Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Trainable Automated Forces

Robert G. Abbott, Justin D. Basilico, Matthew R. Glickman, Jonathon Whetzel
Sandia National Laboratories
Albuquerque, NM
rgabbot@sandia.gov, jdbasil@sandia.gov, mrglick@sandia.gov, jhwhetz@sandia.gov

ABSTRACT

Simulation-based training requires realistic simulated friendly and opposing forces. Realistic graphics and physics
alone are not enough; the tactics exhibited must be realistic for most learning to take place. Current approaches for
driving the behavior of simulated forces include live human role-players, Semi-Automated Forces (SAFs), and
intelligent/cognitive automated forces. Each of these approaches represents trade-offs between realism and various
resource costs. Human role-players can provide maximal realism, but trained experts are a limited and potentially
costly resource. Other approaches provide varying degrees of realism in exchange for varying costs associated with
programming.

In this paper, we address another approach to simulated forces that aims to achieve increased realism at lower
programming cost. Trainable Automated Forces (TAF) are computer-generated agents that mimic tactics
demonstrated by human experts. First, a subject matter expert demonstrates the desired behavior (e.g., piloting an
aircraft) in a simulator. Next, machine-learning algorithms are used to model the observed behavior. Finally, TAF
controls a simulation entity using the model to predict what the human expert would do in the same situation. When
TAF behaves incorrectly, the expert can step in to demonstrate the correct actions for the situation. This process can
be repeated at any time with minimal help from technical experts, allowing TAF to generalize to a wider variety of
situations over time.

We report here on the design and implementation of a prototype TAF capability, including both user interface design
and experience with machine learning. In addition, we discuss the potential capabilities and limitations of TAF,
surveying the inherent strengths and weaknesses of the general approach relative to other implementation techniques
for automated forces in simulation-based training.

ABOUT THE AUTHORS

Robert G. Abbott is a Principal Member of the Technical Staff in the Cognitive Science & Applications group at
Sandia National Laboratories in Albuquerque, NM, where his team develops software for automated behavior
modeling. He holds a PhD in computer science from the University of New Mexico. He has been a member of the
technical staff at Sandia since 1999. His current research focuses on automating the creation of human behavior
models with the objectives of reduced cost and rapid development. Applications include trainable software agents to
assume the roles of friendly and opposing forces, and automated student assessment for distributed virtual training
environments. This line of research is supported primarily by the U.S. Navy and includes validation experiments
with human subjects to assess the impact of new training technologies. Other research interests include distributed
systems, security-related data mining, and computer vision.

Justin D. Basilico is a Senior Member of the Technical Staff in the Cognitive Science and Applications group at
Sandia National Laboratories in Albuquerque, NM. He received his BA in computer science from Pomona College
in 2002 and his MS in computer science from Brown University in 2004. He is the lead designer and developer of
the Cognitive Foundry, a software platform for machine learning and cognitive simulation. His research interests
include machine learning, information retrieval, user modeling, personalization, statistical text analysis, and human-
computer interaction.

2010 Paper No. 10441 Page 1 of 11

mailto:jdbasil@sandia.gov
mailto:mrglick@sandia.gov

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Matthew R. Glickman is a Senior Member of the Technical Staff in the Cognitive Science & Applications group at
Sandia National Laboratories in Albuquerque, NM. He obtained his PhD in computer science from Carnegie Mellon
University in 2001, focusing on search algorithms patterned after biological evolution. From 2001-2003, he was a
postdoctoral fellow at the University of New Mexico, researching immunologically inspired computer-security
architectures. Since joining Sandia in 2003, he has worked on projects spanning a variety of subject areas, including
evolutionary optimization, cognitive modeling, autonomous character behaviors, behavioral simulation, and adaptive
training systems. He has served as a technical reviewer for a variety of journals and conferences, including the
Machine Learning journal and the Journal of Machine Learning Research.

