
 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No.  10258 Page 1 of 9 

Automatic Assessment of Complex Task Performance in Games and 
Simulations 

 
Markus R. Iseli, Alan D. Koenig John Lee, Richard Wainess 

University of California Los Angeles University of California Los Angeles 

Los Angeles, CA Los Angeles, CA 

iseli@cse.ucla.edu, koenig@cse.ucla.edu johnjn@ucla.edu, wainess@cse.ucla.edu 

 
 

ABSTRACT 
 
Assessment of complex task performance is crucial to evaluating personnel in critical job functions such as Navy 
damage control operations aboard ships.  Games and simulations can be instrumental in this process, as they can 
present a broad range of complex scenarios without involving harm to people or property.  However, automatic 
performance assessment of complex tasks is challenging, because it involves the modeling and understanding of 
how experts think when presented with a series of observed in-game actions. 
 
Our previous research was focused on developing a conceptual framework for assessing complex behaviors in non-
linear, 3-D computer-based simulation environments.  Building on this research, the focus of this paper is on 
automatic complex task scoring of decision making ability critical to Navy damage control operations.  We are using 
our existing 3-D simulation of the interior of a naval ship (Koenig et al., 2009) which includes both fire-fighting and 
flooding damage control scenarios.  When assessing performance, human expert scoring can be limiting, as it 
depends on subjective observations of in-game player’s performance which in turn is used to interpret their mastery 
of key associated cognitive constructs. 
 
We introduce a computational framework that incorporates the automatic performance assessment of complex tasks 
or action sequences as well as the modeling of real-world, simulated, or cognitive processes by modeling player 
actions, simulation states and events, conditional simulation state transitions, and cognitive construct dependencies 
using a dynamic Bayesian network.  This novel approach combines a state-space model along with a probabilistic 
framework of Bayesian statistics, which allows us to draw probabilistic inferences about a player’s decision making 
abilities.  Through this process, a comparison of human expert scoring and dynamic Bayesian network scoring is 
presented. 
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Assessment of complex task performance is crucial to 
evaluating personnel in critical job functions such as 
Navy damage control operations aboard ships.  Games 
and simulations can be instrumental in this process, as 
they can present a broad range of complex scenarios 
without involving harm to people or property.  When 
assessing performance, human expert scoring can be 
limiting, as it depends on subjective observations of in-
game player’s performance which in turn is used to 
interpret their mastery of key associated cognitive 
constructs.  On the other hand, automatic performance 
assessment of complex tasks presents its own 
challenges, because it involves the modeling and 
understanding of how experts think when presented 
with a series of observed in-game actions. 
 
Previous research used Bayesian networks to model 
cognitive demands and to score performance 
assessments.  In Chung et al. (2003), performance 
assessments were tied to instruction using Bayesian 
networks in the domain of rifle marksmanship.  
Construction of the Bayesian networks was done using 
expert knowledge about the domain structure.  In the 
evidence-centered assessment design (ECD) 
framework, Mislevy et al.  (2004) introduced (naïve) 
Bayesian networks for probability-based reasoning to 
accumulate evidence of task performances in terms of 
beliefs about unobservable variables that characterize 
knowledge, skills, and/or abilities of students.  Baker et 
al. (2008) discussed the design and validation of 
technology-based performance assessments.  They 
listed expert-based scoring and domain-modeling 
methods as possible scoring techniques and mentioned 
the use of Bayesian networks to model student 
understanding by linking student task performance to 
latent knowledge and skill states.  Almond et al. (2009) 
described the use of static Bayesian networks for the 
assessment of proficiency variables in a classroom.  
Their Bayesian network represents a proficiency model 
where the nodes are a collection of latent variables and 
where the students’ individual assessment results are 
entered to yield a total proficiency score for a group of 
students. 
The following publications included dynamic Bayesian 
networks (DBNs) to model simulation or real-world 

processes.  Poropudas and Virtanen (2007) used a 
DBN to model an air combat simulation.  They 
presented a method for analyzing the evolution of 
discrete events and for learning the network structure 
and probability tables from simulation data.  In 
neuroimaging (Rajapakse et al., 2007), the data from a 
functional magnetic resonance imaging (fMRI) scan of 
brain regions is entered into a DBN to learn the 
structure of effective brain connectivity between brain 
regions. 
 
