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ABSTRACT

Assessment of complex task performance is crucial to evaluating personnel in critical job functions such as Navy
damage control operations aboard ships. Games and simulations can be instrumental in this process, as they can
present a broad range of complex scenarios without involving harm to people or property. However, automatic
performance assessment of complex tasks is challenging, because it involves the modeling and understanding of
how experts think when presented with a series of observed in-game actions.

Our previous research was focused on developing a conceptual framework for assessing complex behaviors in non-
linear, 3-D computer-based simulation environments. Building on this research, the focus of this paper is on
automatic complex task scoring of decision making ability critical to Navy damage control operations. We are using
our existing 3-D simulation of the interior of a naval ship (Koenig et al., 2009) which includes both fire-fighting and
flooding damage control scenarios. When assessing performance, human expert scoring can be limiting, as it
depends on subjective observations of in-game player’s performance which in turn is used to interpret their mastery
of key associated cognitive constructs.

We introduce a computational framework that incorporates the automatic performance assessment of complex tasks
or action sequences as well as the modeling of real-world, simulated, or cognitive processes by modeling player
actions, simulation states and events, conditional simulation state transitions, and cognitive construct dependencies
using a dynamic Bayesian network. This novel approach combines a state-space model along with a probabilistic
framework of Bayesian statistics, which allows us to draw probabilistic inferences about a player’s decision making
abilities. Through this process, a comparison of human expert scoring and dynamic Bayesian network scoring is
presented.
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computer- based assessment tool for assessment of Tactical Action Officers (TAO) in a simulated CIC (Combat
Information Center) onboard Navy ships called the Multi-Mission Team Trainer (MMTT). He is also working on a
simulation- based re-certification assessment of marksmanship coaches’ fault checking ability that delivers just-in-
time, individualized instruction using Bayesian networks for diagnosis and remediation, and a game-based
assessment project for the Navy related to assessment of complex skills (starting with damage control), also using
Bayesian networks for real time and after action assessment of skills including situation awareness, decision making
and communication.

Dr. Richard Wainess, prior to joining CRESST, was a senior lecturer in the University of Southern California's
Information Technology Program. His research interests center on the use of games and simulations for training and
assessment of adult learners. Richard's most recent work is focused primarily on assessment of problem solving and
decision making using computer-based interactive tools. He has authored and co-authored numerous reports,
articles, and book chapters and has presented at many conferences on the topic of games and simulations for
learning, with a particular emphasis on instructional methods, cognitive load theory, and learning outcomes. His
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Assessment of complex task performance is crucial to
evaluating personnel in critical job functions such as
Navy damage control operations aboard ships. Games
and simulations can be instrumental in this process, as
they can present a broad range of complex scenarios
without involving harm to people or property. When
assessing performance, human expert scoring can be
limiting, as it depends on subjective observations of in-
game player’s performance which in turn is used to
interpret their mastery of key associated cognitive
constructs. On the other hand, automatic performance
assessment of complex tasks presents its own
challenges, because it involves the modeling and
understanding of how experts think when presented
with a series of observed in-game actions.

Previous research used Bayesian networks to model
cognitive demands and to score performance
assessments. In Chung et al. (2003), performance
assessments were tied to instruction using Bayesian
networks in the domain of rifle marksmanship.
Construction of the Bayesian networks was done using
expert knowledge about the domain structure. In the
evidence-centered  assessment  design  (ECD)
framework, Mislevy et al. (2004) introduced (naive)
Bayesian networks for probability-based reasoning to
accumulate evidence of task performances in terms of
beliefs about unobservable variables that characterize
knowledge, skills, and/or abilities of students. Baker et
al. (2008) discussed the design and validation of
technology-based performance assessments.  They
listed expert-based scoring and domain-modeling
methods as possible scoring techniques and mentioned
the use of Bayesian networks to model student
understanding by linking student task performance to
latent knowledge and skill states. Almond et al. (2009)
described the use of static Bayesian networks for the
assessment of proficiency variables in a classroom.
Their Bayesian network represents a proficiency model
where the nodes are a collection of latent variables and
where the students’ individual assessment results are
entered to yield a total proficiency score for a group of
students.

