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ABSTRACT 

 
The military and security forces maintain multiple MOUT sites to train personnel for dangerous urban operations. 
Some of these facilities are instrumented for automatic tracking and recording of an individual trainee’s actions; this 
is done to adapt the training conditions in real time and to provide detailed information for after action reviews. 
Today, tracking capabilities are quite limited, and generally include video cameras installed across the facility and 
GPS systems for outdoor tracking. No cost effective systems exist that are capable of tracking the location, pose, and 
gaze direction of individual trainee and the location and pose of their weapons both indoors and outdoors. There is a 
need for systems that can provide such measurements over wide areas, such as MOUT sites that cover multiple 
square miles and include numerous buildings.  
 
In this paper we present a system for tracking the trainee’s location, head orientation, and weapon orientation that 
provides high precision and does not require an instrumented site. Tracking is achieved only with sensors mounted 
on the individual trainees. These sensors include helmet-mounted video cameras and an inertial measurement unit. 
The vision system estimates both relative motion based on visual odometry and absolute position and orientation 
based on landmark matching. The 3D landmark database is built autonomously prior to the exercise. The system 
seamlessly handles transitions into and out of GPS-denied environments (buildings, dense forests) by maintaining 
pose relative to what the cameras are seeing in addition to GPS. We have demonstrated the viability of this 
technology in urban, rural, desert, forest and indoor environments on human-wearable platforms. 
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INTRODUCTION  
We also propose an innovative approach for building 
the landmark database that ensures very high accuracy 
of the landmarks while simultaneously producing a 3D 
model of the training site, both indoors and out. 
Calibrated visual and 3D data is collected using a robot 
outfitted with LIDAR sensor and cameras mounted on 
a pan-tilt unit. The robot traverses the training facility, 
populating the landmark database with 3D landmarks 
and building an integrated point cloud of the entire site. 
Algorithms applied to align the LIDAR data are also 
used to correct the pose of the 3D landmarks, 
producing a unified model and database with very high 
accuracy.  

 
As large-scale immersive training facilities have 
become more common, there is an increasing need for 
detailed, high-precision tracking of both soldier and 
weapon through complex environments. Currently, 
tracking is only available in instrumented training 
facilities or outdoors where GPS can be used, and high-
precision tracking in 6 degrees of freedom of both 
trainee and weapon is not available at all.  Without this 
tracking capability, accurate review and playback is 
missing and training is less effective. There is also a 
need for tracking in non-instrumented, dynamic 
facilities so that training sites can be set up quickly and 
adapted in real time. We present a user-worn system 
that provides real-time tracking of trainee and weapon, 
including orientation, in complex indoor and outdoor 
training environments. The tracking of trainees and 
weapon can be used for after action review for MOUT 
training, performance analysis and emerging 
applications such as Augmented Reality based training. 
 
The tracking solution that we propose relies on 
synchronized sensor inputs from 4 calibrated cameras 
and an inertial measurement unit (IMU) mounted on 
the trainee’s helmet (Figure 1).  The cameras are 
placed in two stereo pairs, one forward-facing and one 
rear-facing, which allows for robust tracking even if 
one pair is completely occluded. Visual odometry 
provides relative estimates of position, as does the 
IMU, and an extended Kalman filter is used to fuse the 
measurements and give a stable position estimate with 
very low latency. In addition to these algorithmic 
components, absolute positioning in a common 
coordinate frame is needed so that multiple trainees can 
be tracked together. Absolute positioning is also 
needed to negate the inevitable drift that occurs in any 
navigation system that measures relative movements. 
GPS gives absolute positioning, but the accuracy can 
be quite low and it is not available in many 
environments. Instead we build a landmark database 
composed of 3D landmarks that are recognized and 
used by the trainee-worn systems to infer absolute 
position in a common coordinate frame. The database 
is efficiently cached for real-time access and is critical 
for seamless indoor and outdoor tracking.   

 
 

Figure 1: Helmet with forward and backward facing 
stereo cameras and MEMS IMU and ruggedized laptop 

processing units shown in back-pack. 
 