Based on the conceptual framework presented in 
Koenig et al. (2009), this study presents a 
computational framework for automatic performance 
assessment of complex tasks that allows the 
combination of models for cognitive, simulation, and 
real-world processes to be united into one DBN.  This 
allows the performance assessment of complex tasks or 
action sequences as well as the modeling and 
inference-making of real-world, simulated, or cognitive 
processes.  A description of the computational 
framework and its procedures for automatic scoring of 
complex task performance in games and simulations is 
provided. 
 

THE STUDY 
 
This study presents a proof of concept showing how 
well expert scoring of complex tasks can be modeled 
by using a novel computational framework that is 
represented by a DBN. 
 
In Figure 1, an overview of this study is given.  Subject 
matter experts (SMEs) provide information about how 
to score player actions in the simulation.  This 
information is then automatically transferred to 
conditional probability tables of a DBN.  In addition, 
information about the processes in the simulation, as 
well as dependencies of other processes (real-world, 
cognitive), help define the state-space topology of the 
DBN.  Once the DBN is constructed, player actions in 
the simulation are scored by SMEs and by the DBN, 
yielding expert scores that are compared to DBN 
scores. 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No.  10258 Page 4 of 9 

 
 

Figure 1  Overview of this study. DBN = dynamic 
Bayesian network. 

 
METHODS 

 
Our automatic performance assessment system 
incorporates two parts: (a) a knowledge-base that stores 
SMEs’ knowledge, and (b) a state-space model that 
defines the states of the simulation and their transition 
over time, given player actions, and game events.  
Compared to an expert system that is based on an SME 
knowledge base, our system is capable of adding state-
space models of a real-world, simulated, or cognitive 
processes.  It will be shown below that both, SME 
knowledge-base and state-space models, can be 
integrated into a single DBN. 
 
The Knowledge-Base 
 
In expert systems, knowledge can be represented as 
logical statements with associated certainty factors.  To 
use an example from our simulation, the logical 
statement 

“If a player does action A1 and then action A2 in 
situation S of the simulation, then the player shows 
a certain knowledge/skill/ability K with a certainty 
factor of Q%”, 

shows the SME’s reasoning when observing a player’s 
sequence of actions in a given state of simulation and 
the SME’s confidence in the inference of K drawn 
from the observation.  For our purpose of scoring 
decision making ability, we reformulate above example 
to: 

“If a player does action A1 and then action A2 in 
situation S of the simulation, then the player shows 
a decision making ability of Q”, 

where Q is a value between 0 and 1 using the scoring 
rubric in Table 1. 
 
Table 1 Scoring Rubric 
 
Score Description Q 
Optimal The best action possible 1.0 
Good A good action, but an obvious 

better one exists 
0.85 

Adequate The action correctly addresses the 
situation, but many better choices 
exist 

0.65 

Neutral The action is unrelated to the 
situation 

0.5 

Bad The action is a bad choice, and 
has the potential for doing more 
harm than good 

0.0 

 
In order to reduce inter-rater variability the authors 
formed a panel of “simulation damage control experts” 
– as opposed to real-life damage control experts - and 
agreed on the basic rules and scoring rubrics of damage 
control in our simulation, trying to match the 
procedures in accordance with Navy doctrine.  Our 
simulation contained four fire situations and four 
flooding situations: Galley Grease Fire, Storage Room 
Alpha Fire, Communication Room Electrical Fire, 
Berthing Area Alpha Fire, Bathroom Fire Main Leak, 
Bathroom Flood, AFFF Pump Station Leak, and Jet 
Fuel Pipe Leak.  For each situation in our simulation, 
SMEs created a scoring criteria table that lists all the 
possible player actions and simulation events in that 
situation and the necessary conditions on the states of 
the simulation to determine a score for decision making 
ability.  Table 2 lists the scoring criteria for a fire and a 
flooding situation.  It can be seen that the scores for 
attacking a burning fire depend on the extinguishing 
agents used; in this case Aqueous Film-Forming Foam 
(AFFF), Carbon Dioxide (CO2), “Purple-K Powder” 
(PKP), and the sprinkler system with Aqueous 
Potassium Chlorate (APC).  The simulation event “re-
flash” always indicates that either fire or flood were not 
correctly overhauled and therefore re-ignited or re-
flooded.  Scoring criteria for a total of 37 player actions 
and 8 simulation events were entered into the scoring 
criteria table. 
 

