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ABSTRACT

The military and security forces maintain multiple MOUT sites to train personnel for dangerous urban operations.
Some of these facilities are instrumented for automatic tracking and recording of an individual trainee’s actions; this
is done to adapt the training conditions in real time and to provide detailed information for after action reviews.
Today, tracking capabilities are quite limited, and generally include video cameras installed across the facility and
GPS systems for outdoor tracking. No cost effective systems exist that are capable of tracking the location, pose, and
gaze direction of individual trainee and the location and pose of their weapons both indoors and outdoors. There is a
need for systems that can provide such measurements over wide areas, such as MOUT sites that cover multiple
square miles and include numerous buildings.

In this paper we present a system for tracking the trainee’s location, head orientation, and weapon orientation that
provides high precision and does not require an instrumented site. Tracking is achieved only with sensors mounted
on the individual trainees. These sensors include helmet-mounted video cameras and an inertial measurement unit.
The vision system estimates both relative motion based on visual odometry and absolute position and orientation
based on landmark matching. The 3D landmark database is built autonomously prior to the exercise. The system
seamlessly handles transitions into and out of GPS-denied environments (buildings, dense forests) by maintaining
pose relative to what the cameras are seeing in addition to GPS. We have demonstrated the viability of this
technology in urban, rural, desert, forest and indoor environments on human-wearable platforms.
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INTRODUCTION

As large-scale immersive training facilities have
become more common, there is an increasing need for
detailed, high-precision tracking of both soldier and
weapon through complex environments. Currently,
tracking is only available in instrumented training
facilities or outdoors where GPS can be used, and high-
precision tracking in 6 degrees of freedom of both
trainee and weapon is not available at all. Without this
tracking capability, accurate review and playback is
missing and training is less effective. There is also a
need for tracking in non-instrumented, dynamic
facilities so that training sites can be set up quickly and
adapted in real time. We present a user-worn system
that provides real-time tracking of trainee and weapon,
including orientation, in complex indoor and outdoor
training environments. The tracking of trainees and
weapon can be used for after action review for MOUT
training, performance analysis and emerging
applications such as Augmented Reality based training.

The tracking solution that we propose relies on
synchronized sensor inputs from 4 calibrated cameras
and an inertial measurement unit (IMU) mounted on
the trainee’s helmet (Figure 1). The cameras are
placed in two stereo pairs, one forward-facing and one
rear-facing, which allows for robust tracking even if
one pair is completely occluded. Visual odometry
provides relative estimates of position, as does the
IMU, and an extended Kalman filter is used to fuse the
measurements and give a stable position estimate with
very low latency. In addition to these algorithmic
components, absolute positioning in a common
coordinate frame is needed so that multiple trainees can
be tracked together. Absolute positioning is also
needed to negate the inevitable drift that occurs in any
navigation system that measures relative movements.
GPS gives absolute positioning, but the accuracy can
be quite low and it is not available in many
environments. Instead we build a landmark database
composed of 3D landmarks that are recognized and
used by the trainee-worn systems to infer absolute
position in a common coordinate frame. The database
is efficiently cached for real-time access and is critical
for seamless indoor and outdoor tracking.
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We also propose an innovative approach for building
the landmark database that ensures very high accuracy
of the landmarks while simultaneously producing a 3D
model of the training site, both indoors and out.
Calibrated visual and 3D data is collected using a robot
outfitted with LIDAR sensor and cameras mounted on
a pan-tilt unit. The robot traverses the training facility,
populating the landmark database with 3D landmarks
and building an integrated point cloud of the entire site.
Algorithms applied to align the LIDAR data are also
used to correct the pose of the 3D landmarks,
producing a unified model and database with very high
accuracy.

Figure 1: Helmet with forward and backward facing
stereo cameras and MEMS IMU and ruggedized laptop
processing units shown in back-pack.

