

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 1 of 11

Trainable Automated Forces

Robert G. Abbott, Justin D. Basilico, Matthew R. Glickman, Jonathon Whetzel

Sandia National Laboratories

Albuquerque, NM

rgabbot@sandia.gov, jdbasil@sandia.gov, mrglick@sandia.gov, jhwhetz@sandia.gov

ABSTRACT

Simulation-based training requires realistic simulated friendly and opposing forces. Realistic graphics and physics

alone are not enough; the tactics exhibited must be realistic for most learning to take place. Current approaches for

driving the behavior of simulated forces include live human role-players, Semi-Automated Forces (SAFs), and

intelligent/cognitive automated forces. Each of these approaches represents trade-offs between realism and various

resource costs. Human role-players can provide maximal realism, but trained experts are a limited and potentially

costly resource. Other approaches provide varying degrees of realism in exchange for varying costs associated with

programming.

In this paper, we address another approach to simulated forces that aims to achieve increased realism at lower

programming cost. Trainable Automated Forces (TAF) are computer-generated agents that mimic tactics

demonstrated by human experts. First, a subject matter expert demonstrates the desired behavior (e.g., piloting an

aircraft) in a simulator. Next, machine-learning algorithms are used to model the observed behavior. Finally, TAF

controls a simulation entity using the model to predict what the human expert would do in the same situation. When

TAF behaves incorrectly, the expert can step in to demonstrate the correct actions for the situation. This process can

be repeated at any time with minimal help from technical experts, allowing TAF to generalize to a wider variety of

situations over time.

We report here on the design and implementation of a prototype TAF capability, including both user interface design

and experience with machine learning. In addition, we discuss the potential capabilities and limitations of TAF,

surveying the inherent strengths and weaknesses of the general approach relative to other implementation techniques

for automated forces in simulation-based training.

ABOUT THE AUTHORS

Robert G. Abbott is a Principal Member of the Technical Staff in the Cognitive Science & Applications group at

Sandia National Laboratories in Albuquerque, NM, where his team develops software for automated behavior

modeling. He holds a PhD in computer science from the University of New Mexico. He has been a member of the

technical staff at Sandia since 1999. His current research focuses on automating the creation of human behavior

models with the objectives of reduced cost and rapid development. Applications include trainable software agents to

assume the roles of friendly and opposing forces, and automated student assessment for distributed virtual training

environments. This line of research is supported primarily by the U.S. Navy and includes validation experiments

with human subjects to assess the impact of new training technologies. Other research interests include distributed

systems, security-related data mining, and computer vision.

Justin D. Basilico is a Senior Member of the Technical Staff in the Cognitive Science and Applications group at

Sandia National Laboratories in Albuquerque, NM. He received his BA in computer science from Pomona College

in 2002 and his MS in computer science from Brown University in 2004. He is the lead designer and developer of

the Cognitive Foundry, a software platform for machine learning and cognitive simulation. His research interests

include machine learning, information retrieval, user modeling, personalization, statistical text analysis, and human-

computer interaction.

mailto:jdbasil@sandia.gov
mailto:mrglick@sandia.gov

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 2 of 11

Matthew R. Glickman is a Senior Member of the Technical Staff in the Cognitive Science & Applications group at

Sandia National Laboratories in Albuquerque, NM. He obtained his PhD in computer science from Carnegie Mellon

University in 2001, focusing on search algorithms patterned after biological evolution. From 2001–2003, he was a

postdoctoral fellow at the University of New Mexico, researching immunologically inspired computer-security

architectures. Since joining Sandia in 2003, he has worked on projects spanning a variety of subject areas, including

evolutionary optimization, cognitive modeling, autonomous character behaviors, behavioral simulation, and adaptive

training systems. He has served as a technical reviewer for a variety of journals and conferences, including the

Machine Learning journal and the Journal of Machine Learning Research.

