
 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10388 Page 1 of 9 

Adaptive Automated Opposing Forces for Urban Operations Training 
 

Georgiy M. Levchuk, John-Colonna Romano Krishna Pattipati 

Aptima Inc. University of Connecticut 

Woburn, MA Storrs, CT 

georgiy@aptima.com, jcromano@aptima.com krishna@engr.uconn.edu  

 
 

ABSTRACT 
 
In this paper, we describe a model of intelligent agent that learns BLUEFOR’s mission structure and develops 
highly effective counteractions for Opposing Forces over time. The model consists of three main components. First, 
the agent aggregates data about movements, actions, and interactions of BLUEFOR actors to infer the sequence and 
types of operations that BLUEFOR is conducting. Second, the agent develops a plan to counteract BLUEFOR’s 
operations or adjusts its mission to improve the rate of success. Finally, the agent learns over time the effects of its 
actions on the BLUE operations, incorporating terrain constraints and tactical effects. The main distinction of the 
model from standard AI techniques is in how local and global information about multiple BLUE actors and terrain 
features are used to make estimates about space-time activities composing coordinated BLUE tactics and learn 
effects of agent’s actions with every experience. 
Our model has been integrated with 3D virtual world to control OPFOR avatars. It provides a unique capability to 
train adaptation skills in urban combat. This technology can also be utilized during intelligence analysis, 
Wargaming, and mission rehearsals, allowing more accurate estimation of enemy courses of action and reduction of 
OPFOR manning footprint. 
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INTRODUCTION 

A key challenge for battlefield simulation is the 
estimation of enemy courses of action (COAs). Current 
adversarial COA development is a manual time-
consuming process prone to errors due to limited 
knowledge about the adversary and its ability to adapt. 
Development of decision aids that can predict 
adversary’s intent and range of possible behaviors, as 
well as automation of such technologies within 
battlefield simulations, would also greatly enhance the 
efficacy of training and mission rehearsal solutions. 

Presently, the game-based training and mission 
rehearsal technologies use one of the three methods to 
represent opposing forces (OPFOR): 

 Scripted OPFOR uses manually defined set of 
actions of OPFOR and/or tasks for friendly forces 
(BLUEFOR) to be executed during the simulation. 
These events are define by subject-matter experts 
(SMEs) and associated with (a range of) locations 
and times of execution. The event types and 
sequences are determined based on the knowledge 
of possible hostile tactics and the objectives of 
training sessions. This approach is challenging 
because it requires significant manpower in 
defining detailed scenarios with realistic behavior 
variations, and does not allow training local and 
global adaptive behaviors in participating team 
members. 

 Controlled OPFOR entities are used when a 
single human player (sometimes referred to as 
“puckster”) performing a role on OPFOR team 
(e.g. a leader of the enemy cell) can manipulate the 
actions and movements of multiple OPFOR 
characters (referred to as “pucks”). This method 
still requires presence of skilled OPFOR players 
and is prone to biases in their experiences. 

 Software OPFOR agents can be used to automate 
the actions and movements of OPFOR characters, 
based on their socio-cultural background, 
capabilities, and training requirements of the 
scenario. This method is preferable to reduce the 
footprint of mission rehearsal and training 

sessions; however, previous agent implementations 
were able to capture only local actions and 
motions, and have had little success in 
demonstrating coordinated adaptive behaviors of 
the realistic enemies. 

 
THE PROBLEM 

Successful software agent(s) controlling OPFOR 
entities and exhibiting realistic behaviors must possess 
four key capabilities (Figure 1). First, the agents must 
be able to collect observable data about motions and 
actions of various actors, including people and vehicles, 
from the environment in a manner that is similar to 
ground reconnaissance. This means that the location 
and motion data about BLUEFOR actors only in direct 
line-of-site from OPFOR characters can be available to 
the agents. 

Second, location and motion data should be converted 
into actions, behaviors and coordinated plans similar to 
human’s perception processes. For example, 
interpreting motion of BLUE characters as checkpoint 
setup, reconnaissance, or patrolling should be part of 
the perception model of and made in automated manner 
by the agents.  

Third, potentially ambiguous inferences about plans of 
BLUEFOR should be converted into the plans of 
actions by OPFOR characters, and those actions must 
be carried out in a manner similar to the actions of 
multiple adversaries that rely on visual cues and 
communication to coordinate and synchronize their 
activities. 

