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ABSTRACT 

 

Simulation-based training requires realistic simulated friendly and opposing forces.  Realistic graphics and physics 

alone are not enough; the tactics exhibited must be realistic for most learning to take place.  Current approaches for 

driving the behavior of simulated forces include live human role-players, Semi-Automated Forces (SAFs), and 

intelligent/cognitive automated forces.  Each of these approaches represents trade-offs between realism and various 

resource costs.  Human role-players can provide maximal realism, but trained experts are a limited and potentially 

costly resource.  Other approaches provide varying degrees of realism in exchange for varying costs associated with 

programming. 

 

In this paper, we address another approach to simulated forces that aims to achieve increased realism at lower 

programming cost.  Trainable Automated Forces (TAF) are computer-generated agents that mimic tactics 

demonstrated by human experts.  First, a subject matter expert demonstrates the desired behavior (e.g., piloting an 

aircraft) in a simulator.  Next, machine-learning algorithms are used to model the observed behavior.  Finally, TAF 

controls a simulation entity using the model to predict what the human expert would do in the same situation.  When 

TAF behaves incorrectly, the expert can step in to demonstrate the correct actions for the situation.  This process can 

be repeated at any time with minimal help from technical experts, allowing TAF to generalize to a wider variety of 

situations over time. 

 

We report here on the design and implementation of a prototype TAF capability, including both user interface design 

and experience with machine learning.  In addition, we discuss the potential capabilities and limitations of TAF, 

surveying the inherent strengths and weaknesses of the general approach relative to other implementation techniques 

for automated forces in simulation-based training. 
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INTRODUCTION 

 

Simulation-based training and mission rehearsal are 

increasingly important in military training.  The high 

deployment rates and budgetary demands of ongoing 

operations create urgency in the requirement to deliver 

training anytime, anywhere, and at reduced cost.  

However, simulation-based training has not yet reached 

its full potential to meet these requirements.  Dramatic 

improvements have been achieved in visual and 

physical fidelity, but realistic simulated human 

behavior for friendly and opposing forces is still an 

unsolved issue. 

 

Human Role-Players 

 

The most straightforward way to provide human 

behavior for simulation entities is with human role-

players.  Currently this approach is a primary driver of 

cost and complexity in staging simulation-based 

training exercises.  Hiring numerous role-playing 

contractors is expensive, and some do not have 

sufficient operational experience.  Each role player 

requires that additional equipment be procured, 

configured, transported, and maintained.  Using 

military personnel to fill ―walk-on-roles‖ provides little 

training benefit to them, resulting in frustration and 

wasted resources.  Networked simulations alleviate the 

need for everybody to meet in one place, but schedules 

must still be coordinated.  Furthermore, high-speed 

networks are not universally available and raise costly 

security and configuration issues.   

 

Semi-Automated Forces (SAF) 

 

SAFs address the need for reduced-manpower 

simulation.  SAF tools such as JSAF, OTB, and OOS 

allow entity behavior to be specified ahead of time. 

 

At a computational level, SAF behavior specifications 

typically amount to some form of finite state machine 

(FSM).  An FSM can be thought of as (1) a set of 

states, each of which corresponds to some behavioral 

state (e.g., patrol along a given path); and (2) a set of 

transitions between states (e.g., when an intruder is 

detected, move to confront). 

 

Advantages of FSM-style SAF behaviors include 

clarity and predictability.  FSMs are particularly good 

for implementing well-defined doctrinal behavior of 

limited complexity.  However, SAFs have a limited 

capability to respond dynamically to changing 

circumstances.  As allies, SAFs have little capability for 

coordinating or communicating with students.  As 

enemies, SAFs are often little more than target drones.  

They do not model an adaptive, thinking enemy.  

Scenarios with such scripted behaviors have a very 

short useful life because students quickly learn to 

anticipate scenario events. Concurrency is also 

problematic, as FSMs are made obsolete by changing 

tactics, techniques, and procedures (TTPs) and require 

technical expertise to reprogram. 

