilled OPFOR players
and is prone to biases in their experiences.

= Software OPFOR agents can be used to automate
the actions and movements of OPFOR characters,
based on their socio-cultural background,
capabilities, and training requirements of the
scenario. This method is preferable to reduce the
footprint of mission rehearsal and training
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sessions; however, previous agent implementations
were able to capture only local actions and
motions, and have had little success in
demonstrating coordinated adaptive behaviors of
the realistic enemies.

THE PROBLEM

Successful software agent(s) controlling OPFOR
entities and exhibiting realistic behaviors must possess
four key capabilities (Figure 1). First, the agents must
be able to collect observable data about motions and
actions of various actors, including people and vehicles,
from the environment in a manner that is similar to
ground reconnaissance. This means that the location
and motion data about BLUEFOR actors only in direct
line-of-site from OPFOR characters can be available to
the agents.

Second, location and motion data should be converted
into actions, behaviors and coordinated plans similar to
human’s  perception  processes. For example,
interpreting motion of BLUE characters as checkpoint
setup, reconnaissance, or patrolling should be part of
the perception model of and made in automated manner
by the agents.

Third, potentially ambiguous inferences about plans of
BLUEFOR should be converted into the plans of
actions by OPFOR characters, and those actions must
be carried out in a manner similar to the actions of
multiple adversaries that rely on visual cues and
communication to coordinate and synchronize their
activities.

Finally, the agent must be able to evaluate success of
the conducted operations, learn consequences and
improve success of their actions over time.
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Figure 1. Main Elements of OPFOR Agent
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While many researchers have studied distributed
coordinated planning and execution, a significant gap
exists for both perception and learning capabilities. In
this paper, we describe the agents that incorporate
unique plan inference and action learning based on
multi-entity spatiotemporal reasoning.

RELATED RESEARCH IN PLAN
RECOGNITION

Plan recognition is the process of inferring another
side’s plans or behaviors based on observations of its
interaction with the environment. Several applications
of plan recognition have been developed in the last
decade. Most of the automated plan recognition
models, however, have severe limitations to be used by
OPFOR agents:

= Traditional utility-based plan recognition infers
the preferences of the actors and selects the plan
that achieves the highest static or expected utility.
Maximum-utility plan recognition models (Mao
and Gratch, 2004; Blythe, 1999) cannot track the
plan evolution over time as the utility of action
execution mostly does not change while the actions
in the plan are executed. These models do not
explicitly incorporate ambiguous observations and
therefore their predictions do not change over time
with incoming partial evidence.

= Traditional probabilistic plan tracking and
actor profiling looks at patterns of activities
performed by a single individual or the whole
group to determine its role, threat indicator, intent,
goal, or future actions. This approach does not
allow tracking of coordinated and interdependent
actions by multiple actors in both space and time.
For example, statistical temporal event analysis
techniques, such as Hidden Markov Models
(Schrodt and Gerner, 2001; Singh et al., 2004),
Bayesian Networks (Tu et al., 2006), Markov
Decision models (Yin et a., 2004), decision tree-
based models (Avrahami-Zilberbrand, and
Kaminka, 2005), and conditional hierarchical plans
(Geib and Harp, 2004) can reliably forecast
behavior of only a single actor, dyadic
relationships, or a group, where only a single
action can happen at any time. Each single actor or
group and its actions may look benign, and only by
analyzing combined interactions can one discern
the true nature of behavior to provide early
predictions of future hostile activities.

= Traditional interactions analysis models -
including differential equations (Turchin, 2003),
interaction-events data analysis (Gerner et al.,
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2002), game-theoretic models (Brams and Kilgour,
1988), agent-based simulations (Popp et al., 2006),
and others — need to be pre-populated with a large
amount of data. A significant amount of noise
events contribute to misleading forecasts (false
alarms and false positives — the recognition of
potential threats that have little or no impact) due
to the sensitivity of these models to input
parameters.