Jonathan Whetzel is a Member of the Technical Staff in the Cognitive Science & Applications group at Sandia

National Laboratories in Albuquerque, NM. He received an MS from Texas A&M University in computer science,

with his graduate work focused on areas of machine learning and organizational psychology for improving training

effectiveness in game environments. His research interests include serious games design, artificial intelligence, and

cognitive science. He serves as a reviewer for the IEEE Games Innovation Conference and a chairperson for the Rio

Grande International Game Developers Association (IGDA).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 3 of 11

Trainable Automated Forces

Robert G. Abbott, Justin D. Basilico, Matthew R. Glickman, Jonathon Whetzel

Sandia National Laboratories

Albuquerque, NM

rgabbot@sandia.gov, jdbasil@sandia.gov, mrglick@sandia.gov, jhwhetz@sandia.gov

INTRODUCTION

Simulation-based training and mission rehearsal are

increasingly important in military training. The high

deployment rates and budgetary demands of ongoing

operations create urgency in the requirement to deliver

training anytime, anywhere, and at reduced cost.

However, simulation-based training has not yet reached

its full potential to meet these requirements. Dramatic

improvements have been achieved in visual and

physical fidelity, but realistic simulated human

behavior for friendly and opposing forces is still an

unsolved issue.

Human Role-Players

The most straightforward way to provide human

behavior for simulation entities is with human role-

players. Currently this approach is a primary driver of

cost and complexity in staging simulation-based

training exercises. Hiring numerous role-playing

contractors is expensive, and some do not have

sufficient operational experience. Each role player

requires that additional equipment be procured,

configured, transported, and maintained. Using

military personnel to fill ―walk-on-roles‖ provides little

training benefit to them, resulting in frustration and

wasted resources. Networked simulations alleviate the

need for everybody to meet in one place, but schedules

must still be coordinated. Furthermore, high-speed

networks are not universally available and raise costly

security and configuration issues.

Semi-Automated Forces (SAF)

SAFs address the need for reduced-manpower

simulation. SAF tools such as JSAF, OTB, and OOS

allow entity behavior to be specified ahead of time.

At a computational level, SAF behavior specifications

typically amount to some form of finite state machine

(FSM). An FSM can be thought of as (1) a set of

states, each of which corresponds to some behavioral

state (e.g., patrol along a given path); and (2) a set of

transitions between states (e.g., when an intruder is

detected, move to confront).

Advantages of FSM-style SAF behaviors include

clarity and predictability. FSMs are particularly good

for implementing well-defined doctrinal behavior of

limited complexity. However, SAFs have a limited

capability to respond dynamically to changing

circumstances. As allies, SAFs have little capability for

coordinating or communicating with students. As

enemies, SAFs are often little more than target drones.

They do not model an adaptive, thinking enemy.

Scenarios with such scripted behaviors have a very

short useful life because students quickly learn to

anticipate scenario events. Concurrency is also

problematic, as FSMs are made obsolete by changing

tactics, techniques, and procedures (TTPs) and require

technical expertise to reprogram.

Intelligent Automated Forces

Intelligent automated forces go beyond conventional

SAFs with the ability to generate behavior dynamically

in response to simulation events. Examples are TacAir-

Soar (Coulter et al., 1998) and ACT-R agents (Best,

Scarpinatto, & Lebiere, 2002) for military operations in

urban terrain (MOUT). The cognitive architectures

underlying these capabilities are informed by a large

body of accumulated psychological research. When

used properly, these approaches can realistically mimic

many aspects of cognition, particularly with respect to

resource constraints such as reaction time and attention.

However, implementing intelligent automated forces is

a challenging task. The conventional process for

creating intelligent automated forces requires a pipeline

of specialists: subject matter experts (SMEs),

knowledge engineers, software engineers, and

validation testers. Some of the SMEs’ intent is lost at

each stage of the pipeline. The number of specialties

required makes coordination difficult, so the

implementers may have little opportunity to interact

mailto:jdbasil@sandia.gov
mailto:mrglick@sandia.gov
mailto:jhwhetz@sandia.gov

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 4 of 11

with the SMEs. Changing TTPs and scenarios may

require significant reprogramming.

SME specification of tactics is especially difficult

because spatiotemporal tasks are driven by procedural

(also known as implicit) knowledge. Kornecki,

Hilburn, Diefenbach, and Towhidnajad (1993) describe

the difficulty of producing an explicit rule set for air

traffic control (ATC): ―In real ATC sectors, a

controller's actions are based on a subjective evaluation

of the situation and a rough mental projection of the

aircraft courses and computation of a future possible

separation violation. There is no extensive or precise

arithmetic computation involving the geometric relation

between objects in three-dimensional (3-D) space.‖

Recent tools, such as the Office of Naval Research–

sponsored Discovery Machine provide a more user-

friendly interface to help SMEs encode their own

knowledge (see http://www.discoverymachine.com).