Jonathan Whetzel is a Member of the Technical Staff in the Cognitive Science & Applications group at Sandia
National Laboratories in Albuquerque, NM. He received an MS from Texas A&M University in computer science,
with his graduate work focused on areas of machine learning and organizational psychology for improving training
effectiveness in game environments. His research interests include serious games design, artificial intelligence, and
cognitive science. He serves as a reviewer for the IEEE Games Innovation Conference and a chairperson for the Rio
Grande International Game Developers Association (IGDA).

2010 Paper No. 10441 Page 2 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Trainable Automated Forces

Robert G. Abbott, Justin D. Basilico, Matthew R. Glickman, Jonathon Whetzel
Sandia National Laboratories

Albuquerque, NM

rgabbot@sandia.gov, jdbasil@sandia.gov, mrglick@sandia.gov, jhwhetz@sandia.gov

INTRODUCTION

Simulation-based training and mission rehearsal are
increasingly important in military training. The high
deployment rates and budgetary demands of ongoing
operations create urgency in the requirement to deliver
training anytime, anywhere, and at reduced cost.
However, simulation-based training has not yet reached
its full potential to meet these requirements. Dramatic
improvements have been achieved in visual and
physical fidelity, but realistic simulated human
behavior for friendly and opposing forces is still an
unsolved issue.

Human Role-Players

The most straightforward way to provide human
behavior for simulation entities is with human role-
players. Currently this approach is a primary driver of
cost and complexity in staging simulation-based
training exercises. Hiring numerous role-playing
contractors is expensive, and some do not have
sufficient operational experience. Each role player
requires that additional equipment be procured,
configured, transported, and maintained. Using
military personnel to fill “walk-on-roles” provides little
training benefit to them, resulting in frustration and
wasted resources. Networked simulations alleviate the
need for everybody to meet in one place, but schedules
must still be coordinated. Furthermore, high-speed
networks are not universally available and raise costly
security and configuration issues.

Semi-Automated Forces (SAF)

SAFs address the need for reduced-manpower
simulation. SAF tools such as JSAF, OTB, and OOS
allow entity behavior to be specified ahead of time.

At a computational level, SAF behavior specifications
typically amount to some form of finite state machine
(FSM). An FSM can be thought of as (1) a set of
states, each of which corresponds to some behavioral

2010 Paper No. 10441 Page 3 of 11

state (e.g., patrol along a given path); and (2) a set of
transitions between states (e.g., when an intruder is
detected, move to confront).

Advantages of FSM-style SAF behaviors include
clarity and predictability. FSMs are particularly good
for implementing well-defined doctrinal behavior of
limited complexity. However, SAFs have a limited
capability to respond dynamically to changing
circumstances. As allies, SAFs have little capability for
coordinating or communicating with students. As
enemies, SAFs are often little more than target drones.
They do not model an adaptive, thinking enemy.
Scenarios with such scripted behaviors have a very
short useful life because students quickly learn to
anticipate scenario events. Concurrency is also
problematic, as FSMs are made obsolete by changing
tactics, techniques, and procedures (TTPs) and require
technical expertise to reprogram.

Intelligent Automated Forces

Intelligent automated forces go beyond conventional
SAFs with the ability to generate behavior dynamically
in response to simulation events. Examples are TacAir-
Soar (Coulter et al., 1998) and ACT-R agents (Best,
Scarpinatto, & Lebiere, 2002) for military operations in
urban terrain (MOUT). The cognitive architectures
underlying these capabilities are informed by a large
body of accumulated psychological research. When
used properly, these approaches can realistically mimic
many aspects of cognition, particularly with respect to
resource constraints such as reaction time and attention.

However, implementing intelligent automated forces is
a challenging task. The conventional process for
creating intelligent automated forces requires a pipeline
of specialists: subject matter experts (SMES),
knowledge engineers, software engineers, and
validation testers. Some of the SMEs’ intent is lost at
each stage of the pipeline. The number of specialties
required makes coordination difficult, so the
implementers may have little opportunity to interact

mailto:jdbasil@sandia.gov
mailto:mrglick@sandia.gov
mailto:jhwhetz@sandia.gov

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

with the SMEs. Changing TTPs and scenarios may
require significant reprogramming.