Finally, the agent must be able to evaluate success of 
the conducted operations, learn consequences and 
improve success of their actions over time. 
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Figure 1. Main Elements of OPFOR Agent 
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While many researchers have studied distributed 
coordinated planning and execution, a significant gap 
exists for both perception and learning capabilities. In 
this paper, we describe the agents that incorporate 
unique plan inference and action learning based on 
multi-entity spatiotemporal reasoning. 
 

RELATED RESEARCH IN PLAN 
RECOGNITION 

Plan recognition is the process of inferring another 
side’s plans or behaviors based on observations of its 
interaction with the environment. Several applications 
of plan recognition have been developed in the last 
decade. Most of the automated plan recognition 
models, however, have severe limitations to be used by 
OPFOR agents: 

 Traditional utility-based plan recognition infers 
the preferences of the actors and selects the plan 
that achieves the highest static or expected utility. 
Maximum-utility plan recognition models (Mao 
and Gratch, 2004; Blythe, 1999) cannot track the 
plan evolution over time as the utility of action 
execution mostly does not change while the actions 
in the plan are executed. These models do not 
explicitly incorporate ambiguous observations and 
therefore their predictions do not change over time 
with incoming partial evidence. 

 Traditional probabilistic plan tracking and 
actor profiling looks at patterns of activities 
performed by a single individual or the whole 
group to determine its role, threat indicator, intent, 
goal, or future actions. This approach does not 
allow tracking of coordinated and interdependent 
actions by multiple actors in both space and time. 
For example, statistical temporal event analysis 
techniques, such as Hidden Markov Models 
(Schrodt and Gerner, 2001; Singh et al., 2004), 
Bayesian Networks (Tu et al., 2006), Markov 
Decision models (Yin et a., 2004), decision tree-
based models (Avrahami-Zilberbrand, and 
Kaminka, 2005), and conditional hierarchical plans 
(Geib and Harp, 2004) can reliably forecast 
behavior of only a single actor, dyadic 
relationships, or a group, where only a single 
action can happen at any time. Each single actor or 
group and its actions may look benign, and only by 
analyzing combined interactions can one discern 
the true nature of behavior to provide early 
predictions of future hostile activities.  

 Traditional interactions analysis models – 
including differential equations (Turchin, 2003), 
interaction-events data analysis (Gerner et al., 

2002), game-theoretic models (Brams and Kilgour, 
1988), agent-based simulations (Popp et al., 2006), 
and others – need to be pre-populated with a large 
amount of data. A significant amount of noise 
events contribute to misleading forecasts (false 
alarms and false positives – the recognition of 
potential threats that have little or no impact) due 
to the sensitivity of these models to input 
parameters.  

Instead of single actor behavior recognition, the 
OPFOR needs to learn the plan of BLUEFOR that 
consists of multiple actors performing coordinated 
activities constrained by the BLUE’s command 
structure. Therefore, we need to account for the 
resource and organizational constraints of BLUE 
forces, the utility and probabilistic nature of the actions, 
the uncertainty in dynamic observations about BLUE’s 
activities, and the fact that many activities might 
happen in parallel. The model of perception for OPFOR 
agent presented in this paper is similar in its ability to 
reason about parallel activities to the team plan 
recognition research (Kaminka, and Pynadath, 2002; 
Shi et al., 2004). Our model differs in its ability to filter 
the irrelevant entities and behaviors, perform data-to-
model association, and find the locations of operations 
in the plan. 
 

TRAINING USING VIRTUAL GAMES 

Virtual simulations can be used for training various 
command and control (C2) skills, including situation 
understanding, team planning, communication, and 
adaptive decision making. Virtual training sessions 
include human players performing assigned C2 roles of 
the friendly forces (usually roles of unit commanders at 
various echelons of the organizational hierarchy). Here, 
the OPFOR agents can be used to control the units of 
opposing (RED) forces, effectively reducing the costs 
and human footprint of the training (Figure 2). During 
the game, human players receive information from the 
simulator using its visual interfaces, communicate with 
each other to assign tasks and responsibilities, schedule 
operation times, and control entities in the simulation 
by moving them and committing to execute actions. 
Usually, entities include people, vehicles, or military 
teams, and actions are either military kinetic operations 
(such as firing at other entities) or non-kinetic 
behaviors (such as greeting and communicating with 
locals). 