Though useful, this approach still calls upon an SME to

provide rules for all relevant aspects of behavior, a task

which amounts to programming. Since an SME

produces the rules outside the context of performing the

task, the context recognition process that drives expert

behavior is not operational. The resulting model

captures what an SME thinks a person should do, rather

than what the SME actually does.

Trainable Automated Forces (TAF)

Depicted in Figure 1, our vision is for SMEs, such as

instructors, to train synthetic forces directly by

demonstration, as in training human students. Technical

experts (e.g., computer programmers) must initially

implement TAF for each type of role player required.

Subsequently, however, SMEs can directly interact

with TAF to enhance the domain expertise of TAF over

time, without further support from a technical expert.

TAF then relieves the SME of role playing so that the

expertise of a single SME can be shared with any

number of students. In our vision, the sharp distinction

between the construction and operational phases (as

required for traditional expert systems) is blurred. If an

instructor recognizes a skills gap during one exercise,

the instructor should be able to alter the behavior of

automated forces in the next exercise to address the

gap. Ideally, the long and expensive development

pipeline can be virtually eliminated. This is the TAF

approach.

TAF training is an ongoing interaction between the

instructor and the role-playing agent. The interaction is

based on demonstrations of correct behavior by the

instructor, and demonstrations by the system of its

current understanding. Our goal is for the instructor to

be able to interrupt and correct TAF when its actions

diverge from the instructor’s intent. TAF learns from

such corrections and will not repeat the same mistake.

Because this approach is data driven, objective

behavior validation is more feasible compared with

other approaches for automated forces.

Figure 1. Training of Synthetic Forces by Demonstration

http://www.discoverymachine.com/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 5 of 11

Related Work

TAF is based on behavioral cloning, which is an

established technique for building agent behaviors.

Widrow and Smith (1964) first studied the technique

for the pole-balancing (or inverted pendulum) task.

The term ―cloning‖ implies that the agent simply

replays previously recorded behavior, but most

applications of behavioral cloning have some capability

to generalize to new situations. Nevertheless, the

performance of a clone will degrade as it encounters

situations that are dramatically different from any

encountered during training (Bratko, 1997).

Behavioral cloning has been successfully applied in

simulations of tasks such as piloting an airplane

(Morales & Sammut, 1994), operating a crane (Suc &

Bratko, 1999), and riding a bicycle (Suc & Bratko,

2000). Similar techniques are popular within robotics

and are known as learning by observation or learning

by imitation. Schaal, Ijspeert, and Billard (2004)

provide an overview of learning by observation for

robotics, including juggling, table tennis, and dance.

However, these approaches do not necessarily include

an interactive process for refining agent behavior, as

does TAF.

To build an expert model, TAF must be able to observe

experts performing relevant tasks. In particular, the

system needs data that capture the stimuli and

responses that characterize expert behavior. Although

training simulations are inherently computer based,

integration with complex preexisting applications is

nontrivial. The training application must output

sufficiently detailed information about its internal state.

Popular network protocols for exchanging simulation

state include Distributed Interactive Simulation (DIS)

(Little, 1994) and (more recently) High Level

Architecture (HLA) (Calvin, 1996). Both protocols

transmit basic information, such as entity position

updates. However, terrain information (ground

elevation, appearance, and physical properties) is too

large to transmit over the network in real time, and

most simulators do not transmit detailed information,

such as instrumentation in an airplane cockpit. TAF

cannot learn correct behavior if the behavior depends

on missing information.

TAF Technical Description

Implementing TAF consists of creating a role and then

populating the role with example behavior. The role

consists of information (e.g., from a nine-line brief)

such as the location of a target and the time on target.

Any information that cannot be gleaned from the inputs

specified for the role cannot influence the behavior of

TAF; thus incomplete information may lead to

incorrect behavior. However, extraneous information

may also degrade performance by confusing TAF. If

training data are relatively sparse (i.e., the number of

inputs is large relative to the amount of training data

provided), spurious patterns are likely to be found in

the training data, and learning these patterns will lead

to unpredictable TAF behavior.