The position and orientation of the weapon need to be
estimated at the same level of accuracy as the trainee.
To do this, fiducials are mounted on the weapon and
tracked using the forward-facing helmet mounted
cameras. This provides an accurate estimate of the
weapon’s position as long as it is in view of the helmet
cameras, which is the case when it is being aimed or
fired.

PREVIOUS WORK and OUR APPROACH

Current systems used for tracking trainees at a MOUT
require significant infrastructure to be installed in



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

advance. Time-consuming procedures are required to
prepare the environment. There are very few systems
which can track marines both indoors and outdoors.
GPS-based systems [Saab’2010] may be used for
providing location outdoors. However, the performance
of these outdoor-only systems decreases in challenging
GPS limited situations. UWB based systems have been
used for indoor tracking of trainees to foot (30 cm)
level accuracies [Fontana’2002] but do not provide
orientation information. Finally none of these systems
meet the challenging requirement for augmented reality
where both location and orientation of the user’s head
must be tracked to centimeter level accuracy and
within 0.05° accuracy for orientation.  Overall,
providing high accuracy tracking over large indoor and
outdoor areas (multiple square miles) is a very
challenging problem.

Real-time tracking by fusing visual and inertial sensors
has been studied for many years with numerous
applications in robotics, vehicle navigation and
augmented reality. However, it is still unclear how to
best combine the information from these
complementary sensors. Since inertial sensors are
suited for handling no or poor vision situations due to
fast motion, occlusion, smoke, etc., many researchers
use inertial data as backup [Aron’2007] or take only
partial  information  (gyroscopes) from IMU
[You’2001], [Reitmayr’2006], [Jiang’2004] to support
vision-based tracking systems. To better exploit inertial
data, several researchers use an extended Kalman filter
to fuse all measurements uniformly to a pose estimate.
They combine the filter with vision tracking techniques
based on artificial markers [Foxlin’2003], feature
points, or lines. These systems show that the vision
measurements  effectively reduce the errors
accumulated from IMU. However, most of them
conduct experiments on either synthetic data
[Rehbinder’2003] or simulated vision measurements
[Hol’2006]. Some systems provide results on realistic
data, but within simple test environments [Schon’2007]
or small rooms [Bleser’2009]. Moreover, they cannot
eliminate the problem of long term drift over large
areas inherent in inertial-based navigation platform.
Due to recent advances in the image searching
techniques, real-time landmark matching with a large
landmark database has become possible [Nister’2006],
[Se’2006]. Zhu et al. [Zhu’2008] integrated visual
landmark matching to a pre-built landmark database in
a visual-inertial navigation system. The continuously
updating landmark matching corrects the long term
drift in the system, and thus improves the overall
performance. However, in that approach IMU data is
mainly used for transitions between views where visual
features are lost due to fast motion or bad illumination.
Moreover, landmark matching, —whenever successful,
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is used to reset the pose solution in the global sense but
it often lacks high-precision in pose estimation, which
is required for augmented reality applications.
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Figure 2: Error-state Extended Kalman Filter block
diagram with local and global external measurements.

There are two major differences between our work and
other visual-inertial navigation systems. First, we adopt
the error-state formulation [Roumeliotis’1999] in the
extended Kalman filter. Under this representation,
there is no need to specify an explicit dynamic motion
model such as that used in [Oskiper’2007] for a given
sensor platform. The filter dynamics follow from the
IMU error propagation equations which evolve slowly
over time and therefore are more amenable to
linearization. The measurements to the filter consist of
the differences between the inertial navigation solution
as obtained by solving the IMU mechanization
equations and the external source data, which in our
case is the relative pose information provided by the
visual odometry algorithm and global measurements
provided by the visual landmark matching process
(Figure 2). Hence, our Kalman filter framework
incorporates two complementary vision measurements
based on state-of-the-art vision tracking techniques.
Relative pose measurements based on feature tracking
between adjacent frames are usually located very
precisely[Oskiper’2007]. Therefore, they do not jitter
but suffer from drift or loss of track. Landmark
matching [Zhu’2008] provides correspondences
between fixed 3D features in a pre-built database and
2D points on the query frame. These measurements
avoid drift but cause jitter. To make the outputted pose
not only accurate but also stable, we fuse both local
and global information in the extended Kalman filter.