 

Experts 

DBN 

Expert Scores 

DBN Scores 

Simulation 
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Table 2  Excerpt from the scoring criteria table for the two situations Galley Grease Fire and AFFF Leak. 
Note: AFFF = Aqueous Film-Forming Foam, CO2 = carbon dioxide, PKP = “Purple K powder,” APC = 

Aqueous Potassium Chlorate. 
 

Situation: 
Galley Grease Fire 

Scores 

 Optimal Good Adequate Neutral Bad 

A
ct

io
n

s 
an

d
 

E
ve

n
ts

 

Spray AFFF Fire burning    Fire smoking 
Spray CO2  Fire burning   Fire smoking 
Spray PKP   Fire burning  Fire smoking 
Activate APC Fire burning    Fire not burning 
De-smoke Fire smoking    Fire burning 
Event: Re-flash     Always 

 
Situation: 
AFFF Leak 

Scores 

 Optimal Good Adequate Neutral Bad 

A
.&

 
E

. 

Patch Leak Always     
Overhaul Leak Always     
Event: Re-flash     Always 

 
 
The State-Space Model 
 
The conditions in the scoring criteria table (e.g.  “Fire 
burning”) can be represented by a logical statement 
that contains references to object states of the same or 
of any other situation.  For example, patching a leak in 
situation one (S1) might be optimal only if the fire in 
situation two (S2) has been extinguished and the valve 
in situation three (S3) has been turned off.  Situations 
can represent any set of physical compartments on the 
ship, logical entities, categories, or simulation states 
used for scoring. 
 
The scoring of player action sequences can be done 
using (simulation) states to keep track of previous 
actions.  This approach directly leads to the use of 
state-space models, where the simulation states record 
previous actions and the performance score of the 
current action is conditioned on previous simulation 
states.  This approach works well with observable data, 
but for missing, noisy, or unobservable (latent) data, a 
probabilistic framework has to be introduced.  
Dynamic Bayesian networks do exactly this: They 
represent state-space models using a probabilistic 
framework. 
 
Dynamic Bayesian Networks 
 
Dynamic Bayesian networks extend Bayesian networks 
by modeling dynamic systems as opposed to static 
systems.  Dynamic Bayesian networks are versatile 
representations of state-space models (Murphy, 2002) 
and can graphically model probabilistic time-

dependencies between variables.  In the graphical 
representation as a network, each node represents a 
variable and each directed link (arrow) represents a 
dependency between nodes (i.e. node A  node B 
means that variable B is dependent on variable A).  By 
being able to model discrete-time or continuous-time 
processes, including inputs (e.g.  player actions), 
outputs (observations, simulation events), states (latent 
and observed), and state transitions of the processes, 
DBNs can learn both parameters and network structure 
and can infer or predict unobserved outcomes.  There 
are three approaches to find the structure and 
probability tables of a DBN: (a) using expert 
knowledge, (b) using observation data, and (c) a 
combination of both.  In this paper, we will use expert 
knowledge to determine DBN structure. 
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Figure 2  Dynamic Bayesian Network representing 
dependencies of simulation and knowledge states 

given an action or event at time t. KSA = 
Knowledge, skill, or ability. 

 
Figure 2 depicts the conceptual overview of the DBN 
used in our framework.  It shows two time slices, at 
time t-1 and time t with corresponding actions and 
states.  Arrows in the figure indicate dependencies.  
Arrows across time slices are dashed, whereas arrows 
within a time slice are solid.  Because our simulation 
deals with discrete actions and events, the index t is 
increased every time a new action or event happens.  In 
this particular DBN, simulation states, X, are 
observable, whereas knowledge states, K, are not (i.e. 
X is an observable variable and K is a latent variable). 