 

Intelligent Automated Forces 

 

Intelligent automated forces go beyond conventional 

SAFs with the ability to generate behavior dynamically 

in response to simulation events.  Examples are TacAir-

Soar (Coulter et al., 1998) and ACT-R agents (Best, 

Scarpinatto, & Lebiere, 2002) for military operations in 

urban terrain (MOUT).  The cognitive architectures 

underlying these capabilities are informed by a large 

body of accumulated psychological research.  When 

used properly, these approaches can realistically mimic 

many aspects of cognition, particularly with respect to 

resource constraints such as reaction time and attention. 

  

However, implementing intelligent automated forces is 

a challenging task.  The conventional process for 

creating intelligent automated forces requires a pipeline 

of specialists: subject matter experts (SMEs), 

knowledge engineers, software engineers, and 

validation testers.  Some of the SMEs’ intent is lost at 

each stage of the pipeline.  The number of specialties 

required makes coordination difficult, so the 

implementers may have little opportunity to interact 

mailto:jdbasil@sandia.gov
mailto:mrglick@sandia.gov
mailto:jhwhetz@sandia.gov


 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10441 Page 4 of 11 

with the SMEs.  Changing TTPs and scenarios may 

require significant reprogramming.   

 

SME specification of tactics is especially difficult 

because spatiotemporal tasks are driven by procedural 

(also known as implicit) knowledge.  Kornecki, 

Hilburn, Diefenbach, and Towhidnajad (1993) describe 

the difficulty of producing an explicit rule set for air 

traffic control (ATC): ―In real ATC sectors, a 

controller's actions are based on a subjective evaluation 

of the situation and a rough mental projection of the 

aircraft courses and computation of a future possible 

separation violation.  There is no extensive or precise 

arithmetic computation involving the geometric relation 

between objects in three-dimensional (3-D) space.‖ 

 

Recent tools, such as the Office of Naval Research–

sponsored Discovery Machine provide a more user-

friendly interface to help SMEs encode their own 

knowledge (see http://www.discoverymachine.com).  

Though useful, this approach still calls upon an SME to 

provide rules for all relevant aspects of behavior, a task 

which amounts to programming.  Since an SME 

produces the rules outside the context of performing the 

task, the context recognition process that drives expert 

behavior is not operational.  The resulting model 

captures what an SME thinks a person should do, rather 

than what the SME actually does. 

 

Trainable Automated Forces (TAF) 

Depicted in Figure 1, our vision is for SMEs, such as 

instructors, to train synthetic forces directly by 

demonstration, as in training human students. Technical 

experts (e.g., computer programmers) must initially 

implement TAF for each type of role player required.  

Subsequently, however, SMEs can directly interact 

with TAF to enhance the domain expertise of TAF over 

time, without further support from a technical expert. 

TAF then relieves the SME of role playing so that the 

expertise of a single SME can be shared with any 

number of students. In our vision, the sharp distinction 

between the construction and operational phases (as 

required for traditional expert systems) is blurred.  If an 

instructor recognizes a skills gap during one exercise, 

the instructor should be able to alter the behavior of 

automated forces in the next exercise to address the 

gap.  Ideally, the long and expensive development 

pipeline can be virtually eliminated.  This is the TAF 

approach. 

 

TAF training is an ongoing interaction between the 

instructor and the role-playing agent.  The interaction is 

based on demonstrations of correct behavior by the 

instructor, and demonstrations by the system of its 

current understanding.  Our goal is for the instructor to 

be able to interrupt and correct TAF when its actions 

diverge from the instructor’s intent.  TAF learns from 

such corrections and will not repeat the same mistake.  

Because this approach is data driven, objective 

behavior validation is more feasible compared with 

other approaches for automated forces. 

 

 

Figure 1.  Training of Synthetic Forces by Demonstration 

http://www.discoverymachine.com/


 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10441 Page 5 of 11 

Related Work 

 

TAF is based on behavioral cloning, which is an 

established technique for building agent behaviors.  

Widrow and Smith (1964) first studied the technique 

for the pole-balancing (or inverted pendulum) task.  

The term ―cloning‖ implies that the agent simply 

replays previously recorded behavior, but most 

applications of behavioral cloning have some capability 

to generalize to new situations.  Nevertheless, the 

performance of a clone will degrade as it encounters 

situations that are dramatically different from any 

encountered during training (Bratko, 1997).   

