Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

MirrorWorlds: Virtual Worlds for Team Training

Dana Moore Michael Thome
Raytheon BBN Technologies Raytheon BBN Technologies
Rosslyn, VA Cambridge, MA
damoore@bbn.com mthome@bbn.com
ABSTRACT

Training and simulation innovators in the DoD are beginning to explore the substitution of
Virtual Worlds (VWs) into the space traditionally occupied by large-scale trainers and
simulators. Moreover, some services (notable the U. S. Air Force) are beginning to look toward
VWs for operational use. VWs are significantly cheaper to author and create content for; easier
to proliferate to a wider audience; and cheaper to maintain and support both in terms of hardware
and software. This has positive implications not only for team training, mission rehearsal,
weapon system-specific training, and after action review, but also for mission operations and
control.

One area where VWs are in their infancy is in their ability to link to live data feeds, affect events
in the real world, and allow rich bi-directional interaction with external resources. The ability to
incorporate dynamic simulation elements such as sensors (real and simulated), semantic tagging
of objects, and convincing virtual role players will greatly enhance the richness and utility of
military training research and engineering offerings to their customers in both kinetic and non-
kinetic domains.

In this paper we describe our recent and ongoing work in developing a general approach to
incorporating externally driven behaviors and events into virtual worlds to give VW authors
access to a much richer set of simulation elements and our progress in incorporating sensing
(simulated and real) into a generalized architecture and reference toolkit. This work—coupled
with the existing Second Life affordances for voice communications, rich media inclusion, rapid
content creation, server intermediation, content distribution and replication, content scripting,
and creation of virtual role players—offers the promise of tactical training that can be extended
in both scale and scope and offered on increasingly distributed, lightweight platforms., and may
offer new capabilities for mission rehearsal, after-action review, and tactical operations.

ABOUT THE AUTHORS

Dana Moore (ElectricSheep Expedition in Second Life) is a Lead Scientist with BBN Technologies in Arlington,
Virginia and is a Principal Investigator for the ONR LTSN Program leading an effort to create Misson-Aware
Sensor Fields. Dana holds an MSc. from the University of Maryland and is a leading authority on Second Life
scripting, co-authoring and Scripting Your World: The Official Guide to Second Life Scripting, and author of
several books on peer-to-peer (P2P) and collaborative computing. Prior to joining BBN, Dana was Chief Scientist
for Roku Technologies, designing an extensive commercial P2P system for 3COM, and Hewlett-Packard. The
system, based on automated understanding of contextual meta-data resulted in several U.S. technology patents.

Michael Thome (Vex Streeter in Second Life) has been a computer scientist with BBN Technologies for over 20
years, and currently specializes in virtual worlds and scalable computing technologies including parallel, distributed,
and agent-based computing, most recently in the air transportation planning and global logistics problem domains.
Michael has degrees in Cognitive Science from the University of Rochester and Boston University, with specialties
in computational models of human neurological systems. He has been active in Second Life-based software
development since 2006 and is co-author of Scripting Your World: The Official Guide to Second Life Scripting.

2010 Paper No. 10362 Page 1 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

MirrorWorlds: Virtual Worlds for Team Training

Dana Moore
Raytheon BBN Technologies
Rosslyn, VA
damoore@bbn.com

Introduction

Virtual worlds that mirror actual tactical areas,
(which we call “MirrorWorlds” to
differentiate them fantasy worlds such as
found in games such as “World of Warcraft®)
have attracted the attention of and are now
employed by the military in numerous ways.
Typical corporate activities such as
acquainting new civilian and uniform
personnel of policies or facility capabilities
(often referred to as "onboarding") are quite
common. Procedural training has been
demonstrated to be an effective component of
the Live-Virtual-Constructive training mix.

The Air Force Education and Training
Command for example have gone so far as to
assert (ND2010) that virtual worlds represent
a consolidated approach for recruiting,
training, and operations. Given the nature of
the Air Force command and control system,
this approach seems a natural fit for this
service whose kinetic operations are largely
carried out electronically: A recruit can be
trained to guide drones to training targets for
example, and that skill set directly transferable
to active operations; the command and control
loop can be directly plugged into the fabric of
the virtual world environment.

Consider this in contrast to the services with a
more kinetic operational profile, those such as
the Marines and Army with a more "boots on
the ground" modus operandi. Is it possible that
training and then operating via a virtual world
might also offer tactical advantage? This is the
question our team wished to address in

2010 Paper No. 10362 Page 2 of 11

Michael Thome
Raytheon BBN Technologies
Cambridge, MA
mthome@bbn.com

designing a virtual world based framework.
We asked ourselves whether it might be
possible, as a design and research goal, to
build a training environment that would
energize team operations in the same way that
networked massively multi-player or MMO
games can, but also transcend first- and third-
person shooters wherein it's not possible to
stray outside the designer's script for
encounter and interaction. As a response to
these design and game goals as further
elaborated in the next section, we designed
and implemented a counter-insurgency trainer
(Openmap08) using the Second Life (SL) VW
as the implementation platform; this paper
documents the design, architecture,
implementation and some results and
observations based on user testing.