In the remainder of the paper, we first present the 5
components of the system: [1] relative pose estimation
through multi-camera visual odometry, [2] absolute
pose estimation from visual landmark matching, [3]
extended Kalman filter model for stable navigation, [4]
simultaneous landmark collection and 3d model
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construction and [5] weapon pose estimation. Finally,
we present experimental results, conclusions,
acknowledgements and references.

RELATIVE MOTION ESTIMATION THROUGH
MULTI-CAMERA VISUAL ODOMETRY

Visual odometry addresses the problem of estimating
camera poses based on image sequences in a relative
coordinate system. The poses of video frames are
computed in the coordinate system of the first frame or
a key frame in the sequence.

Video frames captured from the multi-camera system
are used to compute the visual odometry solution. After
acquiring the left and right camera image frames at
time t, the first step consists of detecting and matching
Harris corner based feature points in each stereo pair
[Oskiper’2007]. Feature point image coordinates are
normalized using the known intrinsic calibration
parameters in each camera (by multiplication with the
inverse of the calibration matrix) and compensated for
radial distortion. In the stereco matching process,
calibration information allows us to eliminate most of
the false matches by applying epipolar and disparity
constraints. This is followed by computation of the 3D
locations corresponding to these feature points through
stereo triangulation in the coordinate frame of the
current left camera. Next, using the new image frames
at time step tyy, 2D-2D correspondences are
established by matching feature points between the
previous frames at time step t, and the current ones at
ter1. This allows 3D-2D point correspondences to be
established based on the 3D point cloud computed in
the previous step. Finally, the pose of the left camera in
each stereo pair can be computed using a robust
resection method based on RANSAC followed by
iterative refinement of the winning hypothesis where
Cauchy-based robust cost function of the reprojection
errors in both the left and right images is minimized.
For the front stereo pair (j=1) and back stereo pair
(j=2), this cost function is given by:

6 (P2)= 3" 0 = hRIX) ) + pOx —h(P7PIX))

where, for the j™ stereo pair, K is the number of feature
points, xil and x;" denote coordinates of the feature point
i in the left and right images, X{ denotes its 3D position
in homogeneous coordinates, P* denotes the pose of the
right camera in the left camera coordinate frame
(known through stereo calibration), function h is used
in denoting the conversion from homogeneous to
inhomogeneous coordinates, p(y) = log(1 + |ly|*/a?) is
the Cauchy-based robust cost function with a given
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scale parameter a, and finally ij=Pj(tk,tkH) is the
relative pose across two time instants.

In our baseline approach all the above steps are
performed independently for both the front and back
stereo pairs in a parallel fashion. At the end of this
process, two pose estimates are obtained from both
pairs and the best one is chosen based on a cumulative
(global) score [Oskiper’2007].

ABSOLUTE POSE ESTIMATION FROM 3D
LANDMARK MATCHING

Landmark matching of the helmet camera videos to a
landmark database allows us to locate and track the
trainee’s 3D position and pose in an absolute world
coordinate system [Zhu’2008]. An incremental motion
based navigation system fusing visual odometry, and
IMU via Kalman filter is only locally accurate and will
drift eventually as the errors accumulate. Landmark-
based navigation locates the trainee in an absolute
coordinate system and prevents drift. However
landmark matching may not always succeed and also a
solution based on it will jitter. Landmark matching is
also computationally expensive and is not available for
every frame in the video. Therefore, by integrating
these two complementary modules (visual odometry
and landmark matching), the two-stage localization
technique dramatically increases the robustness of the
combined system.