Behavioral cloning has been successfully applied in 

simulations of tasks such as piloting an airplane 

(Morales & Sammut, 1994), operating a crane (Suc & 

Bratko, 1999), and riding a bicycle (Suc & Bratko, 

2000).  Similar techniques are popular within robotics 

and are known as learning by observation or learning 

by imitation.  Schaal, Ijspeert, and Billard (2004) 

provide an overview of learning by observation for 

robotics, including juggling, table tennis, and dance.  

However, these approaches do not necessarily include 

an interactive process for refining agent behavior, as 

does TAF. 

 

To build an expert model, TAF must be able to observe 

experts performing relevant tasks. In particular, the 

system needs data that capture the stimuli and 

responses that characterize expert behavior. Although 

training simulations are inherently computer based, 

integration with complex preexisting applications is 

nontrivial. The training application must output 

sufficiently detailed information about its internal state.  

Popular network protocols for exchanging simulation 

state include Distributed Interactive Simulation (DIS) 

(Little, 1994) and (more recently) High Level 

Architecture (HLA) (Calvin, 1996).  Both protocols 

transmit basic information, such as entity position 

updates. However, terrain information (ground 

elevation, appearance, and physical properties) is too 

large to transmit over the network in real time, and 

most simulators do not transmit detailed information, 

such as instrumentation in an airplane cockpit.  TAF 

cannot learn correct behavior if the behavior depends 

on missing information. 

 

TAF Technical Description 

 

Implementing TAF consists of creating a role and then 

populating the role with example behavior.  The role 

consists of information (e.g., from a nine-line brief) 

such as the location of a target and the time on target.  

Any information that cannot be gleaned from the inputs 

specified for the role cannot influence the behavior of 

TAF; thus incomplete information may lead to 

incorrect behavior.  However, extraneous information 

may also degrade performance by confusing TAF.  If 

training data are relatively sparse (i.e., the number of 

inputs is large relative to the amount of training data 

provided), spurious patterns are likely to be found in 

the training data, and learning these patterns will lead 

to unpredictable TAF behavior. 

 

This section describes the current implementation of 

TAF, addressing the numbered and unnumbered labels 

in the block diagram in Figure 2. Airstrike piloting is 

used as a running example. 

 

 

Figure 2.  Internal Structure of TAF Actor
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Environment 

 

The environment is not part of TAF; it is the simulation 

in which TAF actors exist.  (As with any SAF 

technology, TAF could also participate in 

live/virtual/constructive simulations and conceivably 

control robotic agents in the real world).  To produce 

realistic behaviors, a simulation environment must 

simulate everything that influences decision making in 

reality. To support incremental refinement of behavior 

models, the environment must allow control of an entity 

to be handed back and forth between TAF and a human 

controller. 

 

TAF World Model 

 

The TAF world model provides a standard interface 

between TAF agents and the environment.  The TAF 

world model presents ground-truth information about 

all known entities (whether or not these entities are 

controlled by TAF) and the current time.  Each entity 

has a name, position, velocity, etc.  The world model is 

shared by all TAF actors in a simulation. The world 

model in Figure 2 shows the callsign, side 

(friendly/enemy), and position of two entities—a strike 

aircraft (Viper12) and a target (Dingo7).  

 

A specialized TAF world model is created for each 

type of environment.  Currently, there are two world 

models: the HLA TAF world model, which allows TAF 

to interface with the distributed virtual training 

environment (DVTE) in Figure 4, and the Umbra world 

model (Figure 3).  The HLA TAF world model allows 

TAF to control a variety of entities in the DVTE 

simulation environment.  Umbra is a modeling and 

simulation framework developed at Sandia National 

Laboratories that is used in an augmented-reality 

training simulator for training dismounted security 

forces. 

 

In the augmented-reality simulation depicted in Figure 

3, participants with red helmets walk through a physical 

environment wearing goggles to overlay the actual view 

with simulated forces, walls, etc. (inset at lower left). 

Through the goggles the participants see a video of the 

same room with the computer-animated objects shown 

in the inset added to the scene. 