The position and orientation of the weapon need to be 
estimated at the same level of accuracy as the trainee. 
To do this, fiducials are mounted on the weapon and 
tracked using the forward-facing helmet mounted 
cameras. This provides an accurate estimate of the 
weapon’s position as long as it is in view of the helmet 
cameras, which is the case when it is being aimed or 
fired. 
 

PREVIOUS WORK and OUR APPROACH 
 

Current systems used for tracking trainees at a MOUT  
require significant infrastructure to be installed in 
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advance. Time-consuming procedures are required to 
prepare the environment. There are very few systems 
which can track marines both indoors and outdoors. 
GPS-based systems [Saab’2010] may be used for 
providing location outdoors. However, the performance 
of these outdoor-only systems decreases in challenging 
GPS limited situations. UWB based systems have been 
used for indoor tracking of trainees to foot (30 cm) 
level accuracies [Fontana’2002]  but do not provide 
orientation information.  Finally none of these systems 
meet the challenging requirement for augmented reality 
where both location and orientation of the user’s head 
must be tracked to centimeter level accuracy and 
within 0.05˚ accuracy for orientation.  Overall, 
providing high accuracy tracking over large indoor and 
outdoor areas (multiple square miles) is a very 
challenging problem.  
 
Real-time tracking by fusing visual and inertial sensors 
has been studied for many years with numerous 
applications in robotics, vehicle navigation and 
augmented reality. However, it is still unclear how to 
best combine the information from these 
complementary sensors. Since inertial sensors are 
suited for handling no or poor vision situations due to 
fast motion, occlusion, smoke, etc., many researchers 
use inertial data as  backup [Aron’2007] or take only 
partial information (gyroscopes) from IMU 
[You’2001], [Reitmayr’2006], [Jiang’2004] to support 
vision-based tracking systems. To better exploit inertial 
data, several researchers use an extended Kalman filter 
to fuse all measurements uniformly to a pose estimate. 
They combine the filter with vision tracking techniques 
based on artificial markers [Foxlin’2003], feature 
points, or lines. These systems show that the vision 
measurements effectively reduce the errors 
accumulated from IMU. However, most of them 
conduct experiments on either synthetic data 
[Rehbinder’2003] or simulated vision measurements 
[Hol’2006]. Some systems provide results on realistic 
data, but within simple test environments [Schon’2007] 
or small rooms [Bleser’2009]. Moreover, they cannot 
eliminate the problem of long term drift over large 
areas inherent in inertial-based navigation platform. 
Due to recent advances in the image searching 
techniques, real-time landmark matching with a large 
landmark database has become possible [Nister’2006], 
[Se’2006]. Zhu et al. [Zhu’2008] integrated visual 
landmark matching to a pre-built landmark database in 
a visual-inertial navigation system. The continuously 
updating landmark matching corrects the long term 
drift in the system, and thus improves the overall 
performance. However, in that approach IMU data is  
mainly used for transitions between views where visual 
features are lost due to fast motion or bad illumination. 
Moreover, landmark matching, –whenever successful, 

is used to reset the pose solution in the global sense but 
it often lacks high-precision in pose estimation, which 
is required for augmented reality applications.  

 
Figure 2:  Error-state Extended Kalman Filter block 

diagram with local and global external measurements. 
 
There are two major differences between our work and 
other visual-inertial navigation systems. First, we adopt 
the error-state formulation [Roumeliotis’1999] in the 
extended Kalman filter. Under this representation, 
there is no need to specify an explicit dynamic motion 
model such as that used in [Oskiper’2007] for a given 
sensor platform. The filter dynamics follow from the 
IMU error propagation equations which evolve slowly 
over time and therefore are more amenable to 
linearization. The measurements to the filter consist of 
the differences between the inertial navigation solution 
as obtained by solving the IMU mechanization 
equations and the external source data, which in our 
case is the relative pose information provided by the 
visual odometry algorithm and global measurements 
provided by the visual landmark matching process 
(Figure 2). Hence, our Kalman filter framework 
incorporates two complementary vision measurements 
based on state-of-the-art vision tracking techniques. 
Relative pose measurements based on feature tracking 
between adjacent frames are usually located very 
precisely[Oskiper’2007]. Therefore, they do not jitter 
but suffer from drift or loss of track. Landmark 
matching [Zhu’2008] provides correspondences 
between fixed 3D features in a pre-built database and 
2D points on the query frame. These measurements 
avoid drift but cause jitter. To make the outputted pose 
not only accurate but also stable, we fuse both local 
and global information in the extended Kalman filter. 
 