Several virtual simulators have been developed in the 
past for military, commercial, and open-source use, 
including various Semi-Automated Forces (SAF) 
simulators such as JSAF and OTB-SAF. Recently, 3-D 
virtual games started to gain more ground, with many 
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gaming engines developed with varying functionality 
(Wikipedia, 2010). These simulators provide overhead 
views for the tactical team decision making and 
operator views for simple-player perspectives and 
actions (Figure 3). 

 

Figure 2. Using virtual simulators and OPFOR 
agents for C2 training 

(a) Overhead view (b) Operator view  

Figure 3. Example of 3D views in GDIS game 
system 

 
GAMING PLATFORM AND INPUT DATA 

To implement and demonstrate our OPFOR agents, we 
have integrated with Game DIS (GDIS) – a military 
training application using the 3D Gaming Engine that 
powers Half-Life®2 (RNI, 2010). The application, one 
of the winners of serious game showcase and Challenge 
at I/ITSEC-2006, is fully configurable and allows 
multiplayer participation over standard internet 
connection, “smart bots” and live unit animations, 
integration of standard DIS tools, and support for man-
wearable embedded training and mission rehearsal. 

The data that could be extracted from GDIS include 
motion and state messages at constant frequency with 
the following fields: 
 Id: unique identifier of the entity in the game, 

which is used for aggregating all observations that 
relate to the same avatar; in the real world, this will 
be an Id of the track or an entity over which a track 
can be maintained. 

 TimeStamp: this is a simulation time at which the 
observation is collected; it allows us to aggregate 
the observations in a time window and judge the 
temporal relations between motions and associated 
actions. 

 Velocity: this is a vector of the velocity for the 
avatar or vehicle; it is used to reason about 
locomotion and interaction between avatars and 
other entities in the game. 

 Location: this is latitude-longitude information for 
the entity; it is used to analyze spatial behaviors 
and aggregate events by geography. 

 Orientation: this is the vector of the orientation of 
the face of an avatar; it is used to analyze the 
interaction between avatars and detect if a certain 
search or sniping is in progress. 

 Health: this is a parameter used to judge the 
impact of the actions. 

 Weapon and ammo: this specifies the current 
weapon used and remaining ammo. 

 Posture: this specifies the posture of the avatar. 

 
DATA PROCESSING AND EVENT 

RECOGNITION 

Our OPFOR agent (Levchuk et al, 2008) works by 
consuming observations incoming from GDIS, which 
are low-level time-stamped locations and kinematics of 
the individual avatars. The agent converts location data 
into motion events (locomotions, interactions, and 
actions), aggregates those events for predefined 
geographic areas while fusing them with static area 
function information (including socio-cultural features), 
infers the plan that BLUEFOR is pursuing, forecasts 
future BLUEFOR actions, and designs OPFOR 
response plan.  

 
Locomotion and Interaction Detection 

Observations are aggregated for each avatar and then 
used to detect the next-level information: locomotions, 
action, and interactions between entities in the game. 

The locomotion detection algorithm generates a stream 
of entity, time, and location-stamped locomotion 
events, from a fixed set of event types, using state, 
location, velocity, and orientation data from 
observations. The following is a list of the types of such 
events and the description of how they are generated in 
presented OPFOR agent: 

 Appear/Disappear: this event is generated when a 
person appears or disappears from the area or 
scene; this is useful to detect in real world, but in 
the virtual games all characters appear at the start 
and disappear at the end – unless we filter out the 
state information  
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 Stop/Start: these events are generated when the 
velocity of an entity changes from positive to 
almost zero and vice versa  

 Walk: this event is generated when the avatar 
moves with normal velocity  

 Run: this event is generated when velocity of 
human avatar is high 

 Wait: this event is generated when a person’s 
velocity is negligible for a period of time 

 DirectionTurn: this event is generated when an 
avatar’s direction of movement changes 
significantly to left or right across several steps  

 DirectionReverse: this event is generated when an 
avatar’s direction of movement is reversed 

 BodyTurn: this event is generated when a 
person’s body skeleton is turning right/left 

 BodyReverse: this event is generated when the 
body is rotated almost 180 degrees 

Figure 4 illustrates how several of the locomotion types 
are determined. 