In our system, we define a landmark as a feature point
in the scene. Specifically, it is extracted from the image
using a Harris corner detector. Each landmark is
associated with three elements: a 3D coordinate vector
representing the 3D location, a 2D coordinate vector
representing the 2D location in the image and a feature
descriptor that characterizes the appearance. The
histogram of oriented gradients (HOG) descriptor is
used to model the appearance of each of the selected
corner points.

The database is represented as a collection of landmark
shots, where a landmark shot is a set of landmarks
captured at a specific camera location and view point
(or camera pose). A landmark shot is the basic unit of
landmark matching. For each landmark shot, besides
storing all the location (2D+3D) and appearance
(HOG) information of each landmark into the database,
the associated camera pose at that instant is also stored.
We describe how we build a 3D model and landmark
database in a following section.

When the system initializes, it locates itself by
searching the whole landmark database. This is done
via the fast indexing technique using a vocabulary tree
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[Nister’2006]. Once the navigation system locates itself
globally, it will update the current camera pose and its
uncertainty to estimate a search region. The estimated
search region will serve as a geo-spatial constraint to
select a smaller set of landmarks for matching in the
next frame. As a result, both efficiency and accuracy
can be increased. During the mission, whenever the
system fails to locate via landmark-based localization,
the visual odometry and Kalman filter system takes
over. The visual odometry and Kalman filter system
localizes by estimating the frame-to-frame and IMU
relative poses and integrating them over time. The
system will resume landmark-based localization as
soon as an image is found and matched in the landmark
database.

EXTENDED KALMAN FILTER MODEL FOR
STABLE NAVIGATION

We introduce a new Kalman filter framework to fuse
IMU data, the local measurements from the distributed
aperture visual odometry algorithm with front and back
facing stereo cameras, and the global measurements
from the visual landmark-matching module. Our
Kalman filter adopts the so called "error-state"
formulation, so there is no need to specify an explicit
dynamic motion model such as the constant velocity
process model used in our previous work. The filter
dynamics follow from the IMU error propagation
equations which vary smoothly and therefore are more
amenable to linearization. The measurements to the
filter consist of the differences between the inertial
navigation solution as obtained by solving the IMU
mechanization equations and the external source data,
which in our case is the relative pose information
provided by visual odometry algorithm and global
measurements provided by the visual landmark
matching process.

In our filter, we denote the ground (global coordinate
frame) to camera pose as Pgc = [Rgc Tgc] such that a
point X in the ground frame can be transferred to the
camera coordinates by X¢ = RgcXg + Tge. The total
(full) states of our filter consist of the camera location
Teg, the gyroscope bias vector b, velocity vector v in
global coordinate frame, accelerometer bias vector b,
and ground to camera orientation (gc, expressed in
terms of the quaternion representation for rotation:

— [l T T T T 1T
5= [q[';(‘ b_(_,' v ba T['.'i';'] -
The state estimate propagation is obtained by the IMU
mechanization equations with the gyroscope @ n(t)

and accelerometer ay(t) readings from the IMU
between consecutive video frame time instants.
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and ® is used to denote the quaternion product
operation. The Kalman filter error state consists of
js=[0@7 bl av' b, 6TLg|"
according to the following relation between the total
state and its inertial estimate

dee = dee D 64ae dqae ~[1 60T /2]"
by (t) = by(t) + 6by(t), ba(t) = ba(t) + éba(t)
v(t) = V(t) + 6v(t), Toe(t) = Tea(t) + 6Toc(t)

The updating (correction) of the Kalman filter comes
from two external sources of data: the relative pose
information provided by the visual odometry algorithm
and global measurements provided by the visual
landmark matching process. To incorporate visual
odometry poses that are relative in nature, we apply a
stochastic cloning approach for our measurement
model. In particular, these measurements are a function
of the propagated error-state ds, and the cloned error-
state 8s; from the previous time instance, which require
modifications to the original Kalman filter update
equations [Roumeiotis,2002].