 

 

Figure 3.  Interactions with TAF Agents in 

Augmented Reality 

 

Figure 4.  Distributed Virtual Training 

Environment (DVTE). Above, several TAF-

controlled vehicles follow a human leader.  Below, 

TAF pilots a helicopter. 

Settings 

 

The objective of TAF is to learn patterns of behavior 

that are apparent mainly through the actions of entities.  

However, the user must manually input some 

information, such as, at a minimum, specifying an 

entity for TAF to control.  In TAF, these inputs are 

called settings.  Each role has a different set of settings. 

 

In the airstrike role, two of the settings are 

TargetCallsign and TimeOnTarget.  The TAF graphical 

user interface (GUI) includes a panel (Figure 5) for 

specifying the settings.   
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Figure 5.  TAF Settings Panel 

Perception 

 

The world model presents ground-truth information 

from an allocentric (or global) perspective. Each TAF 

actor must be provided with a perception model to filter 

and adapt this information for its own needs. Thus the 

perceptive needs for a role must match the perceptive 

capabilities of a given world model for that role to be 

applicable. 

 

For the airstrike role in Figure 2, the relevant 

information includes the heading and range to the target 

and the time on target (relative to the current time).  To 

determine this information, the TAF actor must know 

its own identity and that of the target; these are settings 

specified by the user.  Perception then transforms the 

allocentric information provided by the world model to 

egocentric inputs for the learning or inference 

algorithm.  In the airstrike example, perception 

retrieves the position of self and target and computes 

the distance between them, the heading to the target, 

etc.  The assumption of modeling from an egocentric 

perspective is that behavior is determined relative to 

other entities in the simulation rather than by cardinal 

directions, e.g., following a heading of 0 degree relative 

to the target will always lead TAF to the target. 

 

Inputs 

 

As shown in Figure 2, information from the world 

model and setting is filtered and transformed by 

perception to form the input for TAF’s learning and 

inference algorithms.  The completeness (or 

incompleteness) of the input is a constraint on the 

realism of TAF behavior.  Several factors prevent TAF 

from receiving a complete set of inputs, leading to 

degraded behavior. 

 

First, TAF lacks the instinct and knowledge that 

humans possess as a result of evolution and life 

experience. 

 

Second, the environment provides insufficient 

information.  Simulation environments are not reality; 

they only contain whatever their implementers have put 

into them.  Human role-players sometimes ―fill in the 

blanks,‖ using side agreements and their imaginations. 

 

Of course, humans often do not have access to all the 

information they need, especially in combat.  Enemies 

use secrecy, subterfuge, and attack command-and-

control assets to evade, mislead, and blind each other.  

In an HLA simulation, TAF receives ground-truth 

information that may be unavailable to human 

combatants, granting TAF (in effect) a 360-degree field 

of view through walls, mountains, water, jammers, and 

darkness.  In practice, software agents may use this 

unfair advantage to counter their own inherent 

limitations in perception and intelligence, with uneven 

results. More realistic perception models can also be 

implemented if necessary. 

 

Role Template 

 

The role template specifies the learning algorithm, 

inputs, and outputs.  The role template is implemented 

by the technical expert and not modified by the end 

user, so the set of role templates defines the general 

limits of what TAF can learn. 

 

For example, the airstrike template in Figure 2 would 

list inputs and outputs by name and type (e.g., 

HeadingToTarget and RangeToTarget as real-valued 

numbers), but these inputs and outputs are not linked to 

specific data streams in the simulation until the role is 

instantiated and the callsigns of the TAF agent and the 

target are entered. 

 

The role template also specifies a learning algorithm.  

The current implementation of TAF uses the open 

source Sandia Cognitive Foundry (Basilico, Benz, & 

Dixon, 2008; http://foundry.sandia.gov), which 

supplies a wide range of learning algorithms, e.g., 

linear regression, nearest neighbor with locally 

weighted linear regression, ID4 rule induction, support 

vector machines, and backpropagation for neural 

networks.  The role template also specifies the type of 

knowledge base for each algorithm (e.g., learned link 

weights to parameterize a neural network, or the rule 

set created by ID4). 