SME specification of tactics is especially difficult
because spatiotemporal tasks are driven by procedural
(also known as implicit) knowledge. Kornecki,
Hilburn, Diefenbach, and Towhidnajad (1993) describe
the difficulty of producing an explicit rule set for air
traffic control (ATC): “In real ATC sectors, a
controller's actions are based on a subjective evaluation
of the situation and a rough mental projection of the
aircraft courses and computation of a future possible
separation violation. There is no extensive or precise
arithmetic computation involving the geometric relation
between objects in three-dimensional (3-D) space.”

Recent tools, such as the Office of Naval Research—
sponsored Discovery Machine provide a more user-
friendly interface to help SMEs encode their own
knowledge (see http://www.discoverymachine.com).
Though useful, this approach still calls upon an SME to
provide rules for all relevant aspects of behavior, a task
which amounts to programming. Since an SME
produces the rules outside the context of performing the
task, the context recognition process that drives expert
behavior is not operational. The resulting model
captures what an SME thinks a person should do, rather
than what the SME actually does.

Trainable Automated Forces (TAF)
Depicted in Figure 1, our vision is for SMEs, such as
instructors, to train synthetic forces directly by

demonstration, as in training human students. Technical
experts (e.g., computer programmers) must initially
implement TAF for each type of role player required.
Subsequently, however, SMEs can directly interact
with TAF to enhance the domain expertise of TAF over
time, without further support from a technical expert.
TAF then relieves the SME of role playing so that the
expertise of a single SME can be shared with any
number of students. In our vision, the sharp distinction
between the construction and operational phases (as
required for traditional expert systems) is blurred. If an
instructor recognizes a skills gap during one exercise,
the instructor should be able to alter the behavior of
automated forces in the next exercise to address the
gap. Ideally, the long and expensive development
pipeline can be virtually eliminated. This is the TAF
approach.

TAF training is an ongoing interaction between the
instructor and the role-playing agent. The interaction is
based on demonstrations of correct behavior by the
instructor, and demonstrations by the system of its
current understanding. Our goal is for the instructor to
be able to interrupt and correct TAF when its actions
diverge from the instructor’s intent. TAF learns from
such corrections and will not repeat the same mistake.
Because this approach is data driven, objective
behavior validation is more feasible compared with
other approaches for automated forces.

Develops

Provide Aliear.r::]ng
Knowledge/ gorithms
Observe/

Correct

Interact

Provide
Knowledge

Student

Figure 1. Training of Synthetic Forces by Demonstration

2010 Paper No. 10441 Page 4 of 11

http://www.discoverymachine.com/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Related Work

TAF is based on behavioral cloning, which is an
established technique for building agent behaviors.
Widrow and Smith (1964) first studied the technique
for the pole-balancing (or inverted pendulum) task.
The term “cloning” implies that the agent simply
replays previously recorded behavior, but most
applications of behavioral cloning have some capability
to generalize to new situations. Nevertheless, the
performance of a clone will degrade as it encounters
situations that are dramatically different from any
encountered during training (Bratko, 1997).
Behavioral cloning has been successfully applied in
simulations of tasks such as piloting an airplane
(Morales & Sammut, 1994), operating a crane (Suc &
Bratko, 1999), and riding a bicycle (Suc & Bratko,
2000). Similar techniques are popular within robotics
and are known as learning by observation or learning
by imitation. Schaal, ljspeert, and Billard (2004)
provide an overview of learning by observation for
robotics, including juggling, table tennis, and dance.
However, these approaches do not necessarily include
an interactive process for refining agent behavior, as
does TAF.

To build an expert model, TAF must be able to observe
experts performing relevant tasks. In particular, the
system needs data that capture the stimuli and
responses that characterize expert behavior. Although
training simulations are inherently computer based,
integration with complex preexisting applications is
nontrivial. The training application must output
sufficiently detailed information about its internal state.
Popular network protocols for exchanging simulation

2. TAF World Model

state include Distributed Interactive Simulation (DIS)
(Little, 1994) and (more recently) High Level
Architecture (HLA) (Calvin, 1996). Both protocols
transmit basic information, such as entity position
updates. However, terrain information (ground
elevation, appearance, and physical properties) is too
large to transmit over the network in real time, and
most simulators do not transmit detailed information,
such as instrumentation in an airplane cockpit. TAF
cannot learn correct behavior if the behavior depends
on missing information.