In the remainder of the paper, we first present the 5 
components of the system: [1] relative pose estimation 
through multi-camera visual odometry, [2] absolute 
pose estimation from visual landmark matching, [3] 
extended Kalman filter model for stable navigation, [4] 
simultaneous landmark collection and 3d model 

2010 Paper No. 10053 Page 3 of 11 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

construction and [5] weapon pose estimation. Finally, 
we present experimental results, conclusions, 
acknowledgements and references. 
 
RELATIVE MOTION ESTIMATION THROUGH 

MULTI-CAMERA VISUAL ODOMETRY 
 

Visual odometry addresses the problem of estimating 
camera poses based on image sequences in a relative 
coordinate system. The poses of video frames are 
computed in the coordinate system of the first frame or 
a key frame in the sequence.  
 
Video frames captured from the multi-camera system 
are used to compute the visual odometry solution. After 
acquiring the left and right camera image frames at 
time tk, the first step consists of detecting and matching 
Harris corner based feature points in each stereo pair 
[Oskiper’2007]. Feature point image coordinates are 
normalized using the known intrinsic calibration 
parameters in each camera (by multiplication with the 
inverse of the calibration matrix) and compensated for 
radial distortion. In the stereo matching process, 
calibration information allows us to eliminate most of 
the false matches by applying epipolar and disparity 
constraints. This is followed by computation of the 3D 
locations corresponding to these feature points through 
stereo triangulation in the coordinate frame of the 
current left camera. Next, using the new image frames 
at time step tk+1, 2D-2D correspondences are 
established by matching feature points between the 
previous frames at time step tk and the current ones at 
tk+1. This allows 3D-2D point correspondences to be 
established based on the 3D point cloud computed in 
the previous step. Finally, the pose of the left camera in 
each stereo pair can be computed using a robust 
resection method based on RANSAC followed by 
iterative refinement of the winning hypothesis where 
Cauchy-based robust cost function of the reprojection 
errors in both the left and right images is minimized. 
For the front stereo pair (j=1) and back stereo pair 
(j=2), this cost function is given by: 

 
where, for the jth stereo pair, Kj is the number of feature 
points, xi

l
 and xi

r denote coordinates of the feature point 
i in the left and right images, Xi

j denotes its 3D position 
in homogeneous coordinates, Ps denotes the pose of the 
right camera in the left camera coordinate frame 
(known through stereo calibration), function h is used 
in denoting the conversion from homogeneous to 
inhomogeneous coordinates, ρ(y) = log(1 + ||y|2/a2) is 
the Cauchy-based robust cost function with a given 

scale parameter a, and finally Pk
j=Pj(tk,tk+1) is the 

relative pose across two time instants.  
 
In our baseline approach all the above steps are 
performed independently for both the front and back 
stereo pairs in a parallel fashion. At the end of this 
process, two pose estimates are obtained from both 
pairs and the best one is chosen based on a cumulative 
(global) score [Oskiper’2007]. 
 

ABSOLUTE POSE ESTIMATION FROM 3D 
LANDMARK MATCHING  

 
Landmark matching of the helmet camera videos to a 
landmark database allows us to locate and track the 
trainee’s 3D position and pose in an absolute world 
coordinate system [Zhu’2008].  An incremental motion 
based navigation system fusing visual odometry, and 
IMU  via Kalman filter is only locally accurate and will 
drift eventually as the errors accumulate. Landmark-
based navigation locates the trainee in an absolute 
coordinate system and prevents drift. However 
landmark matching may not always succeed and also a 
solution based on it will jitter. Landmark matching is 
also computationally expensive and is not available for 
every frame in the video.  Therefore, by integrating 
these two complementary modules (visual odometry 
and landmark matching), the two-stage localization 
technique dramatically increases the robustness of the 
combined system. 
 