The following publications included dynamic Bayesian
networks (DBNs) to model simulation or real-world
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processes. Poropudas and Virtanen (2007) used a
DBN to model an air combat simulation. They
presented a method for analyzing the evolution of
discrete events and for learning the network structure
and probability tables from simulation data. In
neuroimaging (Rajapakse et al., 2007), the data from a
functional magnetic resonance imaging (fMRI) scan of
brain regions is entered into a DBN to learn the
structure of effective brain connectivity between brain
regions.

Based on the conceptual framework presented in
Koenig et al. (2009), this study presents a
computational framework for automatic performance
assessment of complex tasks that allows the
combination of models for cognitive, simulation, and
real-world processes to be united into one DBN. This
allows the performance assessment of complex tasks or
action sequences as well as the modeling and
inference-making of real-world, simulated, or cognitive
processes. A description of the computational
framework and its procedures for automatic scoring of
complex task performance in games and simulations is
provided.

THE STUDY

This study presents a proof of concept showing how
well expert scoring of complex tasks can be modeled
by using a novel computational framework that is
represented by a DBN.

In Figure 1, an overview of this study is given. Subject
matter experts (SMEs) provide information about how
to score player actions in the simulation. This
information is then automatically transferred to
conditional probability tables of a DBN. In addition,
information about the processes in the simulation, as
well as dependencies of other processes (real-world,
cognitive), help define the state-space topology of the
DBN. Once the DBN is constructed, player actions in
the simulation are scored by SMEs and by the DBN,
yielding expert scores that are compared to DBN
Scores.
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Figure 1 Overview of this study. DBN = dynamic
Bayesian network.

METHODS

Our automatic performance assessment system
incorporates two parts: (a) a knowledge-base that stores
SMEs’ knowledge, and (b) a state-space model that
defines the states of the simulation and their transition
over time, given player actions, and game events.
Compared to an expert system that is based on an SME
knowledge base, our system is capable of adding state-
space models of a real-world, simulated, or cognitive
processes. It will be shown below that both, SME
knowledge-base and state-space models, can be
integrated into a single DBN.

The Knowledge-Base

In expert systems, knowledge can be represented as
logical statements with associated certainty factors. To
use an example from our simulation, the logical
statement
“If a player does action A; and then action A, in
situation S of the simulation, then the player shows
a certain knowledge/skill/ability K with a certainty
factor of Q%”,
shows the SME’s reasoning when observing a player’s
sequence of actions in a given state of simulation and
the SME’s confidence in the inference of K drawn
from the observation. For our purpose of scoring
decision making ability, we reformulate above example
to:
“If a player does action A; and then action A, in
situation S of the simulation, then the player shows
a decision making ability of Q”,
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where Q is a value between 0 and 1 using the scoring
rubric in Table 1.

Table 1 Scoring Rubric

Score Description Q

Optimal The best action possible 1.0

Good A good action, but an obvious | 0.85
better one exists

Adequate | The action correctly addresses the | 0.65
situation, but many better choices
exist

Neutral The action is unrelated to the | 0.5
situation

Bad The action is a bad choice, and | 0.0
has the potential for doing more
harm than good

In order to reduce inter-rater variability the authors
formed a panel of “simulation damage control experts”
— as opposed to real-life damage control experts - and
agreed on the basic rules and scoring rubrics of damage
control in our simulation, trying to match the
procedures in accordance with Navy doctrine. Our
simulation contained four fire situations and four
flooding situations: Galley Grease Fire, Storage Room
Alpha Fire, Communication Room Electrical Fire,
Berthing Area Alpha Fire, Bathroom Fire Main Leak,
Bathroom Flood, AFFF Pump Station Leak, and Jet
Fuel Pipe Leak. For each situation in our simulation,
SMEs created a scoring criteria table that lists all the
possible player actions and simulation events in that
situation and the necessary conditions on the states of
the simulation to determine a score for decision making
ability. Table 2 lists the scoring criteria for a fire and a
flooding situation. It can be seen that the scores for
attacking a burning fire depend on the extinguishing
agents used; in this case Aqueous Film-Forming Foam
(AFFF), Carbon Dioxide (CO2), “Purple-K Powder”
(PKP), and the sprinkler system with Aqueous
Potassium Chlorate (APC). The simulation event “re-
flash” always indicates that either fire or flood were not
correctly overhauled and therefore re-ignited or re-
flooded. Scoring criteria for a total of 37 player actions
and 8 simulation events were entered into the scoring
criteria table.
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Table 2 Excerpt from the scoring criteria table for the two situations Galley Grease Fire and AFFF Leak.
Note: AFFF = Aqueous Film-Forming Foam, CO2 = carbon dioxide, PKP = “Purple K powder,” APC =
Agueous Potassium Chlorate.