Instead of single actor behavior recognition, the
OPFOR needs to learn the plan of BLUEFOR that
consists of multiple actors performing coordinated
activities constrained by the BLUE’s command
structure. Therefore, we need to account for the
resource and organizational constraints of BLUE
forces, the utility and probabilistic nature of the actions,
the uncertainty in dynamic observations about BLUE’s
activities, and the fact that many activities might
happen in parallel. The model of perception for OPFOR
agent presented in this paper is similar in its ability to
reason about parallel activities to the team plan
recognition research (Kaminka, and Pynadath, 2002;
Shi et al., 2004). Our model differs in its ability to filter
the irrelevant entities and behaviors, perform data-to-
model association, and find the locations of operations
in the plan.

TRAINING USING VIRTUAL GAMES

Virtual simulations can be used for training various
command and control (C2) skills, including situation
understanding, team planning, communication, and
adaptive decision making. Virtual training sessions
include human players performing assigned C2 roles of
the friendly forces (usually roles of unit commanders at
various echelons of the organizational hierarchy). Here,
the OPFOR agents can be used to control the units of
opposing (RED) forces, effectively reducing the costs
and human footprint of the training (Figure 2). During
the game, human players receive information from the
simulator using its visual interfaces, communicate with
each other to assign tasks and responsibilities, schedule
operation times, and control entities in the simulation
by moving them and committing to execute actions.
Usually, entities include people, vehicles, or military
teams, and actions are either military kinetic operations
(such as firing at other entities) or non-kinetic
behaviors (such as greeting and communicating with
locals).

Several virtual simulators have been developed in the
past for military, commercial, and open-source use,
including various Semi-Automated Forces (SAF)
simulators such as JSAF and OTB-SAF. Recently, 3-D
virtual games started to gain more ground, with many
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gaming engines developed with varying functionality
(Wikipedia, 2010). These simulators provide overhead
views for the tactical team decision making and
operator views for simple-player perspectives and
actions (Figure 3).
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BLUE Team Virtual Simulator

Figure 2. Using virtual simulators and OPFOR
agents for C2 training

(a) Overhead view

Figure 3. Example of 3D views in GDIS game
system

GAMING PLATFORM AND INPUT DATA

To implement and demonstrate our OPFOR agents, we
have integrated with Game DIS (GDIS) - a military
training application using the 3D Gaming Engine that
powers Half-Life®2 (RNI, 2010). The application, one
of the winners of serious game showcase and Challenge
at I/ITSEC-2006, is fully configurable and allows
multiplayer participation over standard internet
connection, “smart bots” and live unit animations,
integration of standard DIS tools, and support for man-
wearable embedded training and mission rehearsal.

The data that could be extracted from GDIS include
motion and state messages at constant frequency with
the following fields:
= Id: unique identifier of the entity in the game,
which is used for aggregating all observations that
relate to the same avatar; in the real world, this will
be an Id of the track or an entity over which a track
can be maintained.

= TimeStamp: this is a simulation time at which the
observation is collected; it allows us to aggregate
the observations in a time window and judge the
temporal relations between motions and associated
actions.
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= Velocity: this is a vector of the velocity for the
avatar or vehicle; it is used to reason about
locomotion and interaction between avatars and
other entities in the game.

= Location: this is latitude-longitude information for
the entity; it is used to analyze spatial behaviors
and aggregate events by geography.

= QOrientation: this is the vector of the orientation of
the face of an avatar; it is used to analyze the
interaction between avatars and detect if a certain
search or sniping is in progress.

= Health: this is a parameter used to judge the
impact of the actions.

= Weapon and ammo: this specifies the current
weapon used and remaining ammo.

= Posture: this specifies the posture of the avatar.

DATA PROCESSING AND EVENT
RECOGNITION

Our OPFOR agent (Levchuk et al, 2008) works by
consuming observations incoming from GDIS, which
are low-level time-stamped locations and kinematics of
the individual avatars. The agent converts location data
into motion events (locomotions, interactions, and
actions), aggregates those events for predefined
geographic areas while fusing them with static area
function information (including socio-cultural features),
infers the plan that BLUEFOR is pursuing, forecasts
future BLUEFOR actions, and designs OPFOR
response plan.

Locomotion and Interaction Detection

Observations are aggregated for each avatar and then
used to detect the next-level information: locomotions,
action, and interactions between entities in the game.