In our system, we define a landmark as a feature point 
in the scene. Specifically, it is extracted from the image 
using a Harris corner detector. Each landmark is 
associated with three elements: a 3D coordinate vector 
representing the 3D location, a 2D coordinate vector 
representing the 2D location in the image and a feature 
descriptor that characterizes the appearance. The 
histogram of oriented gradients (HOG) descriptor is 
used  to model the appearance of each of the selected 
corner points.  
 
The database is represented as a collection of landmark 
shots, where a landmark shot is a set of landmarks 
captured at a specific camera location and view point 
(or camera pose). A landmark shot is the basic unit of 
landmark matching. For each landmark shot, besides 
storing all the location (2D+3D) and appearance 
(HOG) information of each landmark into the database, 
the associated camera pose at that instant is also stored. 
We describe how we build a 3D model and landmark 
database in a following section. 
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When the system initializes, it locates itself by 
searching the whole landmark database. This is done 
via the fast indexing technique using a vocabulary tree 
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[Nister’2006]. Once the navigation system locates itself 
globally, it will update the current camera pose and its 
uncertainty to estimate a search region. The estimated 
search region will serve as a geo-spatial constraint to 
select a smaller set of landmarks for matching in the 
next frame. As a result, both efficiency and accuracy 
can be increased. During the mission, whenever the 
system fails to locate via landmark-based localization, 
the visual odometry and Kalman filter system takes 
over. The visual odometry and Kalman filter system 
localizes by estimating the frame-to-frame and IMU 
relative poses and integrating them over time. The 
system will resume landmark-based localization as 
soon as an image is found and matched in the landmark 
database.  

 
EXTENDED KALMAN FILTER MODEL FOR 

STABLE NAVIGATION 
 

We introduce a new Kalman filter framework to fuse 
IMU data, the local measurements from the distributed 
aperture visual odometry algorithm with front and back 
facing stereo cameras, and the global measurements 
from the visual landmark-matching module. Our 
Kalman filter adopts the so called "error-state" 
formulation, so there is no need to specify an explicit 
dynamic motion model such as the constant velocity 
process model used in our previous work. The filter 
dynamics follow from the IMU error propagation 
equations which vary smoothly and therefore are more 
amenable to linearization. The measurements to the 
filter consist of the differences between the inertial 
navigation solution as obtained by solving the IMU 
mechanization equations and the external source data, 
which in our case is the relative pose information 
provided by visual odometry algorithm and global 
measurements provided by the visual landmark 
matching process. 
 
In our filter, we denote the ground (global coordinate 
frame) to camera pose as PGC = [RGC TGC] such that a 
point XG in the ground frame can be transferred to the 
camera coordinates by XC = RGCXG + TGC. The total 
(full) states of our filter consist of the camera location 
TCG, the gyroscope bias vector bg, velocity vector v in 
global coordinate frame, accelerometer bias vector ba 
and ground to camera orientation qGC, expressed in 
terms of the quaternion representation for rotation: 
 

 
 
The state estimate propagation is obtained by the IMU 
mechanization equations with the gyroscope ω m(t) 
and accelerometer am(t) readings from the IMU 
between consecutive video frame time instants.  

 
where 

,  

and ⊗  is used to denote the quaternion product 
operation. The Kalman filter error state consists of 

 
according to the following relation between the total 
state and its inertial estimate 

,  

 
The updating (correction) of the Kalman filter comes 
from two external sources of data: the relative pose 
information provided by the visual odometry algorithm 
and global measurements provided by the visual 
landmark matching process. To incorporate visual 
odometry poses that are relative in nature, we apply a 
stochastic cloning approach for our measurement 
model. In particular, these measurements are a function 
of the propagated error-state δs2 and the cloned error-
state δs1 from the previous time instance, which require 
modifications to the original Kalman filter update 
equations [Roumeiotis,2002]. 
 
As for landmark matching, given a query image, 
landmark matching module returns the found landmark 
shot from the database establishing the 2D to 3D point 
correspondences between the query image features and 
the 3D local point cloud, as well as the camera pose 
belonging to that shot. First, every 3D local landmark 
point is transferred to the global coordinate system. 
After this transformation, the projective camera 
measurement model is employed so that each 3D point 
can be expressed in the current camera coordinate 
system. Then we apply the measurement equation in 
the error states of our filter to all the point 
correspondences returned as a result of landmark 
matching.  
 