Situation: Scores
Galley Grease Fire
Optimal Good Adequate Neutral Bad
Spray AFFF Fire burning Fire smoking
g » | Spray CO2 Fire burning Fire smoking
2 § Spray PKP Fire burning Fire smoking
2 5 [ Activate APC Fire burning Fire not burning
< De-smoke Fire smoking Fire burning
Event: Re-flash Always
Situation: Scores
AFFF Leak
Optimal Good Adequate Neutral Bad
Patch Leak Always
? wi | Overhaul Leak Always
Event: Re-flash Always

The State-Space Model

The conditions in the scoring criteria table (e.g. “Fire
burning™) can be represented by a logical statement
that contains references to object states of the same or
of any other situation. For example, patching a leak in
situation one (S*) might be optimal only if the fire in
situation two (S%) has been extinguished and the valve
in situation three (S%) has been turned off. Situations
can represent any set of physical compartments on the
ship, logical entities, categories, or simulation states
used for scoring.

The scoring of player action sequences can be done
using (simulation) states to keep track of previous
actions. This approach directly leads to the use of
state-space models, where the simulation states record
previous actions and the performance score of the
current action is conditioned on previous simulation
states. This approach works well with observable data,
but for missing, noisy, or unobservable (latent) data, a
probabilistic framework has to be introduced.
Dynamic Bayesian networks do exactly this: They
represent state-space models using a probabilistic
framework.

Dynamic Bayesian Networks

Dynamic Bayesian networks extend Bayesian networks
by modeling dynamic systems as opposed to static
systems. Dynamic Bayesian networks are versatile
representations of state-space models (Murphy, 2002)
and can graphically model probabilistic time-
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dependencies between variables. In the graphical
representation as a network, each node represents a
variable and each directed link (arrow) represents a
dependency between nodes (i.e. node A — node B
means that variable B is dependent on variable A). By
being able to model discrete-time or continuous-time
processes, including inputs (e.g. player actions),
outputs (observations, simulation events), states (latent
and observed), and state transitions of the processes,
DBNs can learn both parameters and network structure
and can infer or predict unobserved outcomes. There
are three approaches to find the structure and
probability tables of a DBN: (a) using expert
knowledge, (b) using observation data, and (c) a
combination of both. In this paper, we will use expert
knowledge to determine DBN structure.
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Figure 2 Dynamic Bayesian Network representing
dependencies of simulation and knowledge states
given an action or event at time t. KSA =
Knowledge, skill, or ability.

Figure 2 depicts the conceptual overview of the DBN
used in our framework. It shows two time slices, at
time t-1 and time t with corresponding actions and
states. Arrows in the figure indicate dependencies.
Arrows across time slices are dashed, whereas arrows
within a time slice are solid. Because our simulation
deals with discrete actions and events, the index t is
increased every time a new action or event happens. In
this particular DBN, simulation states, X, are
observable, whereas knowledge states, K, are not (i.e.
X is an observable variable and K is a latent variable).

Knowledge about the model of the simulation program
is stored in the conditional probability tables (CPTs) of
the simulation states, where the current (index t)
simulation state is dependent on previous states and the
current action. An example logical statement that
represents such a state transition is: if Xy, = “Fire
burning” and A;=“Spray AFFF”, then X;=“Fire
smoking.”