This section describes the current implementation of

TAF, addressing the numbered and unnumbered labels

in the block diagram in Figure 2. Airstrike piloting is

used as a running example.

Figure 2. Internal Structure of TAF Actor

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 6 of 11

Environment

The environment is not part of TAF; it is the simulation

in which TAF actors exist. (As with any SAF

technology, TAF could also participate in

live/virtual/constructive simulations and conceivably

control robotic agents in the real world). To produce

realistic behaviors, a simulation environment must

simulate everything that influences decision making in

reality. To support incremental refinement of behavior

models, the environment must allow control of an entity

to be handed back and forth between TAF and a human

controller.

TAF World Model

The TAF world model provides a standard interface

between TAF agents and the environment. The TAF

world model presents ground-truth information about

all known entities (whether or not these entities are

controlled by TAF) and the current time. Each entity

has a name, position, velocity, etc. The world model is

shared by all TAF actors in a simulation. The world

model in Figure 2 shows the callsign, side

(friendly/enemy), and position of two entities—a strike

aircraft (Viper12) and a target (Dingo7).

A specialized TAF world model is created for each

type of environment. Currently, there are two world

models: the HLA TAF world model, which allows TAF

to interface with the distributed virtual training

environment (DVTE) in Figure 4, and the Umbra world

model (Figure 3). The HLA TAF world model allows

TAF to control a variety of entities in the DVTE

simulation environment. Umbra is a modeling and

simulation framework developed at Sandia National

Laboratories that is used in an augmented-reality

training simulator for training dismounted security

forces.

In the augmented-reality simulation depicted in Figure

3, participants with red helmets walk through a physical

environment wearing goggles to overlay the actual view

with simulated forces, walls, etc. (inset at lower left).

Through the goggles the participants see a video of the

same room with the computer-animated objects shown

in the inset added to the scene.

Figure 3. Interactions with TAF Agents in

Augmented Reality

Figure 4. Distributed Virtual Training

Environment (DVTE). Above, several TAF-

controlled vehicles follow a human leader. Below,

TAF pilots a helicopter.

Settings

The objective of TAF is to learn patterns of behavior

that are apparent mainly through the actions of entities.

However, the user must manually input some

information, such as, at a minimum, specifying an

entity for TAF to control. In TAF, these inputs are

called settings. Each role has a different set of settings.

In the airstrike role, two of the settings are

TargetCallsign and TimeOnTarget. The TAF graphical

user interface (GUI) includes a panel (Figure 5) for

specifying the settings.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 7 of 11

Figure 5. TAF Settings Panel

Perception

The world model presents ground-truth information

from an allocentric (or global) perspective. Each TAF

actor must be provided with a perception model to filter

and adapt this information for its own needs. Thus the

perceptive needs for a role must match the perceptive

capabilities of a given world model for that role to be

applicable.

For the airstrike role in Figure 2, the relevant

information includes the heading and range to the target

and the time on target (relative to the current time). To

determine this information, the TAF actor must know

its own identity and that of the target; these are settings

specified by the user. Perception then transforms the

allocentric information provided by the world model to

egocentric inputs for the learning or inference

algorithm. In the airstrike example, perception

retrieves the position of self and target and computes

the distance between them, the heading to the target,

etc. The assumption of modeling from an egocentric

perspective is that behavior is determined relative to

other entities in the simulation rather than by cardinal

directions, e.g., following a heading of 0 degree relative

to the target will always lead TAF to the target.

Inputs

As shown in Figure 2, information from the world

model and setting is filtered and transformed by

perception to form the input for TAF’s learning and

inference algorithms. The completeness (or

incompleteness) of the input is a constraint on the

realism of TAF behavior. Several factors prevent TAF

from receiving a complete set of inputs, leading to

degraded behavior.

First, TAF lacks the instinct and knowledge that

humans possess as a result of evolution and life

experience.

Second, the environment provides insufficient

information. Simulation environments are not reality;

they only contain whatever their implementers have put

into them. Human role-players sometimes ―fill in the

blanks,‖ using side agreements and their imaginations.

Of course, humans often do not have access to all the

information they need, especially in combat. Enemies

use secrecy, subterfuge, and attack command-and-

control assets to evade, mislead, and blind each other.