TAF Technical Description

Implementing TAF consists of creating a role and then
populating the role with example behavior. The role
consists of information (e.g., from a nine-line brief)
such as the location of a target and the time on target.
Any information that cannot be gleaned from the inputs
specified for the role cannot influence the behavior of
TAF; thus incomplete information may lead to
incorrect behavior. However, extraneous information
may also degrade performance by confusing TAF. If
training data are relatively sparse (i.e., the number of
inputs is large relative to the amount of training data
provided), spurious patterns are likely to be found in
the training data, and learning these patterns will lead
to unpredictable TAF behavior.

This section describes the current implementation of
TAF, addressing the numbered and unnumbered labels
in the block diagram in Figure 2. Airstrike piloting is
used as a running example.

Viperl2 Side= Friendly
Position=12.3,43.3

Dingo7 Side = Enemy

1. Environment (HLA Federation)

Position=9.4, 16.2

3. TAF Actor

4. Template: Airstrike

5. Role: Low-Altitude Airstrike

: MyCallsign = Viper12
H[Perception Ie— Settings TorgetCallsign =Dingo7 —%
ClearedHot = True

Instance-Based

__| Learning Algorithm

Anowiea
Inputs

HeadingToTarget=12.6
RangeToTarget=24232 [
TimeOnTorget =-06:34
DroppedBomb = FALSE

=l

HeadingTo 2.

RangeToTarget=24232 |0
TimeOnTarget=-06:34 ! |
DroppedBomb=FALSE [|

Outputs
HeadingToTarget=12.6
I~ RangeToTarget=23232
TimeOnTarget =-06:32
DroppedBomb = TRUE

__| Inference Algorithm

Locally Weig

Figure 2. Internal Structure of TAF Actor

2010 Paper No. 10441 Page 5 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Environment

The environment is not part of TAF; it is the simulation
in which TAF actors exist. (As with any SAF
technology, TAF could also participate in
live/virtual/constructive simulations and conceivably
control robotic agents in the real world). To produce
realistic behaviors, a simulation environment must
simulate everything that influences decision making in
reality. To support incremental refinement of behavior
models, the environment must allow control of an entity
to be handed back and forth between TAF and a human
controller.

TAF World Model

The TAF world model provides a standard interface
between TAF agents and the environment. The TAF
world model presents ground-truth information about
all known entities (whether or not these entities are
controlled by TAF) and the current time. Each entity
has a name, position, velocity, etc. The world model is
shared by all TAF actors in a simulation. The world
model in Figure 2 shows the callsign, side
(friendly/enemy), and position of two entities—a strike
aircraft (Viperl12) and a target (Dingo7).

A specialized TAF world model is created for each
type of environment. Currently, there are two world
models: the HLA TAF world model, which allows TAF
to interface with the distributed virtual training
environment (DVTE) in Figure 4, and the Umbra world
model (Figure 3). The HLA TAF world model allows
TAF to control a variety of entities in the DVTE
simulation environment. Umbra is a modeling and
simulation framework developed at Sandia National
Laboratories that is used in an augmented-reality
training simulator for training dismounted security
forces.

In the augmented-reality simulation depicted in Figure
3, participants with red helmets walk through a physical
environment wearing goggles to overlay the actual view
with simulated forces, walls, etc. (inset at lower left).
Through the goggles the participants see a video of the
same room with the computer-animated objects shown
in the inset added to the scene.

2010 Paper No. 10441 Page 6 of 11

Figure 3. Interactions with TAF Agents in
Augmented Reality

Figure 4. Distributed Virtual Training
Environment (DVTE). Above, several TAF-
controlled vehicles follow a human leader. Below,
TAF pilots a helicopter.