The locomotion detection algorithm generates a stream
of entity, time, and location-stamped locomotion
events, from a fixed set of event types, using state,
location, velocity, and orientation data from
observations. The following is a list of the types of such
events and the description of how they are generated in
presented OPFOR agent:

= Appear/Disappear: this event is generated when a
person appears or disappears from the area or
scene; this is useful to detect in real world, but in
the virtual games all characters appear at the start
and disappear at the end — unless we filter out the
state information
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= Stop/Start: these events are generated when the
velocity of an entity changes from positive to
almost zero and vice versa

= Walk: this event is generated when the avatar
moves with normal velocity

= Run: this event is generated when velocity of
human avatar is high

= Wait: this event is generated when a person’s
velocity is negligible for a period of time

= DirectionTurn: this event is generated when an
avatar’s direction of movement changes
significantly to left or right across several steps

= DirectionReverse: this event is generated when an
avatar’s direction of movement is reversed

= BodyTurn: this event is generated when a
person’s body skeleton is turning right/left

= BodyReverse: this event is generated when the
body is rotated almost 180 degrees

Figure 4 illustrates how several of the locomotion types
are determined.
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Figure 4. Examples of locomotion detection

The interaction detection algorithm generates events of
relations between actors, from a fixed set of event
types. The algorithm is rule-based (no learning is
needed), similarly configured using a set of parameters.
The following set of interaction event types is detected
by our OPFOR agent:

= Approach/Retreat: a person approaches/ retreats
from another entity over time
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= Vary_distance: the distance between entities vary
significantly over time

= Keep_distance_close/far: a close/medium
distance between entities is maintained

= Meet: entities approach each other and meet

= Enter/exit: a person enters or exists the building or
acar

= Pass_by: a person passes another entity

= WalkTogether: two people walking side-by-side
in the same direction
Figure 5 shows how several interactions may be
detected based on the distance between the avatars.

§ t

Approach Vary distance Keep distance close

Figure 5. Examples of interaction detection

Action Recognition

Actions are higher-level behaviors of individual
entities, spanning tens of seconds to minutes in the
game. Actions are comprised of locomotions, and as
such can be modeled and recognized. In our
OPFOR agent, we use statistical classifiers for
action recognition which must be first trained off-
line on a set of motion data to build the model for
each action type. These models are then used to
recognize the actions during the actual scenario.
Statistical learning capability enables the OPFOR
agent to learn over time new actions that BLUEFOR
avatars might perform.

We have implemented two statistical classifiers:
Hidden Markov Models (HMMs) and Probabilistic
Latent Semantic Indexing (PLSI). HMMs are good for
modeling and detecting activities consisting of
locomotions that have structure in time (i.e., strong
sequential dependencies). PLSI is a good method for
“bag of locomotions” modeling (i.e., when the order
among locomotions does not carry significant
information but the types of constituent locomotions
matter). Both algorithms can be trained in a semi-
supervised manner. We are currently enhancing our
models, and plan on integrating Support Vector
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Machines, K-nearest neighbors, n-grams, and Naive
Bayesian classifiers for use in action recognition.

PLAN RECOGNITION MODEL

The plan recognition algorithms in our OPFOR agent
find the mission plan that BLUEFOR is following and
the locations where the tasks are and will be executed
by BLUEFOR. Plan recognition algorithms, see
(Levchuk et al., 2008) for more details, take as inputs
the set of action and interaction events as well as the
static terrain information in the form of areas, their
capabilities and relationships. The list of feasible
BLUEFOR plans is defined manually and becomes
hypotheses for the mission plan recognition algorithms,
which test each BLUEFOR mission plan against the
observations. The observations (motion events) and
static terrain data are aggregated into a data network.
The plan nodes (tasks) are mapped to the area nodes in
the data network (Figure 6). This mapping is unknown
and needs to be found. The objective function is based
on the posterior probability of the plan given the
observations.
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Figure 6. Plan recognition using spatiotemporal
mapping

The data nodes are areas in the terrain that are
predefined in advance with their polygons. Relations
between areas are computed using attributes of distance
from one area to another and coverage parameters (in
terms of % of the area that can be used to fully observe
another area, partially observe, or have no observation
to another area). The coverage parameters influence
how the BLUEFOR and OPFOR avatars may want to
position themselves with respect to other avatars
(including their own). For example, during a cordon
and search mission BLUEFOR would want to set
cordon positions that have overlook at the locations of
searches — to enable the units at cordon points to
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respond quickly to a changing situation providing
support to the unit that conducts the search operation.