The Kalman filter fuses all the measurement data and 
allows for better handling of the uncertainty 
propagation through the whole system. In previous 
approaches [Zhu’2008] the Kalman filter output was 
used to locally propagate the navigation solution from 
one landmark match instance to another. In that case,  
the pose solution obtained as a result of  landmark 
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matching would effectively  reset the filter output. By 
fusing both inertial and vision measurements, our 
system is also more robust under challenging 
conditions where there are insufficient visual clues on 
which to rely. 
 
The other advantage of our Kalman filter is to 
eliminate a trade-off problem: landmark matching 
between the pre-built database and the current query 
frame provides global fixes to prevent the estimated 
poses from drifting during online tracking, but often 
lacks precision which results in jitter. We found that 
the accuracy of pose estimation from the landmark 
matcher decreases if there are  few landmark point 
matches closer to the camera where the depth 
estimation is more accurate. To reduce the jitter, we 
capture the 3D local reconstruction uncertainty of each 
landmark point as a covariance matrix and implicitly 
rely more on closer points as global measurements in 
the Kalman filter. This provides more accurate and 
stable pose estimation. 
 
SIMULTANEOUS LANDMARK COLLECTION 

AND 3D MODEL CONSTRUCTION 
 

It is essential that the landmark database contain very 
accurate landmark positions, since matches to the 
database are used to correct the relative motion 
measurements given by visual odometry. Therefore, 
the landmarks are collected using a mobile robot 
outfitted with LIDAR sensor and cameras on a pan-tilt 
unit (see Figure 3). Because the 3D measurements from 
a LIDAR sensor have linear error with respect to range 
(unlike stereo 3D, which has quadratic error with 
respect to range), overlapping point clouds can be 
aligned with a high degree of accuracy. This provides 
the correction necessary to eliminate drift that would 
otherwise exist in the collected landmark database. The 
data is processed automatically, producing a point 
cloud model of the training site as well as a pose-
corrected landmark database.   
As the robot traverses the training site (autonomously 
or user-controlled), it stops at regular intervals and 
pans, recording full omni-directional visual and 3D 
data at each position. Each of these local data 
collections is called a 360˚ scan. The algorithm for 
automatic point cloud integration and pose correction is 
set up as a pipeline that processes each 360˚ scan in 
turn. A single 360˚ scan Si includes LIDAR and camera 
data from time ti to tj. The LIDAR data consists of a set 
of scanlines L[ti..tj], the camera data consists of a set of 
images I[ti..tj], and the visual odometry outputs a 
corresponding set of poses (one for each image) 
P[ti..tj]. There is a point cloud database DB3D and a 
landmark database DBLM. Iterative closest point (ICP) 
is an EM-style of algorithm used to align two 

overlapping point clouds. The algorithm for 
constructing the model and landmark database follows: 
 
for each scan Si 

integrate L[ti..tj] using P[ti..tj] to get Xi 
query DB3D for overlapping scans XDB 
align Xi with XDB using ICP algorithm 
transform Xi with ICP correction:  
  Xi’ = PICP Xi  
add Xi’ to DB3D 
transform P[ti..tj] with same ICP correction 
  P’[ti..tj] = PICP P[ti..tj] 
add (P’[ti..tj], I[ti..tj]) to DBLM  

end 
 

 
Figure 3:  A segway robotic platform (RMP400) with 
LIDAR-camera sensor head. The sensor head is 
mounted at human height to record images from the 
same perspective as the trainee. 

 
Figure 4 (Top left) View of a single point cloud in 
marketplace at IIT. (Top right) Camera view of same 
area of marketplace. (Bottom) Top down view of single 
marketplace scan. 
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Once all scans have been processed and the two 
databases have been populated with landmarks and 
point clouds, post-processing can be done to apply 
global transformations, remove redundant data, or 
subsample the point clouds to a uniform density. 
Figures 4 and 5 show examples of point clouds taken at 
the Immersive Infantry Trainer (IIT) at Camp 
Pendleton. 
 