Settings

The objective of TAF is to learn patterns of behavior
that are apparent mainly through the actions of entities.
However, the wuser must manually input some
information, such as, at a minimum, specifying an
entity for TAF to control. In TAF, these inputs are
called settings. Each role has a different set of settings.

In the airstrike role, two of the settings are
TargetCallsign and TimeOnTarget. The TAF graphical
user interface (GUI) includes a panel (Figure 5) for
specifying the settings.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Settings - My Bomb Run Role

Scalable Autonomy: ———— ———

Waypoint 4 '
om0s:12

Aborted: O

Target:

Time on Target:

Figure S. TAF Settings Panel

Perception

The world model presents ground-truth information
from an allocentric (or global) perspective. Each TAF
actor must be provided with a perception model to filter
and adapt this information for its own needs. Thus the
perceptive needs for a role must match the perceptive
capabilities of a given world model for that role to be
applicable.

For the airstrike role in Figure 2, the relevant
information includes the heading and range to the target
and the time on target (relative to the current time). To
determine this information, the TAF actor must know
its own identity and that of the target; these are settings
specified by the user. Perception then transforms the
allocentric information provided by the world model to
egocentric inputs for the learning or inference
algorithm. In the airstrike example, perception
retrieves the position of self and target and computes
the distance between them, the heading to the target,
etc. The assumption of modeling from an egocentric
perspective is that behavior is determined relative to
other entities in the simulation rather than by cardinal
directions, e.g., following a heading of 0 degree relative
to the target will always lead TAF to the target.

Inputs

As shown in Figure 2, information from the world
model and setting is filtered and transformed by
perception to form the input for TAF’s learning and
inference algorithms. The completeness (or
incompleteness) of the input is a constraint on the
realism of TAF behavior. Several factors prevent TAF
from receiving a complete set of inputs, leading to
degraded behavior.

First, TAF lacks the instinct and knowledge that

humans possess as a result of evolution and life
experience.

2010 Paper No. 10441 Page 7 of 11

Second, the environment provides insufficient
information. Simulation environments are not reality;
they only contain whatever their implementers have put
into them. Human role-players sometimes “fill in the
blanks,” using side agreements and their imaginations.

Of course, humans often do not have access to all the
information they need, especially in combat. Enemies
use secrecy, subterfuge, and attack command-and-
control assets to evade, mislead, and blind each other.
In an HLA simulation, TAF receives ground-truth
information that may be unavailable to human
combatants, granting TAF (in effect) a 360-degree field
of view through walls, mountains, water, jammers, and
darkness. In practice, software agents may use this
unfair advantage to counter their own inherent
limitations in perception and intelligence, with uneven
results. More realistic perception models can also be
implemented if necessary.

Role Template

The role template specifies the learning algorithm,
inputs, and outputs. The role template is implemented
by the technical expert and not modified by the end
user, so the set of role templates defines the general
limits of what TAF can learn.

For example, the airstrike template in Figure 2 would
list inputs and outputs by name and type (e.g.,
HeadingToTarget and RangeToTarget as real-valued
numbers), but these inputs and outputs are not linked to
specific data streams in the simulation until the role is
instantiated and the callsigns of the TAF agent and the
target are entered.

The role template also specifies a learning algorithm.
The current implementation of TAF uses the open
source Sandia Cognitive Foundry (Basilico, Benz, &
Dixon, 2008; http:/foundry.sandia.gov), which
supplies a wide range of learning algorithms, e.g.,
linear regression, nearest neighbor with locally
weighted linear regression, 1D4 rule induction, support
vector machines, and backpropagation for neural
networks. The role template also specifies the type of
knowledge base for each algorithm (e.g., learned link
weights to parameterize a neural network, or the rule
set created by ID4).

Role

The specific actions to be taken by a TAF actor are
determined by its role. The role template specifies the
learning algorithm, inputs, and outputs but does not

http://foundry.sandia.gov/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

specify a mapping from inputs (situations) to outputs
(actions). The role provides this mapping.