(a) Velocity events

(b) Direction events

(c) Body events

0 10 Km/hr0.01 5

wait
walk

run

turn

reverse

turn

reverse

 

Figure 4. Examples of locomotion detection 

The interaction detection algorithm generates events of 
relations between actors, from a fixed set of event 
types. The algorithm is rule-based (no learning is 
needed), similarly configured using a set of parameters. 
The following set of interaction event types is detected 
by our OPFOR agent: 

 Approach/Retreat: a person approaches/ retreats 
from another entity over time 

 Vary_distance: the distance between entities vary 
significantly over time 

 Keep_distance_close/far: a close/medium 
distance between entities is maintained 

 Meet: entities approach each other and meet 

 Enter/exit: a person enters or exists the building or 
a car 

 Pass_by: a person passes another entity 

 WalkTogether: two people walking side-by-side 
in the same direction 

Figure 5 shows how several interactions may be 
detected based on the distance between the avatars. 

Approach Vary distance Keep distance close  

Figure 5. Examples of interaction detection 
 
Action Recognition 

Actions are higher-level behaviors of individual 
entities, spanning tens of seconds to minutes in the 
game. Actions are comprised of locomotions, and as 
such can be modeled and recognized. In our 
OPFOR agent, we use statistical classifiers for 
action recognition which must be first trained off-
line on a set of motion data to build the model for 
each action type. These models are then used to 
recognize the actions during the actual scenario. 
Statistical learning capability enables the OPFOR 
agent to learn over time new actions that BLUEFOR 
avatars might perform. 

We have implemented two statistical classifiers: 
Hidden Markov Models (HMMs) and Probabilistic 
Latent Semantic Indexing (PLSI). HMMs are good for 
modeling and detecting activities consisting of 
locomotions that have structure in time (i.e., strong 
sequential dependencies). PLSI is a good method for 
“bag of locomotions” modeling (i.e., when the order 
among locomotions does not carry significant 
information but the types of constituent locomotions 
matter). Both algorithms can be trained in a semi-
supervised manner. We are currently enhancing our 
models, and plan on integrating Support Vector 
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Machines, K-nearest neighbors, n-grams, and Naïve 
Bayesian classifiers for use in action recognition. 

 
PLAN RECOGNITION MODEL 

The plan recognition algorithms in our OPFOR agent 
find the mission plan that BLUEFOR is following and 
the locations where the tasks are and will be executed 
by BLUEFOR. Plan recognition algorithms, see 
(Levchuk et al., 2008) for more details, take as inputs 
the set of action and interaction events as well as the 
static terrain information in the form of areas, their 
capabilities and relationships. The list of feasible 
BLUEFOR plans is defined manually and becomes 
hypotheses for the mission plan recognition algorithms, 
which test each BLUEFOR mission plan against the 
observations. The observations (motion events) and 
static terrain data are aggregated into a data network. 
The plan nodes (tasks) are mapped to the area nodes in 
the data network (Figure 6). This mapping is unknown 
and needs to be found. The objective function is based 
on the posterior probability of the plan given the 
observations.  
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Figure 6. Plan recognition using spatiotemporal 
mapping 

The data nodes are areas in the terrain that are 
predefined in advance with their polygons. Relations 
between areas are computed using attributes of distance 
from one area to another and coverage parameters (in 
terms of % of the area that can be used to fully observe 
another area, partially observe, or have no observation 
to another area). The coverage parameters influence 
how the BLUEFOR and OPFOR avatars may want to 
position themselves with respect to other avatars 
(including their own). For example, during a cordon 
and search mission BLUEFOR would want to set 
cordon positions that have overlook at the locations of 
searches – to enable the units at cordon points to 

respond quickly to a changing situation providing 
support to the unit that conducts the search operation.  

 
OPFOR PLAN DESIGN AND LEARNING 

From the perception component, OPFOR agent 
generates probabilistic estimates of the BLUEFOR 
plans and the mapping from those plans to the 
geographic areas. Each area thus gets a vector of 
estimates of BLUE task attributes. Using these 
attributes, we can select an OPFOR plan that can result 
in the best gain for OPFOR maximizing the reward 
objective function based on the operations success and 
entity health status. 