OPFOR PLAN DESIGN AND LEARNING

From the perception component, OPFOR agent
generates probabilistic estimates of the BLUEFOR
plans and the mapping from those plans to the
geographic areas. Each area thus gets a vector of
estimates of BLUE task attributes. Using these
attributes, we can select an OPFOR plan that can result
in the best gain for OPFOR maximizing the reward
objective function based on the operations success and
entity health status.

Each plan in OPFOR’s library consists of the set of
nodes and links, similarly to the BLUEFORE mission
hypotheses. One of the nodes is the BLUEFOR
operation for which the OPFOR plan is designed. Other
nodes are operations to be conducted by OPFOR.
OPFOR can execute multiple plans in parallel.

In Figure 7, we show an example of the OPFOR plan
and its mapping to the geographic terrain. The plan
consists of 3 snipers and an action to secure egress for
RED avatars. We employ a similar algorithm for
mapping this plan onto the geospatial terrain, using
inferred BLUE action and interaction events.

Sniper 2
Egress A
BLUEFOR : /@
cordon point Sy Q\

s

QO

Sniper 1
P Sniper 3 OQ

Figure 7. Planning OPFOR actions

Both BLUEFOR plan recognition and OPFOR plan
design models use the same algorithms (Levchuk et al.,
2008) that incorporate local static and dynamic
information about the geographic area and similar
information encoded in the models of the plans. Figure
8 conceptually describes how this can be achieved. We
illustrate here that there are two considerations for
finding the activities and their locations. First, the
locations of activities are chosen based on the functions
of geographic areas; such information can be encoded
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in the function requirements of the plan model. Second,
when the task from a plan occurs, it generates events in
the corresponding area. Since those events are often
ambiguous, and function information alone creates too
many alternatives; hence, using both event (dynamic)
and function (static) attribute can improve the accuracy
of activity-to-location association. In addition,
information about functions of areas can be used in
forecasting where future activities will take place in the
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Figure 8: Considerations for activity-location

mapping

Consequently, the full mapping objective function
includes the mismatches between function and event
components. While the event components are dynamic,
they are moderately independent of the OPFOR
preferences since events describe how specific
operations could be observed through motion data. The
function components, on the other hand, specify the
preferences of selecting areas, and can change over
time. These preferences constitute the primary drivers
of the OPFOR adaptive behaviors, as the static function
information used in the OPFOR planning corresponds
to the inferences about BLUEFOR actions in the areas.
Thus, these parameters correspond to the preferences of
OPFOR to take their actions against BLUEFOR
operations. Our OPFOR agent then learns and updates
these preferences over time using temporal difference
learning that incorporates the success scores of OPFOR
actions. Initially, OPFOR tries to explore a set of
feasible actions, over time converging to a set of most
efficient preferences. The OPFOR adaptation is then
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equivalent to changes in OPFOR action-reaction
preferences.

RESULTS AND CONCLUSIONS

Our OPFOR agent has been integrated with GDIS
simulation, receiving its location and motion messages
and sending back the motion and action commands for
OPFOR avatars (Figure 9). The BLUE force is played
by the human players or scripted avatars that execute
the given plan. We then compare this plan with
inferences produced by the OPFOR agent, as well as
calculate the success of OPFOR and BLUEFOR
operations.
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Figure 9. OPFOR agent architecture

We are currently developing and testing several tactical
vignettes occurring in a small urban town which is a
modification of the McKenna urban training site
located at Ft. Benning. We have enhanced the terrain in
our scenario level so that it contains more buildings and
walls to provide more opportunities for the BLUE and
RED forces to setup and execute missions. In our
previous research, we assessed capabilities of the
OPFOR agent to recognize the missions and task
locations of the BLUE force, achieving over 75%
accuracy of activity-to-location association (Levchuk et
al., 2008, 2009). Our next steps are assessing the ability
of OPFOR agents to adapt over time to increase
rewards of their operations depending on the rate of
adaptation of BLUEFORE. We expect that, in the
presence of repeated actions by the BLUE force team
participants, the OPFOR agents would achieve the
mission success rates similar to human players in few
iterations. Such functionality will provide automated
technology that could improve adaptation training and
increase the realism of the Wargaming and semi-
automated mission rehearsal technologies.
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