To create a role, the user supplies a descriptive name
for the role and then supplies examples of desired
behavior in the simulator, along with the settings of the
role that are applicable to the behavior.

Each algorithm learns a different set of parameters from
the data (e.g., link weights derived for a neural
network, or the rule set created by 1D4). This is the
knowledge base, which is empty until the desired
behavior is demonstrated and refined

IMPLEMENTATION

A prototype of the core TAF architecture described
above is implemented in Java and includes world
models for HLA and for Umbra, The TAF software is
freely available for U.S. government applications.

HLA Interface

We integrated TAF with the DVTE via the HLA
protocol in collaboration with Lockheed Martin
Simulation, Training & Support. HLA was an
attractive means of integration for several reasons.

simulations. Third, interfacing with a simulation via
network data exchange (rather than, say, direct linkage
against an application programming interface)
minimizes software dependencies and maximizes
modularity.

However, dynamically handing off control between
TAF and a human supervisor is more technically
difficult than anticipated. HLA-standard techniques for
entity hand-off are typically not implemented or not
available due to the use of an unsynchronized
(“connectionless”) mode to conserve network
bandwidth. Also, manual intervention in TAF control
(e.g., moving an entity from the wrong trajectory)
interferes with the simulator’s internal dynamics model
(position and speed) and thus may impart enormous
momentum on the simulation entity.

GUI Design

Although the goal of TAF is to interact with users
mainly through the 3-D virtual environment provided
by a training simulator, TAF also relies on a
conventional GUI, implemented using the open-source
NetBeans Platform, for certain operations (Figure 6).
These operations are (1) creating new TAF instances to
control simulation entities, (2) specifying parameters
for the TAF entity, and (3) executive control such as

First, HLA provides a suitable level of information entity hand-off between TAF and the human
detail for the TAF world model (e.g., entity state supervisor.
updates over time). Second, HLA integration facilitates
the application of TAF in other HLA-based
GLivaingble hrmans o EE)
File Senuation Tools Window o 1
Roles @ x| | {0: DVIE[OVIE] x v [(7)(T] :Entity GE/0/1378/1 -Pr.. B x
=Properties
¥ Roles Entities Name J
: 2;2‘::;:'“ Callsign Identifier Location Vertifier 7

GE[0]1375/1
Clone of GEJ0{1378/1

GEJO}1378/1

COMTS{7F000001/569/1{-2314106.64, -47323... |

Entity Type
Postion

{-2314126.75, 47323...

HWalch and Learn @

Steps Enter Watcher Settings (3 of 3)
1. Create or Modfy Role
2. Enter Role Settings =Properties
3 EterWoichersettnos (P o 0

Leader Clone of GEfO/1378]1 (COMT.,, «

Name @

2
/"‘ 1
< Back Finish Cancf })

Figure 6. Example of TAF GUI Setting Parameters, e.g., Identity of the Entity to Control

2010 Paper No. 10441 Page 8 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Implemented Role Templates

Single-Path

We began development with the most basic use case:
rote replay. During observation, the single-path drone
simply records the exact sequence of positions and
orientations that a designated entity exhibits over time.
In the operational phase, the drone simply “replays” the
behavioral sequence. This functionality is similar to
After Action Review (AAR) logging, but for a single
entity with finer-grained control and meant for replay
into another simulation. Although this capability is
simple (no generalization), it is not commonly available
in training simulations and could potentially be quite
useful.

Dynamic Follower

The next step in development was a role that
dynamically responds to inputs from the environment.
This is the “follower” role, which provides the basis,
for example, of a wingman or column of vehicles that
follows a leader in a dynamic path. In this role, TAF
learns parameters that capture information such as
(a) the time and distance to lag behind the leader and
(b) the bearing to maintain relative to the leader.

Two settings are necessary to begin training a follower-
role instantiation: the entity ID of the self (i.e., the
follower) and the entity ID of the leader. Given these
settings and one or more sample behavior sequences,
the system derives a series of training examples that
pair the position of the follower relative to the leader at
a given time step with a position and orientation at the
subsequent time step.