The scoring rules elicited from the SMEs are stored in
the CPTs of the KSA score states and are logical
statements like this: if K3 =“bad” and X, = “Fire
burning” and A = “Spray AFFF”, then
K, = “adequate.” This means that the current decision
making ability score is dependent on previous scores,
previous simulation states, and the current action.
More dependencies and states can be added. For
example, a new state representing the overall fire
fighting score and having all states containing fire
fighting scores as children could be added.

In this study, for simplicity, we did not assume any
dependencies between K, and K..; nor between states of
the same time slice.

Figure 3 shows an excerpt of our actual DBN designed
with GeNle/SMILE (Version 2.0). It shows the state
transitions of some of the fire states going from
“burning” to “smoking”, to “out.” The nodes Node3 to
Node6 correspond to the Action/Events (A/E) nodes in
Figure 2 and provide the relevant actions and events to
state and score nodes.

Init Conditions Temporal Plate
2 iGaleyFireState 2 GaleyFireState ) GalleyFireScore
burning 100% -]__., burning |14 [=] aptimal | i
smoking 0% smoking Node3 | bad [
out 0% o leut S
2  iStorageFireState () StorageFireState -
burning 100% -]__-' burning (S0 |$im:|t:g|&ﬁr&5mr&
smoking 0% =smoking "
out 0% [#] out [] o 1]
2 iElectricalFireState 2 ElledricaIFireétate
burning 100% ([ burning |00 2 ElectricalFireScore
smoking 0% --hsmuking optimal | ——
out 0% = put = bad [+
> iBreakerState ) ,I' Ereakerﬁt::e
on 100% |1 w-. T
off 0% | lofr =

i b

() BerthingFireState | | [ BerthingFireStats | [ BertingFireScore |

Figure 3 Excerpt from DBN used in this paper. Node3 to Node6 provide actions and events that are relevant
for each simulation state or score.
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DATA COLLECTION

Participants were recruited from a university as part of
an introductory psychology course and participation
counted as laboratory credit for their course. The
participants were informed of the voluntary nature of
the study and that they were able to stop at any point,
especially if the participants experienced any dizziness
that may have resulted from movement in the 3D game
environment.

Simulation data from 30 (9 male, 21 female)
participants was collected and analyzed. Of the 30,
56.7% have never played video games, 33.3% play 1-2
hours per week, 6.7% play 3-6 hours per week, and
3.3% play more than 6 hours per week. Fifty percent
of the participants said that they were very comfortable
using computers, whereas 13.3% stated that they were
very uncomfortable.

In order to guarantee well-balanced levels of prior
knowledge, participants were randomly assigned to
receive one out of four groups of instruction: (a) fire
fighting and flooding instruction, (b) fire fighting
instruction only, (c) flooding instruction only, and (d)
no instruction. Before starting the simulation, they
entered a simulation tutorial where they were taught
the game mechanics like moving around, opening
doors, picking up and dropping equipment. Playing the
simulation, participants were asked to discover as
many of the eight situations as possible and to address
the ones that required some actions. Once done with
the  simulation, participants  filled out a
demographic/usability questionnaire in an online
format.

The simulation environment used in this study was
produced with the Unity 3D game engine. The
simulation consisted of a first person perspective 3D
environment in which the player could enter different
compartments and interact with different objects
aboard a Navy ship. This environment allowed for the
capture of all player actions and simulation events in
real time, which were then fed into the DBN for
automatic scoring. For expert scoring, this information
was provided in human-readable format to the SMEs
for expert scoring.

RESULTS

The goal of this study was to validate the use of
automated DBN’s in the evaluation of complex
performances. To do this, scores were calculated for
each player with both human raters (Human) and using
the DBN. The human scoring was based on pre-
existing Navy doctrine that expert human raters use to
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evaluate human performance. The DBN scoring was
derived from this same criteria and represented using
conditional probability tables. Scores ranged from 0
(no player mastery) to 1 (full player mastery; see Table
1).
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Figure 4 Overall Decision making ability scores:
Human (white bars) versus DBN (black bars) scores
(Pearson correlation coefficient, r = 0.98)