 

Role 

 

The specific actions to be taken by a TAF actor are 

determined by its role.  The role template specifies the 

learning algorithm, inputs, and outputs but does not 

http://foundry.sandia.gov/
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specify a mapping from inputs (situations) to outputs 

(actions).  The role provides this mapping. 

 

To create a role, the user supplies a descriptive name 

for the role and then supplies examples of desired 

behavior in the simulator, along with the settings of the 

role that are applicable to the behavior. 

 

Each algorithm learns a different set of parameters from 

the data (e.g., link weights derived for a neural 

network, or the rule set created by ID4).  This is the 

knowledge base, which is empty until the desired 

behavior is demonstrated and refined 

 

 

IMPLEMENTATION 

 

A prototype of the core TAF architecture described 

above is implemented in Java and includes world 

models for HLA and for Umbra, The TAF software is 

freely available for U.S. government applications. 

 

HLA Interface 

 

We integrated TAF with the DVTE via the HLA 

protocol in collaboration with Lockheed Martin 

Simulation, Training & Support.  HLA was an 

attractive means of integration for several reasons.  

First, HLA provides a suitable level of information 

detail for the TAF world model (e.g., entity state 

updates over time).  Second, HLA integration facilitates 

the application of TAF in other HLA-based 

simulations.  Third, interfacing with a simulation via 

network data exchange (rather than, say, direct linkage 

against an application programming interface) 

minimizes software dependencies and maximizes 

modularity. 

 

However, dynamically handing off control between 

TAF and a human supervisor is more technically 

difficult than anticipated.  HLA-standard techniques for 

entity hand-off are typically not implemented or not 

available due to the use of an unsynchronized 

(―connectionless‖) mode to conserve network 

bandwidth.  Also, manual intervention in TAF control 

(e.g., moving an entity from the wrong trajectory) 

interferes with the simulator’s internal dynamics model 

(position and speed) and thus may impart enormous 

momentum on the simulation entity. 

 

GUI Design 

 

Although the goal of TAF is to interact with users 

mainly through the 3-D virtual environment provided 

by a training simulator, TAF also relies on a 

conventional GUI, implemented using the open-source 

NetBeans Platform, for certain operations (Figure 6). 

These operations are (1) creating new TAF instances to 

control simulation entities, (2) specifying parameters 

for the TAF entity, and (3) executive control such as 

entity hand-off between TAF and the human 

supervisor. 

 

 

Figure 6.  Example of TAF GUI Setting Parameters, e.g., Identity of the Entity to Control
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Implemented Role Templates 

 

Single-Path 

We began development with the most basic use case: 

rote replay.  During observation, the single-path drone 

simply records the exact sequence of positions and 

orientations that a designated entity exhibits over time.  

In the operational phase, the drone simply ―replays‖ the 

behavioral sequence.  This functionality is similar to 

After Action Review (AAR) logging, but for a single 

entity with finer-grained control and meant for replay 

into another simulation.  Although this capability is 

simple (no generalization), it is not commonly available 

in training simulations and could potentially be quite 

useful. 

 

Dynamic Follower 

The next step in development was a role that 

dynamically responds to inputs from the environment.  

This is the ―follower‖ role, which provides the basis, 

for example, of a wingman or column of vehicles that 

follows a leader in a dynamic path.  In this role, TAF 

learns parameters that capture information such as 

(a) the time and distance to lag behind the leader and 

(b) the bearing to maintain relative to the leader. 

 

Two settings are necessary to begin training a follower-

role instantiation: the entity ID of the self (i.e., the 

follower) and the entity ID of the leader.  Given these 

settings and one or more sample behavior sequences, 

the system derives a series of training examples that 

pair the position of the follower relative to the leader at 

a given time step with a position and orientation at the 

subsequent time step. 

 

A given instantiation of the follower role thus 

determines how to move relative to a leader.  One 

instantiation might represent the goal of following 

behind a leader at a close distance, while another might 

represent following farther behind and to the left. 

Figure 4, presented previously, shows six TAF 

instances, with three following to the left and three to 

the right, thus forming a chevron formation. 