A given instantiation of the follower role thus
determines how to move relative to a leader. One
instantiation might represent the goal of following
behind a leader at a close distance, while another might
represent following farther behind and to the left.
Figure 4, presented previously, shows six TAF
instances, with three following to the left and three to
the right, thus forming a chevron formation.

Replacement and Branching

Beyond learning behavior from a given set of sample
behavior sequences, TAF must support “iterative
refinement”. when a human supervisor observes
suboptimal TAF behavior, the supervisor can intervene
and further refine the learned behavior by
demonstration. Implementation of iterative refinement
presents additional challenges related both to learning
and to arriving at an effective user interface.

2010 Paper No. 10441 Page 9 of 11

Our first milestone toward iterative refinement was a
rewind-and-replace capability applied to the single-path
drone. Pressing this button when observing a TAF-
driven entity behaving autonomously rewinds the
entity’s position and orientation to where it was 30
seconds ago and hands control of the entity to the
supervisor. The rest of the recorded path is discarded
and learning (or recording, in this case) begins again.

We have extended beyond rewind-and-replace to
implement a prototype branching capability whereby
newly demonstrated behavior is added to the model
rather than replacing older behavior. Instead of simply
replaying a recorded temporal sequence of entity states
observed in the past, at each time step the new role
chooses the action previously performed by a human
under the most similar conditions. With this role, an
entity can learn conditional behavior, e.g., execute a
prescribed path when no enemy is present but move to
intercept when an enemy appears.

TAF for Dismounted Operations

We have further bridged TAF with an augmented
reality trainer for Close Quarters Combat based upon
Sandia’s Umbra modular simulator. Instead of HLA,
TAF is linked with Umbra via a JNI bridge between
Java and C++. We have thus far experimented with two
role templates: the single-path drone and the follower.
One of the most exciting parts of this application is the
potential of capturing highly implicit procedural
knowledge via direct perception of human movement in
real 3-D space.

DISCUSSION

Use of the Machine Learning Package in Sandia’s
Cognitive Foundry makes it straightforward to
implement roles by experimenting with different
learning algorithms. To this point, we have found
instance-based learning methods to be particularly
advantageous for iterative refinement because when a
user identifies incorrect behavior, it is straightforward
to identify and replace the data that are responsible.

Difficulties in implementation may be broadly grouped
under two headings: (1) more conceptual issues in
learning from observation and (2) more pragmatic
issues of system integration.

On the learning side, there is the general issue of
machine perception versus human perception.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

The system constraints often make it difficult for TAF
to perceive the same features of the environment that
humans do. In many cases, this limitation may not have
a strong impact. In some cases, TAF may be able to
compensate by using additional information that is not
available to human role players. For some target
behaviors, however, this limitation may be a limiting
obstacle. Further research is necessary to illuminate
which classes of behaviors are more amenable or less
so to TAF’s learning-by-demonstration approach.

In addition, one of our goals was that the TAF-defined
roles could be applicable to multiple simulators and
world-model implementations. To achieve this
generality, we have mostly employed simple world
models consisting of entities in 3-D space with
positional information. While these features were
sufficient for the simple roles we developed, they are
also limiting because other information about the
entities or environment was not used. Simple, position-
based world models have also led to control of the
entities via the same absolute coordinate system
without any simulation of the output of the control. For
example, TAF learns to control a simulated airplane by
observing its trajectory in 3-D coordinate space rather
than by observing the motion of a joystick controller.
Improved interfaces and standard implementations for
perception and control that tie deeper into the
underlying simulation would allow the role
implementations to focus more on the aspects of the
learning algorithms and less on the mechanics of
creating the appropriate perceptions and ensuring that
the agent’s actions are reasonable.

In the pragmatic realm, we have had issues related to
HLA technicalities, such as the hand-off of control of
an entity between two members of the federation and
also the inability to access a sensitive aerodynamics
model. So far, the lesson we are taking away from this
experience is that bolting a fundamental capability like
TAF onto a preexisting architecture presents its own set
of challenges that must be explicitly considered,
especially with regards to entity ownership.