A total of more than 600 relevant player actions were
recorded and scored, resulting in action sequences of
about 20 actions for each participant. Aggregates of
these scores were calculated for each player and the
results are shown in Figure 4 through

Figure 6. Figure 4 shows the players’ decision making
ability for damage control overall (combined fire
fighting decision making and flooding decision
making).
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Figure 5 Fire fighting damage control decision
making scores: Human (white) versus DBN (black)
(r=0.99)
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Figure 6 Flooding damage control decision making
scores: Human (white) versus DBN (black) (r =
0.97)

Figures 5 and 6 disaggregate the scores by fire fighting
and flooding, respectively. As can be seen in the
graphs, the human scoring and DBN scoring were very
highly correlated with Pearson moment correlation
coefficients r=0.98, 0.99, and 0.97, respectively).

In flooding damage control situations, the simulation
engine used a leak recurrence time that was too short
and unrealistic. In contrast, the SME scoring panel
weighed flood recurrences less negatively and thus
their scores were generally higher than the DBN
scores.

In essence, the discrepancies between the human and
DBN scoring were a result of the human scoring being
more holistic, tending to focus more on overall
performance rather than discrete actions. For example,
if a player opened and closed a pipe valve multiple
times, the human scoring was more concerned with
whether the valve was ultimately left open or closed,
whereas the DBN scoring incremented or decremented
their score based on each individual action in the order
it was done.

In order to calculate inter-rater agreement between
human and DBN scores using Cohen’s Kappa, the
aggregates overall scores from Figure 4 were rounded
to the nearest integer. The resulting agreement table is
shown in Table 3, where Human-DBN rating
agreement counts show on the diagonal and
disagreement counts are shown off-diagonal; it can be
seen that 23 (diagonal 4+8+2+9) out of 30 participants
were rated the same, yielding a rater agreement
between Human and DBN of 77% with k = 0.674.
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Table 3 Observed counts of inter-rater agreement
on overall decision making ability: Human ratings
versus DBN ratings. (kx =0.674, agreement is 77%)

DBN rating
- o I

= R
2 bad 4 3 0 0 7
§ neutral 1 8 0 0 9
% adequate 0 0 2 1 3
* good 0 0 2 9 11
Total 5 11 4 10 | 30

SUMMARY AND DISCUSSION

The purpose of this study was to validate DBNs for use
in the automated scoring of complex tasks. To that end
we chose a bounded domain of damage control
operations aboard Navy ships consisting of fire fighting
and flooding. We worked with Navy SME’s to elicit
evaluation criteria and used this information to develop
our DBN. To validate the DBN, we compared the
DBN scores with those from expert human raters.

Overall, there was a high correlation between the two
scoring methods. However, the human scored
approach tended to be more forgiving on individual
constituent actions and was more concerned about
holistic outcomes, whereas the DBN was not making
these comparisons due to an incomplete holistic
representation of expert knowledge in the DBN. The
implication of this is that DBNs require a significant
level of effort in converting implicit expert knowledge
into explicit representations in the DBNs. This in turn
might translate into long DBN development lead times.

Despite the high correlations observed, this domain
was narrowly bounded and the tasks were specific and
well defined. However, there are many cases where
the evaluation of human performance involves domains
and settings that are much more broad and complex. In
those cases, having high correlation between expert
raters and a DBN may prove more difficult. Further
research is needed to find ways to more efficiently
elicit knowledge from experts to be incorporated into
DBN’s.  This would help to make utilization of
automated scoring more practical for everyday
situations.
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The use of the computational framework using a DBN
presented in this paper can help reduce or eliminate the
need for human raters and decrease the time to score.
This has the benefit of potentially reducing costs. In
addition, it can facilitate the efficient aggregation,
standardization, and reporting of the scores. For these
reasons, we encourage continued research in the use of
DBN’s, especially for military-related evaluations.

We would like to triangulate our results further by
using other data collection methods, including non-
invasive computer-based eye tracking, after action
interviews, and a concept mapping technique called the
Cognitive Process Mapper (Wainess, 2008), which
enables a student to demonstrate their knowledge of
construct relationships in a domain.
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