As for landmark matching, given a query image,
landmark matching module returns the found landmark
shot from the database establishing the 2D to 3D point
correspondences between the query image features and
the 3D local point cloud, as well as the camera pose
belonging to that shot. First, every 3D local landmark
point is transferred to the global coordinate system.
After this transformation, the projective camera
measurement model is employed so that each 3D point
can be expressed in the current camera coordinate
system. Then we apply the measurement equation in
the error states of our filter to all the point
correspondences returned as a result of landmark
matching.

The Kalman filter fuses all the measurement data and
allows for better handling of the uncertainty
propagation through the whole system. In previous
approaches [Zhu’2008] the Kalman filter output was
used to locally propagate the navigation solution from
one landmark match instance to another. In that case,
the pose solution obtained as a result of landmark
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matching would effectively reset the filter output. By
fusing both inertial and vision measurements, our
system is also more robust under challenging
conditions where there are insufficient visual clues on
which to rely.

The other advantage of our Kalman filter is to
eliminate a trade-off problem: landmark matching
between the pre-built database and the current query
frame provides global fixes to prevent the estimated
poses from drifting during online tracking, but often
lacks precision which results in jitter. We found that
the accuracy of pose estimation from the landmark
matcher decreases if there are few landmark point
matches closer to the camera where the depth
estimation is more accurate. To reduce the jitter, we
capture the 3D local reconstruction uncertainty of each
landmark point as a covariance matrix and implicitly
rely more on closer points as global measurements in
the Kalman filter. This provides more accurate and
stable pose estimation.

SIMULTANEOUS LANDMARK COLLECTION
AND 3D MODEL CONSTRUCTION

It is essential that the landmark database contain very
accurate landmark positions, since matches to the
database are used to correct the relative motion
measurements given by visual odometry. Therefore,
the landmarks are collected using a mobile robot
outfitted with LIDAR sensor and cameras on a pan-tilt
unit (see Figure 3). Because the 3D measurements from
a LIDAR sensor have linear error with respect to range
(unlike stereo 3D, which has quadratic error with
respect to range), overlapping point clouds can be
aligned with a high degree of accuracy. This provides
the correction necessary to eliminate drift that would
otherwise exist in the collected landmark database. The
data is processed automatically, producing a point
cloud model of the training site as well as a pose-
corrected landmark database.

As the robot traverses the training site (autonomously
or user-controlled), it stops at regular intervals and
pans, recording full omni-directional visual and 3D
data at each position. Each of these local data
collections is called a 360° scan. The algorithm for
automatic point cloud integration and pose correction is
set up as a pipeline that processes each 360° scan in
turn. A single 360° scan S; includes LIDAR and camera
data from time t; to t;. The LIDAR data consists of a set
of scanlines L[t;..tj], the camera data consists of a set of
images I[t;..tj], and the visual odometry outputs a
corresponding set of poses (one for each image)
P[t..t;]]. There is a point cloud database DBsp and a
landmark database DBy . Iterative closest point (ICP)
is an EM-style of algorithm wused to align two
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overlapping point clouds. The algorithm for
constructing the model and landmark database follows:

for eachscan S;
integrate L[t;..t;]] using P[t;..tj] to get X|
query DB;p for overlapping scans Xpg
align X; with Xpg using ICP algorithm
transform X; with ICP correction:
X" = Piep X;
add Xi’ to DB3D
transform P[t;..t;] with same ICP correction
P’[ti..tj] = PICP P[ti..tj]
add (P’[t;..tj], I[ti..t;]) to DBrm
end

v
Figure 3: A segway robotic platform (RMP400) with
LIDAR-camera sensor head. The sensor head is
mounted at human height to record images from the
same perspective as the trainee.

. 5
Figure 4 (Top left) View of a single point cloud in
marketplace at IIT. (Top right) Camera view of same
area of marketplace. (Bottom) Top down view of single
marketplace scan.
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Once all scans have been processed and the two
databases have been populated with landmarks and
point clouds, post-processing can be done to apply
global transformations, remove redundant data, or
subsample the point clouds to a uniform density.
Figures 4 and 5 show examples of point clouds taken at
the Immersive Infantry Trainer (IIT) at Camp
Pendleton.