 
Figure 5 Top down view of entire IIT point cloud 
model  (487 merged scans, subsampled to uniform 5 
cm density). 
 

WEAPON POSE ESTIMATION 
 

As shown in Figure 6, multiple markers are mounted 
on a weapon. By detecting them in the video frames 
from the two forward-facing cameras, the 6-DOF pose 
of the weapon can be accurately estimated.  
 
Fiducial detection is well-studied in augmented reality 
[Kato’1999, Claus’2004].  However, existing 
approaches are not reliable enough to handle the 
difficulties inherent in our application, including 
significant lighting changes, severe foreshortening, and 
the limited fiducial size.  Different from most existing 
approaches that are based on adaptive thresholding, our 
approach largely relies on curve extraction. This leads 
to its robustness under non-uniform lighting conditions 
and its computational efficiency. It can run at 60Hz 
with 640x480 images on a single-core CPU.   
 
The algorithm can be outlined as follows:  Edge pixels 
are detected with non-maximum suppression on 
gradient and linked into curves. Rectangles are 
detected from the curves.  Each rectangle is classified 
into one of the fiducials or non-fiducial based on the 
configuration of its inside curves. Each rectangle is 
also classified according to its inside black blobs, 
which are detected with thresholding. The more 
confident classification result is output. 
 
Fiducials are detected in both of the left and right 
forward-facing cameras. Based on the correspondences 

between the detected 2D points of the fiducials’ 
corners and their 3D points, the generalized 3-point 
algorithm in [Nister’2007] is used to calculate the pose 
of the weapon.   
 
To test the accuracy of the estimated pose, a laser 
pointer is installed on the weapon. The 3D position and 
orientation of the laser beam relative to the fiducials 
are calibrated. According to the estimated weapon 
pose, we can draw the virtual projection of the laser 
beam in the images, such as the green line shown in 
Figure 6.  If the pose is accurate, the image point of the 
highlighted spot where the laser beam hits an object 
(the bright spot on the wall in Figure 4) should be very 
close to the projection of the laser beam. In our 
experiments, the average distance is around 1 pixel in 
all images. 
 

 
Figure 6: A panel with 6 markers, and a laser pointer 
are mounted on the gun. The green line is the estimated 
virtual projection of the laser beam. The bright spot on 
The upper-left wall is the highlighted laser point, and it 
is almost on the line in the image. 
 

EXPERIMENTAL RESULTS 
 
In this section, we report a number of experiments 
aimed at evaluating different aspects of the 
performance of our tracking framework. We also 
demonstrate that our framework can provide highly 
accurate real-time tracking in both indoors and 
outdoors  over large areas. Compared to 
[Oskiper’2007] and [Zhu’2008], we show our 
navigation system can provide more stable pose 
estimation to fulfill the demanding requirements for 
augmented reality applications. 
 
B. Performance of fusing local and global 
measurements 
Our Kalman filter allows for better handling of the 
uncertainty propagation through the whole system, and 
is able to incorporate the global measurements which 
are 3D to 2D feature point correspondences from 
landmark matching [Zhu’2008]. To demonstrate the 
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influence to our filter by incorporating these global 
measurements, we collected an outdoor sequence while 
the user wearing our system traveled along a 
predefined path. We constructed the landmark database 
of  the area where the user would travel before-hand. 
The user traveled around 256 meters (3 minutes and 40 
seconds long) and went back to the starting position. 
The results (Figure 7) shows that fusing global 
measurements reduces the 3D loop closure error 
estimated by our filter from 2.4873 meters (relative 
pose estimation alone) to 0.5712 meters (absolute pose 
estimation using both local and global measures). 

 
Figure 7: Blue line shows the estimated 3D trajectory 
by fusing IMU data and local measurements (relative 
pose by visual odometry). Red line showsthe estimated 
3D trajectory by fusing IMU data, local measurements, 
and global measurements from landmark matching. 
The total traveled distance is around 256 meters. 
 