In an HLA simulation, TAF receives ground-truth

information that may be unavailable to human

combatants, granting TAF (in effect) a 360-degree field

of view through walls, mountains, water, jammers, and

darkness. In practice, software agents may use this

unfair advantage to counter their own inherent

limitations in perception and intelligence, with uneven

results. More realistic perception models can also be

implemented if necessary.

Role Template

The role template specifies the learning algorithm,

inputs, and outputs. The role template is implemented

by the technical expert and not modified by the end

user, so the set of role templates defines the general

limits of what TAF can learn.

For example, the airstrike template in Figure 2 would

list inputs and outputs by name and type (e.g.,

HeadingToTarget and RangeToTarget as real-valued

numbers), but these inputs and outputs are not linked to

specific data streams in the simulation until the role is

instantiated and the callsigns of the TAF agent and the

target are entered.

The role template also specifies a learning algorithm.

The current implementation of TAF uses the open

source Sandia Cognitive Foundry (Basilico, Benz, &

Dixon, 2008; http://foundry.sandia.gov), which

supplies a wide range of learning algorithms, e.g.,

linear regression, nearest neighbor with locally

weighted linear regression, ID4 rule induction, support

vector machines, and backpropagation for neural

networks. The role template also specifies the type of

knowledge base for each algorithm (e.g., learned link

weights to parameterize a neural network, or the rule

set created by ID4).

Role

The specific actions to be taken by a TAF actor are

determined by its role. The role template specifies the

learning algorithm, inputs, and outputs but does not

http://foundry.sandia.gov/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 8 of 11

specify a mapping from inputs (situations) to outputs

(actions). The role provides this mapping.

To create a role, the user supplies a descriptive name

for the role and then supplies examples of desired

behavior in the simulator, along with the settings of the

role that are applicable to the behavior.

Each algorithm learns a different set of parameters from

the data (e.g., link weights derived for a neural

network, or the rule set created by ID4). This is the

knowledge base, which is empty until the desired

behavior is demonstrated and refined

IMPLEMENTATION

A prototype of the core TAF architecture described

above is implemented in Java and includes world

models for HLA and for Umbra, The TAF software is

freely available for U.S. government applications.

HLA Interface

We integrated TAF with the DVTE via the HLA

protocol in collaboration with Lockheed Martin

Simulation, Training & Support. HLA was an

attractive means of integration for several reasons.

First, HLA provides a suitable level of information

detail for the TAF world model (e.g., entity state

updates over time). Second, HLA integration facilitates

the application of TAF in other HLA-based

simulations. Third, interfacing with a simulation via

network data exchange (rather than, say, direct linkage

against an application programming interface)

minimizes software dependencies and maximizes

modularity.

However, dynamically handing off control between

TAF and a human supervisor is more technically

difficult than anticipated. HLA-standard techniques for

entity hand-off are typically not implemented or not

available due to the use of an unsynchronized

(―connectionless‖) mode to conserve network

bandwidth. Also, manual intervention in TAF control

(e.g., moving an entity from the wrong trajectory)

interferes with the simulator’s internal dynamics model

(position and speed) and thus may impart enormous

momentum on the simulation entity.

GUI Design

Although the goal of TAF is to interact with users

mainly through the 3-D virtual environment provided

by a training simulator, TAF also relies on a

conventional GUI, implemented using the open-source

NetBeans Platform, for certain operations (Figure 6).

These operations are (1) creating new TAF instances to

control simulation entities, (2) specifying parameters

for the TAF entity, and (3) executive control such as

entity hand-off between TAF and the human

supervisor.

Figure 6. Example of TAF GUI Setting Parameters, e.g., Identity of the Entity to Control

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 9 of 11

Implemented Role Templates

Single-Path

We began development with the most basic use case:

rote replay. During observation, the single-path drone

simply records the exact sequence of positions and

orientations that a designated entity exhibits over time.

In the operational phase, the drone simply ―replays‖ the

behavioral sequence. This functionality is similar to

After Action Review (AAR) logging, but for a single

entity with finer-grained control and meant for replay

into another simulation. Although this capability is

simple (no generalization), it is not commonly available

in training simulations and could potentially be quite

useful.

Dynamic Follower

The next step in development was a role that

dynamically responds to inputs from the environment.