Ay

Figure 5 Top down view of entire IIT point cloud
model (487 merged scans, subsampled to uniform 5
cm density).

WEAPON POSE ESTIMATION

As shown in Figure 6, multiple markers are mounted
on a weapon. By detecting them in the video frames
from the two forward-facing cameras, the 6-DOF pose
of the weapon can be accurately estimated.

Fiducial detection is well-studied in augmented reality
[Kato’1999, Claus’2004]. However, existing
approaches are not reliable enough to handle the
difficulties inherent in our application, including
significant lighting changes, severe foreshortening, and
the limited fiducial size. Different from most existing
approaches that are based on adaptive thresholding, our
approach largely relies on curve extraction. This leads
to its robustness under non-uniform lighting conditions
and its computational efficiency. It can run at 60Hz
with 640x480 images on a single-core CPU.

The algorithm can be outlined as follows: Edge pixels
are detected with non-maximum suppression on
gradient and linked into curves. Rectangles are
detected from the curves. Each rectangle is classified
into one of the fiducials or non-fiducial based on the
configuration of its inside curves. Each rectangle is
also classified according to its inside black blobs,
which are detected with thresholding. The more
confident classification result is output.

Fiducials are detected in both of the left and right
forward-facing cameras. Based on the correspondences
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between the detected 2D points of the fiducials’
corners and their 3D points, the generalized 3-point
algorithm in [Nister’2007] is used to calculate the pose
of the weapon.

To test the accuracy of the estimated pose, a laser
pointer is installed on the weapon. The 3D position and
orientation of the laser beam relative to the fiducials
are calibrated. According to the estimated weapon
pose, we can draw the virtual projection of the laser
beam in the images, such as the green line shown in
Figure 6. If the pose is accurate, the image point of the
highlighted spot where the laser beam hits an object
(the bright spot on the wall in Figure 4) should be very
close to the projection of the laser beam. In our
experiments, the average distance is around 1 pixel in
all images.

Figure 6: A panel with 6 markers, and a laser pointer
are mounted on the gun. The green line is the estimated
virtual projection of the laser beam. The bright spot on
The upper-left wall is the highlighted laser point, and it
is almost on the line in the image.

EXPERIMENTAL RESULTS

In this section, we report a number of experiments
aimed at evaluating different aspects of the
performance of our tracking framework. We also
demonstrate that our framework can provide highly
accurate real-time tracking in both indoors and
outdoors over large areas. Compared to
[Oskiper’2007] and [Zhu’2008], we show our
navigation system can provide more stable pose
estimation to fulfill the demanding requirements for
augmented reality applications.

B. Performance of
measurements

Our Kalman filter allows for better handling of the
uncertainty propagation through the whole system, and
is able to incorporate the global measurements which
are 3D to 2D feature point correspondences from
landmark matching [Zhu’2008]. To demonstrate the

fusing local and global
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influence to our filter by incorporating these global
measurements, we collected an outdoor sequence while
the user wearing our system traveled along a
predefined path. We constructed the landmark database
of the area where the user would travel before-hand.
The user traveled around 256 meters (3 minutes and 40
seconds long) and went back to the starting position.
The results (Figure 7) shows that fusing global
measurements reduces the 3D loop closure error
estimated by our filter from 2.4873 meters (relative
pose estimation alone) to 0.5712 meters (absolute pose
estimation using both local and global measures).

0 10 20 30 40 50

Figure 7: Blue line shows the estimated 3D trajectory
by fusing IMU data and local measurements (relative
pose by visual odometry). Red line showsthe estimated
3D trajectory by fusing IMU data, local measurements,
and global measurements from landmark matching.
The total traveled distance is around 256 meters.