In general, there is a trade-off between power and ease-
of-use in human-computer interaction. While TAF has
a lot of promise, our experience in this and in many
other systems suggests that getting this balance right
may be decisive in determining the ultimate utility of
the system.

2010 Paper No. 10441 Page 10 of 11

ACKNOWLEDGEMENTS

This work is supported in part by the Office of Naval
Research Grant N0001408C0186, the Next-generation
Expeditionary Warfare Intelligent Training (NEW-IT)
program. Sandia is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National
Nuclear Security Administration under Contract DE-
AC04-94AL85000. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the Office of
Naval Research, Sandia National Laboratories, or the
U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for government
purposes notwithstanding any copyright notation
hereon. We further wish to acknowledge excellent
contributions to this work on the part of colleagues
Damon Gerhardt, Eric Goodman, Kiran Lakkaraju, and
Kevin Dixon as well as help from Lockheed Martin
Simulation, Training & Support with the HLA hand-
off.

REFERENCES

Basilico, J., Benz, Z., & Dixon, K. R. (2008). The
Cognitive Foundry: A flexible platform for intelligent
agent modeling. In Proceedings of the 2008 Behavior
Representation in Modeling and Simulation (BRIMS)
Conference, Providence, RI.

Best, B., Scarpinatto, C., & Lebiere, C. (2002).
Modeling synthetic opponents in MOUT training
simulations using the ACT-R cognitive architecture.
Proceedings of the 11th Conference on Computer
Generated Forces and Behavior Representation.
Orlando, FL: University of Central Florida.

Bratko, 1. (1997). Qualitative reconstruction of control
skill. In Proc. QR’07 (1lth Int. Workshop on
Qualitative Reasoning) (pp. 41-52). Pavia, Italy:
Instituto di Analisi Numerica.

Calvin, J., & Weatherly, R. (1996). An introduction to
the high level architecture (HLA) runtime infrastructure
(RTI). In Proceedings of the 14th Workshop on
Standards for the Interoperability of Defense
Simulations (pp. 705-715), Orlando, FL.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Coulter, K., Jones, R., Kenny, P., Koss, F., Laird, J.
and Nielsen, P. (1998). Integrating intelligent
computer generated forces in distributed simulations:
TacAir-Soar. In STOW-97, Proceedings of the 1998
Spring Simulation Interoperability Workshop, Orlando,
FL.

Kornecki, A., Hilburn, T., Diefenbach, T., &
Towhidnajad, M. (1993). Intelligent tutoring issues for
ATC training system. [EEE Transactions on Control
Systems Technology 1(3), 204-211.

Little. R. (1994). Architectures for distributed
interactive simulation. In Advances in Modelling and
Simulation Conference, Redstone Arsenal, AL.

Morales, E. F., & Sammut, C. (2004). Learning to fly
by combining reinforcement learning with behavioural
cloning. In C. E. Brodley (Ed.), ICML ’04:
Proceedings of the Twenty-first International
Conference on Machine Learning (p. 76). New York:
ACM Press.

2010 Paper No. 10441 Page 11 of 11

Schaal, S., ljspeert, A., & Billard, A. (2004).
Computational approaches to motor learning by
imitation. In C. D. Frith & D. Wolpert (Eds.), The
Neuroscience of Social Interaction (pp. 199-218).
Oxford: Oxford University Press.

Suc, D., & Bratko, I. (1999). Symbolic and qualitative
reconstruction of control skill. Electronic Transactions
on Artificial Intelligence, 3, Section B, 1-22.

Suc, D., & Bratko, I. (2000). Qualitative trees applied
to bicycle riding. Electronic Transactions on Artificial
Intelligence, 4, Section B, 125-140.

Widrow, B., & Smith, F. W. (1964). Pattern
recognizing control systems. InJ. T. Tou & R. Wilcox,
1963 Comp. and Inf. Sciences (COINS) Symp. Proc
(pp. 288-317). Washington: DC: Spartan.