This is the ―follower‖ role, which provides the basis,

for example, of a wingman or column of vehicles that

follows a leader in a dynamic path. In this role, TAF

learns parameters that capture information such as

(a) the time and distance to lag behind the leader and

(b) the bearing to maintain relative to the leader.

Two settings are necessary to begin training a follower-

role instantiation: the entity ID of the self (i.e., the

follower) and the entity ID of the leader. Given these

settings and one or more sample behavior sequences,

the system derives a series of training examples that

pair the position of the follower relative to the leader at

a given time step with a position and orientation at the

subsequent time step.

A given instantiation of the follower role thus

determines how to move relative to a leader. One

instantiation might represent the goal of following

behind a leader at a close distance, while another might

represent following farther behind and to the left.

Figure 4, presented previously, shows six TAF

instances, with three following to the left and three to

the right, thus forming a chevron formation.

Replacement and Branching

Beyond learning behavior from a given set of sample

behavior sequences, TAF must support ―iterative

refinement‖: when a human supervisor observes

suboptimal TAF behavior, the supervisor can intervene

and further refine the learned behavior by

demonstration. Implementation of iterative refinement

presents additional challenges related both to learning

and to arriving at an effective user interface.

Our first milestone toward iterative refinement was a

rewind-and-replace capability applied to the single-path

drone. Pressing this button when observing a TAF-

driven entity behaving autonomously rewinds the

entity’s position and orientation to where it was 30

seconds ago and hands control of the entity to the

supervisor. The rest of the recorded path is discarded

and learning (or recording, in this case) begins again.

We have extended beyond rewind-and-replace to

implement a prototype branching capability whereby

newly demonstrated behavior is added to the model

rather than replacing older behavior. Instead of simply

replaying a recorded temporal sequence of entity states

observed in the past, at each time step the new role

chooses the action previously performed by a human

under the most similar conditions. With this role, an

entity can learn conditional behavior, e.g., execute a

prescribed path when no enemy is present but move to

intercept when an enemy appears.

TAF for Dismounted Operations

We have further bridged TAF with an augmented

reality trainer for Close Quarters Combat based upon

Sandia’s Umbra modular simulator. Instead of HLA,

TAF is linked with Umbra via a JNI bridge between

Java and C++. We have thus far experimented with two

role templates: the single-path drone and the follower.

One of the most exciting parts of this application is the

potential of capturing highly implicit procedural

knowledge via direct perception of human movement in

real 3-D space.

DISCUSSION

Use of the Machine Learning Package in Sandia’s

Cognitive Foundry makes it straightforward to

implement roles by experimenting with different

learning algorithms. To this point, we have found

instance-based learning methods to be particularly

advantageous for iterative refinement because when a

user identifies incorrect behavior, it is straightforward

to identify and replace the data that are responsible.

Difficulties in implementation may be broadly grouped

under two headings: (1) more conceptual issues in

learning from observation and (2) more pragmatic

issues of system integration.

On the learning side, there is the general issue of

machine perception versus human perception.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 10 of 11

The system constraints often make it difficult for TAF

to perceive the same features of the environment that

humans do. In many cases, this limitation may not have

a strong impact. In some cases, TAF may be able to

compensate by using additional information that is not

available to human role players. For some target

behaviors, however, this limitation may be a limiting

obstacle. Further research is necessary to illuminate

which classes of behaviors are more amenable or less

so to TAF’s learning-by-demonstration approach.

In addition, one of our goals was that the TAF-defined

roles could be applicable to multiple simulators and

world-model implementations. To achieve this

generality, we have mostly employed simple world

models consisting of entities in 3-D space with

positional information. While these features were

sufficient for the simple roles we developed, they are

also limiting because other information about the

entities or environment was not used. Simple, position-

based world models have also led to control of the

entities via the same absolute coordinate system

without any simulation of the output of the control. For

example, TAF learns to control a simulated airplane by

observing its trajectory in 3-D coordinate space rather

than by observing the motion of a joystick controller.

Improved interfaces and standard implementations for

perception and control that tie deeper into the

underlying simulation would allow the role

implementations to focus more on the aspects of the

learning algorithms and less on the mechanics of

creating the appropriate perceptions and ensuring that

the agent’s actions are reasonable.