 

Replacement and Branching 

Beyond learning behavior from a given set of sample 

behavior sequences, TAF must support ―iterative 

refinement‖: when a human supervisor observes 

suboptimal TAF behavior, the supervisor can intervene 

and further refine the learned behavior by 

demonstration.  Implementation of iterative refinement 

presents additional challenges related both to learning 

and to arriving at an effective user interface. 

 

Our first milestone toward iterative refinement was a 

rewind-and-replace capability applied to the single-path 

drone.  Pressing this button when observing a TAF-

driven entity behaving autonomously rewinds the 

entity’s position and orientation to where it was 30 

seconds ago and hands control of the entity to the 

supervisor.  The rest of the recorded path is discarded 

and learning (or recording, in this case) begins again. 

 

We have extended beyond rewind-and-replace to 

implement a prototype branching capability whereby 

newly demonstrated behavior is added to the model 

rather than replacing older behavior.  Instead of simply 

replaying a recorded temporal sequence of entity states 

observed in the past, at each time step the new role 

chooses the action previously performed by a human 

under the most similar conditions.  With this role, an 

entity can learn conditional behavior, e.g., execute a 

prescribed path when no enemy is present but move to 

intercept when an enemy appears. 

 

TAF for Dismounted Operations 

 

We have further bridged TAF with an augmented 

reality trainer for Close Quarters Combat based upon 

Sandia’s Umbra modular simulator.  Instead of HLA, 

TAF is linked with Umbra via a JNI bridge between 

Java and C++. We have thus far experimented with two 

role templates: the single-path drone and the follower.  

One of the most exciting parts of this application is the 

potential of capturing highly implicit procedural 

knowledge via direct perception of human movement in 

real 3-D space. 

 

 

DISCUSSION 

 

Use of the Machine Learning Package in Sandia’s 

Cognitive Foundry makes it straightforward to 

implement roles by experimenting with different 

learning algorithms.  To this point, we have found 

instance-based learning methods to be particularly 

advantageous for iterative refinement because when a 

user identifies incorrect behavior, it is straightforward 

to identify and replace the data that are responsible.  

 

Difficulties in implementation may be broadly grouped 

under two headings:  (1) more conceptual issues in 

learning from observation and (2) more pragmatic 

issues of system integration.  

 

On the learning side, there is the general issue of 

machine perception versus human perception. 
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The system constraints often make it difficult for TAF 

to perceive the same features of the environment that 

humans do.  In many cases, this limitation may not have 

a strong impact.  In some cases, TAF may be able to 

compensate by using additional information that is not 

available to human role players.  For some target 

behaviors, however, this limitation may be a limiting 

obstacle.  Further research is necessary to illuminate 

which classes of behaviors are more amenable or less 

so to TAF’s learning-by-demonstration approach. 

 

In addition, one of our goals was that the TAF-defined 

roles could be applicable to multiple simulators and 

world-model implementations. To achieve this 

generality, we have mostly employed simple world 

models consisting of entities in 3-D space with 

positional information. While these features were 

sufficient for the simple roles we developed, they are 

also limiting because other information about the 

entities or environment was not used. Simple, position-

based world models have also led to control of the 

entities via the same absolute coordinate system 

without any simulation of the output of the control. For 

example, TAF learns to control a simulated airplane by 

observing its trajectory in 3-D coordinate space rather 

than by observing the motion of a joystick controller. 

Improved interfaces and standard implementations for 

perception and control that tie deeper into the 

underlying simulation would allow the role 

implementations to focus more on the aspects of the 

learning algorithms and less on the mechanics of 

creating the appropriate perceptions and ensuring that 

the agent’s actions are reasonable. 

 

In the pragmatic realm, we have had issues related to 

HLA technicalities, such as the hand-off of control of 

an entity between two members of the federation and 

also the inability to access a sensitive aerodynamics 

model.  So far, the lesson we are taking away from this 

experience is that bolting a fundamental capability like 

TAF onto a preexisting architecture presents its own set 

of challenges that must be explicitly considered, 

especially with regards to entity ownership. 

 

In general, there is a trade-off between power and ease-

of-use in human-computer interaction.  While TAF has 

a lot of promise, our experience in this and in many 

other systems suggests that getting this balance right 

may be decisive in determining the ultimate utility of 

the system. 
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