C. Real-time tracking over large areas

To demonstrate that our system can be used in both
indoors and outdoors over large areas, Figure 8 shows
the automatically generated real-time camera trajectory
corresponding to an 810 meter course within our
campus completed by a user wearing our helmet,
backpack system, and a video see- through HMD. This
user walked indoors and outdoors in several loops. The
entire area shown in the map is within the pre-built
landmark database capture range which is loaded in

the beginning before the exercise takes place.
Landmark matches occur whenever a query image is
within close proximity to a stored landmark shot in the
database.

Figure 9 shows several screen shots corresponding to
locations towards the beginning, middle and end of this
exercise, obtained from our visualization tool which is
used to verify the accuracy of the localization. This
visualization tool uses the camera poses that are output
by the system to render views from a 3D graphical
model built upon the same visual data as the landmark
database. We compare the rendered views to the actual

2010 Paper No. 10053 Page 8 of 11

video images. It is observed that these views are in
very good agreement which indicate how precisely the
camera is tracked throughout the entire duration of the
course.

. . . ; N
Figure 8: Real-time computed camera trajectory
corresponding to an 810 meter path completed in 16.4
minutes during a live exercise.

Figure 9: The views rendered from the model using
the real-time camera pose estimates by our system for
various locations throughout the exercise, together with
the real scene views captured by the camera.

Figure 10 shows the automatically generated real-time
camera trajectory corresponding to a 253.82 meter
course within our campus completed by a user wearing
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our helmet and backpack system. The landmark
database used for this example is described in Figures 4
and 5. This sequence was taken at the Immersive
Infantry Trainer (IIT) at Camp Pendleton.

r
Figure 10:

Real -time computed camera trajectory
corresponding to a 253.82 m run over 5.64 minutes

D. Pose estimation for augmented reality
During the same 810 meter course described above, we
inserted virtual actors at particular locations based on
the estimated pose and recorded the insertion video
which was seen by the user from the video-see-through
HMD. For example, we inserted one virtual actor right
outside the stone steps of a building. The pose

Time: 8.65 min

Time: 7.51 min

estimation from our system needs to be very accurate
and stable during the whole course, otherwise it will
break the illusion of augmented reality for the user.
Figure 11 shows 8 snapshots of the video when the
user went through the entrance of the building at
different times during the 16.4-minute course. The
positions of the inserted actor are very consistent in
these 8 snapshots. This result demonstrates that the
system is able to provide stable, drift-free pose
estimation for a long period, compared to our previous
approach in [Zhu’2008].. Figure 12 shows the frame-
to-frame pose translation estimated by [Zhu’2008] and
our filter respectively. To save space, we only show the
translation over a 450-frame period taken from the 16.4
minute video. Since the walking speed of the user
doesn’t change much in a very short period (such as
one frame, 0.0677 seconds), the translation between
frames should be very smooth. However, in
[Zhu’2008], landmark matching disturbs the
consistency of pose estimation due to the lack of high-
precision. The peaks of the green curve in Figure 9
correspond to the jitter of inserted virtual actors viewed
by the user. By capturing the 3D reconstruction
uncertainty of landmark points and thus relying more
on closer points as global measurements in the Kalman
filter, our navigation system can reduce the jitter in
pose estimation for augmented reality applications.

Time: 10.37 min Time; 11.48 min

Figure 11: 8 snapshots taken from the video when the user went through the entrance of our building at different

loops
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Figure 12: The frame-to-frame estimated translation computed by [Zhu’2008] (green) and our system (blue).

CONCLUSIONS

We presented an infrastructure-free 6 DOF tracking
system based on a unified Kalman filter framework
using local and global sensor data fusion for vision
aided navigation related to augmented reality
applications. We showed results to illustrate the
accuracy and robustness of our system in both indoors
and outdoors over long duration and distance. Using a
pre-built landmark database of the entire exercise area
provides precise tracking and eliminates the problem of
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