In the pragmatic realm, we have had issues related to

HLA technicalities, such as the hand-off of control of

an entity between two members of the federation and

also the inability to access a sensitive aerodynamics

model. So far, the lesson we are taking away from this

experience is that bolting a fundamental capability like

TAF onto a preexisting architecture presents its own set

of challenges that must be explicitly considered,

especially with regards to entity ownership.

In general, there is a trade-off between power and ease-

of-use in human-computer interaction. While TAF has

a lot of promise, our experience in this and in many

other systems suggests that getting this balance right

may be decisive in determining the ultimate utility of

the system.

ACKNOWLEDGEMENTS

This work is supported in part by the Office of Naval

Research Grant N0001408C0186, the Next-generation

Expeditionary Warfare Intelligent Training (NEW-IT)

program. Sandia is a multiprogram laboratory operated

by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy’s National

Nuclear Security Administration under Contract DE-

AC04-94AL85000. The views and conclusions

contained in this document are those of the authors and

should not be interpreted as representing the official

policies, either expressed or implied, of the Office of

Naval Research, Sandia National Laboratories, or the

U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for government

purposes notwithstanding any copyright notation

hereon. We further wish to acknowledge excellent

contributions to this work on the part of colleagues

Damon Gerhardt, Eric Goodman, Kiran Lakkaraju, and

Kevin Dixon as well as help from Lockheed Martin

Simulation, Training & Support with the HLA hand-

off.

REFERENCES

Basilico, J., Benz, Z., & Dixon, K. R. (2008). The

Cognitive Foundry: A flexible platform for intelligent

agent modeling. In Proceedings of the 2008 Behavior

Representation in Modeling and Simulation (BRIMS)

Conference, Providence, RI.

Best, B., Scarpinatto, C., & Lebiere, C. (2002).

Modeling synthetic opponents in MOUT training

simulations using the ACT-R cognitive architecture.

Proceedings of the 11th Conference on Computer

Generated Forces and Behavior Representation.

Orlando, FL: University of Central Florida.

Bratko, I. (1997). Qualitative reconstruction of control

skill. In Proc. QR’07 (11th Int. Workshop on

Qualitative Reasoning) (pp. 41–52). Pavia, Italy:

Instituto di Analisi Numerica.

Calvin, J., & Weatherly, R. (1996). An introduction to

the high level architecture (HLA) runtime infrastructure

(RTI). In Proceedings of the 14th Workshop on

Standards for the Interoperability of Defense

Simulations (pp. 705–715), Orlando, FL.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10441 Page 11 of 11

Coulter, K., Jones, R., Kenny, P., Koss, F., Laird, J.

and Nielsen, P. (1998). Integrating intelligent

computer generated forces in distributed simulations:

TacAir-Soar. In STOW-97, Proceedings of the 1998

Spring Simulation Interoperability Workshop, Orlando,

FL.

Kornecki, A., Hilburn, T., Diefenbach, T., &

Towhidnajad, M. (1993). Intelligent tutoring issues for

ATC training system. IEEE Transactions on Control

Systems Technology 1(3), 204–211.

Little. R. (1994). Architectures for distributed

interactive simulation. In Advances in Modelling and

Simulation Conference, Redstone Arsenal, AL.

Morales, E. F., & Sammut, C. (2004). Learning to fly

by combining reinforcement learning with behavioural

cloning. In C. E. Brodley (Ed.), ICML ’04:

Proceedings of the Twenty-first International

Conference on Machine Learning (p. 76). New York:

ACM Press.

Schaal, S., Ijspeert, A., & Billard, A. (2004).

Computational approaches to motor learning by

imitation. In C. D. Frith & D. Wolpert (Eds.), The

Neuroscience of Social Interaction (pp. 199–218).

Oxford: Oxford University Press.

Suc, D., & Bratko, I. (1999). Symbolic and qualitative

reconstruction of control skill. Electronic Transactions

on Artificial Intelligence, 3, Section B, 1–22.

Suc, D., & Bratko, I. (2000). Qualitative trees applied

to bicycle riding. Electronic Transactions on Artificial

Intelligence, 4, Section B, 125–140.

Widrow, B., & Smith, F. W. (1964). Pattern

recognizing control systems. In J. T. Tou & R. Wilcox,

1963 Comp. and Inf. Sciences (COINS) Symp. Proc

(pp. 288–317). Washington: DC: Spartan.