Each plan in OPFOR’s library consists of the set of 
nodes and links, similarly to the BLUEFORE mission 
hypotheses. One of the nodes is the BLUEFOR 
operation for which the OPFOR plan is designed. Other 
nodes are operations to be conducted by OPFOR. 
OPFOR can execute multiple plans in parallel.  

In Figure 7, we show an example of the OPFOR plan 
and its mapping to the geographic terrain. The plan 
consists of 3 snipers and an action to secure egress for 
RED avatars. We employ a similar algorithm for 
mapping this plan onto the geospatial terrain, using 
inferred BLUE action and interaction events. 
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Figure 7. Planning OPFOR actions 

Both BLUEFOR plan recognition and OPFOR plan 
design models use the same algorithms (Levchuk et al., 
2008) that incorporate local static and dynamic 
information about the geographic area and similar 
information encoded in the models of the plans. Figure 
8 conceptually describes how this can be achieved. We 
illustrate here that there are two considerations for 
finding the activities and their locations. First, the 
locations of activities are chosen based on the functions 
of geographic areas; such information can be encoded 
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in the function requirements of the plan model. Second, 
when the task from a plan occurs, it generates events in 
the corresponding area. Since those events are often 
ambiguous, and function information alone creates too 
many alternatives; hence, using both event (dynamic) 
and function (static) attribute can improve the accuracy 
of activity-to-location association. In addition, 
information about functions of areas can be used in 
forecasting where future activities will take place in the 
future.  

Location

Functions

Attributes

Events

Events

Attributes

choose generate

occurs at

DATA

Hostile Activity Location

Activity-to-
location 
mapping

Hostile Activity

Functions + Events
(static + dynamic)

Attributes

MODEL

 

Figure 8: Considerations for activity-location 
mapping 

Consequently, the full mapping objective function 
includes the mismatches between function and event 
components. While the event components are dynamic, 
they are moderately independent of the OPFOR 
preferences since events describe how specific 
operations could be observed through motion data. The 
function components, on the other hand, specify the 
preferences of selecting areas, and can change over 
time. These preferences constitute the primary drivers 
of the OPFOR adaptive behaviors, as the static function 
information used in the OPFOR planning corresponds 
to the inferences about BLUEFOR actions in the areas. 
Thus, these parameters correspond to the preferences of 
OPFOR to take their actions against BLUEFOR 
operations. Our OPFOR agent then learns and updates 
these preferences over time using temporal difference 
learning that incorporates the success scores of OPFOR 
actions. Initially, OPFOR tries to explore a set of 
feasible actions, over time converging to a set of most 
efficient preferences. The OPFOR adaptation is then 

equivalent to changes in OPFOR action-reaction 
preferences. 

RESULTS AND CONCLUSIONS 

Our OPFOR agent has been integrated with GDIS 
simulation, receiving its location and motion messages 
and sending back the motion and action commands for 
OPFOR avatars (Figure 9). The BLUE force is played 
by the human players or scripted avatars that execute 
the given plan. We then compare this plan with 
inferences produced by the OPFOR agent, as well as 
calculate the success of OPFOR and BLUEFOR 
operations. 

BLUEFOR Setup
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BLUE Plan
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Figure 9. OPFOR agent architecture 

We are currently developing and testing several tactical 
vignettes occurring in a small urban town which is a 
modification of the McKenna urban training site 
located at Ft. Benning. We have enhanced the terrain in 
our scenario level so that it contains more buildings and 
walls to provide more opportunities for the BLUE and 
RED forces to setup and execute missions. In our 
previous research, we assessed capabilities of the 
OPFOR agent to recognize the missions and task 
locations of the BLUE force, achieving over 75% 
accuracy of activity-to-location association (Levchuk et 
al., 2008, 2009). Our next steps are assessing the ability 
of OPFOR agents to adapt over time to increase 
rewards of their operations depending on the rate of 
adaptation of BLUEFORE. We expect that, in the 
presence of repeated actions by the BLUE force team 
participants, the OPFOR agents would achieve the 
mission success rates similar to human players in few 
iterations. Such functionality will provide automated 
technology that could improve adaptation training and 
increase the realism of the Wargaming and semi-
automated mission rehearsal technologies. 
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