Knowledge about the model of the simulation program 
is stored in the conditional probability tables (CPTs) of 
the simulation states, where the current (index t) 
simulation state is dependent on previous states and the 
current action.  An example logical statement that 
represents such a state transition is: if Xt-1 = “Fire 
burning” and At = “Spray AFFF”, then Xt = “Fire 
smoking.” 
 
The scoring rules elicited from the SMEs are stored in 
the CPTs of the KSA score states and are logical 
statements like this: if Kt-1 = “bad” and Xt-1 = “Fire 
burning” and At = “Spray AFFF”, then 
Kt = “adequate.” This means that the current decision 
making ability score is dependent on previous scores, 
previous simulation states, and the current action.  
More dependencies and states can be added.  For 
example, a new state representing the overall fire 
fighting score and having all states containing fire 
fighting scores as children could be added. 
In this study, for simplicity, we did not assume any 
dependencies between Kt and Kt-1 nor between states of 
the same time slice. 
 
Figure 3 shows an excerpt of our actual DBN designed 
with GeNIe/SMILE (Version 2.0).  It shows the state 
transitions of some of the fire states going from 
“burning” to “smoking”, to “out.” The nodes Node3 to 
Node6 correspond to the Action/Events (A/E) nodes in 
Figure 2 and provide the relevant actions and events to 
state and score nodes. 

 
 
Figure 3  Excerpt from DBN used in this paper.  Node3 to Node6 provide actions and events that are relevant 

for each simulation state or score. 
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DATA COLLECTION 
 
Participants were recruited from a university as part of 
an introductory psychology course and participation 
counted as laboratory credit for their course.  The 
participants were informed of the voluntary nature of 
the study and that they were able to stop at any point, 
especially if the participants experienced any dizziness 
that may have resulted from movement in the 3D game 
environment. 
 
Simulation data from 30 (9 male, 21 female) 
participants was collected and analyzed.  Of the 30, 
56.7% have never played video games, 33.3% play 1-2 
hours per week, 6.7% play 3-6 hours per week, and 
3.3% play more than 6 hours per week.  Fifty percent 
of the participants said that they were very comfortable 
using computers, whereas 13.3% stated that they were 
very uncomfortable. 
 
In order to guarantee well-balanced levels of prior 
knowledge, participants were randomly assigned to 
receive one out of four groups of instruction: (a) fire 
fighting and flooding instruction, (b) fire fighting 
instruction only, (c) flooding instruction only, and (d) 
no instruction.  Before starting the simulation, they 
entered a simulation tutorial where they were taught 
the game mechanics like moving around, opening 
doors, picking up and dropping equipment.  Playing the 
simulation, participants were asked to discover as 
many of the eight situations as possible and to address 
the ones that required some actions.  Once done with 
the simulation, participants filled out a 
demographic/usability questionnaire in an online 
format. 
 
The simulation environment used in this study was 
produced with the Unity 3D game engine.  The 
simulation consisted of a first person perspective 3D 
environment in which the player could enter different 
compartments and interact with different objects 
aboard a Navy ship.  This environment allowed for the 
capture of all player actions and simulation events in 
real time, which were then fed into the DBN for 
automatic scoring.  For expert scoring, this information 
was provided in human-readable format to the SMEs 
for expert scoring. 
 

RESULTS 
 
The goal of this study was to validate the use of 
automated DBN’s in the evaluation of complex 
performances.  To do this, scores were calculated for 
each player with both human raters (Human) and using 
the DBN.  The human scoring was based on pre-
existing Navy doctrine that expert human raters use to 

evaluate human performance.  The DBN scoring was 
derived from this same criteria and represented using 
conditional probability tables.  Scores ranged from 0 
(no player mastery) to 1 (full player mastery; see Table 
1). 
 

 
 

Figure 4  Overall Decision making ability scores: 
Human (white bars) versus DBN (black bars) scores 

(Pearson correlation coefficient, r = 0.98) 
 
A total of more than 600 relevant player actions were 
recorded and scored, resulting in action sequences of 
about 20 actions for each participant.  Aggregates of 
these scores were calculated for each player and the 
results are shown in Figure 4 through  
Figure 6.  Figure 4 shows the players’ decision making 
ability for damage control overall (combined fire 
fighting decision making and flooding decision 
making).   
 