C. Real-time tracking over large areas 
To demonstrate that our system can be used in both  
indoors and outdoors over large areas, Figure 8 shows 
the automatically generated real-time camera trajectory 
corresponding to an 810 meter course within our 
campus completed by a user wearing our helmet, 
backpack system, and a video see- through HMD. This 
user walked indoors and outdoors in several loops. The 
entire area shown in the map is within the pre-built 
landmark database capture range which is loaded in 
the beginning before the exercise takes place.  
Landmark matches occur whenever a query image is 
within close proximity to a stored landmark shot in the 
database.  
 
Figure 9 shows several screen shots corresponding to 
locations towards the beginning, middle and end of this 
exercise, obtained from our visualization tool which  is 
used to verify the accuracy of the localization. This 
visualization tool uses the camera poses that are output 
by the system to render views from a 3D graphical 
model built upon the same visual data as the landmark 
database. We compare the rendered views to the actual 

video images. It is observed that these views are in 
very good agreement which indicate how precisely the 
camera is tracked throughout the entire duration of the 
course. 

 
Figure 8: Real-time computed camera trajectory 
corresponding to an 810 meter path completed in 16.4 
minutes during a live exercise. 
 

 
Figure 9: The views rendered from the model using 
the real-time camera pose estimates by our system for 
various locations throughout the exercise, together with 
the real scene views captured by the camera. 
 
 
Figure 10 shows the automatically generated real-time 
camera trajectory corresponding to a 253.82 meter 
course within our campus completed by a user wearing 
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our helmet and backpack system. The landmark 
database used for this example is described in Figures 4 
and 5. This sequence was taken at the Immersive 
Infantry Trainer (IIT) at Camp Pendleton. 

 
Figure 10:  Real -time computed camera trajectory 
corresponding to a 253.82 m run over 5.64 minutes 
 
D. Pose estimation for augmented reality 
During the same 810 meter course described above, we 
inserted virtual actors at particular locations based on 
the estimated pose and recorded the insertion video 
which was seen by the user from the video-see-through 
HMD. For example, we inserted one virtual actor right 
outside the stone steps of a building. The pose 

estimation from our system needs to be very accurate 
and stable during the whole course, otherwise it will 
break the illusion of augmented reality for the user. 
Figure 11 shows 8 snapshots of the video when the 
user went through the entrance of the building at 
different times during the 16.4-minute course. The 
positions of the inserted actor are very consistent in 
these 8 snapshots. This result demonstrates that the 
system is able to provide stable, drift-free pose 
estimation for a long period, compared to our previous 
approach in  [Zhu’2008].. Figure 12 shows the frame-
to-frame pose translation estimated by [Zhu’2008] and 
our filter respectively. To save space, we only show the 
translation over a 450-frame period taken from the 16.4 
minute video. Since the walking speed of the user 
doesn’t change much in a very short period (such as 
one frame, 0.0677 seconds), the translation between 
frames should be very smooth. However, in 
[Zhu’2008], landmark matching disturbs the 
consistency of pose estimation due to the lack of high-
precision. The peaks of the green curve in Figure 9 
correspond to the jitter of inserted virtual actors viewed 
by the user. By capturing the 3D reconstruction 
uncertainty of landmark points and thus relying more 
on closer points as global measurements in the Kalman 
filter, our navigation system can reduce the jitter in 
pose estimation for augmented reality applications. 
 

 
Figure 11: 8 snapshots taken from the video when the user went through the entrance of our building at different 
loops
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Figure 12: The frame-to-frame estimated translation computed by [Zhu’2008] (green) and our system (blue). 
 
 

CONCLUSIONS 
 

We presented an infrastructure-free 6 DOF tracking 
system based on a unified Kalman filter framework 
using local and global sensor data fusion for vision 
aided navigation related to augmented reality 
applications. We showed results to illustrate the 
accuracy and robustness of our system in both indoors 
and outdoors over long duration and distance. Using a 
pre-built landmark database of the entire exercise area 
provides precise tracking and eliminates the problem of 

long term drift inherent in any inertial based navigation 
platform. Capturing the 3D reconstruction uncertainty 
of landmark points improves the stability of pose 
estimation, which is an essential requirement for an 
augmented reality system. 
 We showed how to construct this landmark database 
automatically using sensors mounted on a mobile 
robot. Finally, we showed how we can take advantage 
of the cameras mounted on the helmet to estimate the 
position of the weapon with respect to the helmet. 
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