 
 

Figure 5  Fire fighting damage control decision 
making scores: Human (white) versus DBN (black) 

(r = 0.99) 
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Figure 6  Flooding damage control decision making 
scores: Human (white) versus DBN (black) (r = 

0.97) 
 
Figures 5 and 6 disaggregate the scores by fire fighting 
and flooding, respectively.  As can be seen in the 
graphs, the human scoring and DBN scoring were very 
highly correlated with Pearson moment correlation 
coefficients r=0.98, 0.99, and 0.97, respectively). 
 
In flooding damage control situations, the simulation 
engine used a leak recurrence time that was too short 
and unrealistic.  In contrast, the SME scoring panel 
weighed flood recurrences less negatively and thus 
their scores were generally higher than the DBN 
scores. 
 
In essence, the discrepancies between the human and 
DBN scoring were a result of the human scoring being 
more holistic, tending to focus more on overall 
performance rather than discrete actions.  For example, 
if a player opened and closed a pipe valve multiple 
times, the human scoring was more concerned with 
whether the valve was ultimately left open or closed, 
whereas the DBN scoring incremented or decremented 
their score based on each individual action in the order 
it was done. 
 
In order to calculate inter-rater agreement between 
human and DBN scores using Cohen’s Kappa, the 
aggregates overall scores from Figure 4 were rounded 
to the nearest integer.  The resulting agreement table is 
shown in Table 3, where Human-DBN rating 
agreement counts show on the diagonal and 
disagreement counts are shown off-diagonal; it can be 
seen that 23 (diagonal 4+8+2+9) out of 30 participants 
were rated the same, yielding a rater agreement 
between Human and DBN of 77% with  = 0.674. 
 

Table 3  Observed counts of inter-rater agreement 
on overall decision making ability: Human ratings 
versus DBN ratings.  ( = 0.674, agreement is 77%) 

 

 

DBN rating 

T
ot

al
 

ba
d

 

ne
ut

ra
l 

ad
e

qu
at

e
 

go
o

d
 

H
um

an
 r

at
in

g bad 4 3 0 0 7 

neutral 1 8 0 0 9 

adequate 0 0 2 1 3 

good 0 0 2 9 11 

Total 5 11 4 10 30 
 

SUMMARY AND DISCUSSION 
 
The purpose of this study was to validate DBNs for use 
in the automated scoring of complex tasks.  To that end 
we chose a bounded domain of damage control 
operations aboard Navy ships consisting of fire fighting 
and flooding.  We worked with Navy SME’s to elicit 
evaluation criteria and used this information to develop 
our DBN.  To validate the DBN, we compared the 
DBN scores with those from expert human raters.   
 
Overall, there was a high correlation between the two 
scoring methods.  However, the human scored 
approach tended to be more forgiving on individual 
constituent actions and was more concerned about 
holistic outcomes, whereas the DBN was not making 
these comparisons due to an incomplete holistic 
representation of expert knowledge in the DBN.  The 
implication of this is that DBNs require a significant 
level of effort in converting implicit expert knowledge 
into explicit representations in the DBNs.  This in turn 
might translate into long DBN development lead times. 
 
Despite the high correlations observed, this domain 
was narrowly bounded and the tasks were specific and 
well defined.  However, there are many cases where 
the evaluation of human performance involves domains 
and settings that are much more broad and complex.  In 
those cases, having high correlation between expert 
raters and a DBN may prove more difficult.  Further 
research is needed to find ways to more efficiently 
elicit knowledge from experts to be incorporated into 
DBN’s.  This would help to make utilization of 
automated scoring more practical for everyday 
situations. 
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The use of the computational framework using a DBN 
presented in this paper can help reduce or eliminate the 
need for human raters and decrease the time to score.  
This has the benefit of potentially reducing costs.  In 
addition, it can facilitate the efficient aggregation, 
standardization, and reporting of the scores.  For these 
reasons, we encourage continued research in the use of 
DBN’s, especially for military-related evaluations. 
 
We would like to triangulate our results further by 
using other data collection methods, including non-
invasive computer-based eye tracking, after action 
interviews, and a concept mapping technique called the 
Cognitive Process Mapper (Wainess, 2008), which 
enables a student to demonstrate their knowledge of 
construct relationships in a domain. 
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