A Motivating Problem

A common theme that emerges both in the
enterprise and in the military is the
acknowledgment that teamwork amongst peer
groups, while always important, has become
even more critical. Much training has
traditionally concentrated on optimization of
individual competency and performance, and
it can often be done with live equipment or in
the physical world, but as pointed out
elsewhere (Process09)

"Live training has always been the method of
choice for training soldiers. As the lethality,
expense, and complexity of modern weapon
systems has increased and training

budgets have tightened, live training is no

longer sufficient as the sole training method
(ATSC 99)."

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

We might add that live training apart from
being expensive and insufficient for team and
coordinated group training, is difficult to
evaluate. Hot washes and group after-action
discussions are almost always highly
subjective and it it difficult to develop good
measures of performance or effectiveness that
address how the team performsas a team.
This is in contrast to individual training on
specific equipment where quantitative
measures are often sufficient.

Nowhere is team performance more critical
than in urban operations or UrbanOps. In
physical world UrbanOps, there may be
multiple squads operating in parallel in an area
of interest, tiering up human gathered and
sensor derived intelligence to the company
level. A comprehensive common operational
picture (COP06) is difficult to derive in such a
context using traditional flat GIS style
interfaces and the advantage often goes to the
adversary.

Figure 1: Scene from “Chicken Chase” Counter
Insurgency trainer

Design Desiderata
In our concise description of the experimental
goals for our successful submission to the
federal Virtual Worlds Challenge (FVWC09),
we explained it this way:
“Intelligence analysts at the Battalion/
Company level require training to master the

2010 Paper No. 10362 Page 3 of 11

sorting and collating of information from
multiple sources, and the distilling and
sharing of their knowledge and inferences out
to platoon and squad level. The game
(“Chicken Chase”) provides a multiplayer
game environment in the Second Life universe
where players can exercise all of these skills.
The game challenges individuals to work as a
team to monitor an insurgent-ridden area,
observe the location of IEDs, and beat their
opponents to retrieving them. The chickens
are difficult to distinguish from one another,
and there are many of them. There is some
intelligence to their behavior, but it is difficult
to decipher. The sensors provide a continuous
stream of information, but there are both too
many and not enough”

This was written in advance of the actual
coding and implementation, but clearly
defined in our minds a set of necessary design
and game elements described next.

Design Decisions and Game Elements
In response to a perceived need to examine
virtual worlds as a way to improve multi-
participant, multi-echelon training for urban
operations, we created a virtual environment
situated in, and mirroring the conduct of urban
operations.

We wondered whether creating an interface
that added the third dimension might enhance
prospects for portraying sensed and human
gathered intelligence and aid understanding.
This became our first design objective.

Secondly, we wanted to explore how difficult
it might be to incorporate social networking
capabilities into operations and how much
they might affect team effectiveness. Finally,
we wanted to understand whether it would be
possible to enhance in a novice population’s
understanding and use of the multiple
capabilities inherent in a prepared UrbanOps
environment. If this could show positive

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

results, then it might auger well for proposing
this MirrorWorlds approach to DoD
innovators such as RDECOM/STTC or PEO-
STRI.

In reviewing these objectives, we began to
develop a catalog of the design elements we
would have to incorporate:

e Peer (e.g., Squad to Squad) team
communications, both in world and
interoperating with modern social
networking fabrics that US forces might
use in the field (e.g., Twitter).

* Cross-echelon (e.g., Squad to
Company) communications, as above.

* Representation of insurgents and the
threats posed that might typify those found
in urban operations; to entice non military
users and novice players, we decided to
make the insurgent population as
superficially innocuous as possible, thus
we embodied them as chickens which lead
to titling the game and environment
“Chicken Chase”.

* Believable behaviors exhibited by the
insurgent population. As in a real
UrbanOps environment, behaviors would
entail normal day to day activities typical
for the population intermixed with hidden
and nefarious agendas.

* Compelling threats. In this case we
decided to make detection of egg laying a
surrogate for placement of improvised
explosive devices (IEDs)

* Fungible surrogates for measures of
performance or real measures of mission
success. In this case, individuals and team
competed for prizes and high scores.

* Live sensors embodied virtually,
emulating real traditional sensors
traditionally placed by others (e.g., Sensor
Control and Management Platoons), We
also needed to find a way for sensor
detects in the real world to affect game

play.

2010 Paper No. 10362 Page 4 of 11

* Virtual sensors that team can place
themselves, thus emulating a new
generation of "organic" sensors, those
which are carried with and can be
emplaced by the squad member operating
in situ (LTSN, 2007)

* Conflicting information disinformation

Platform Justification: Benefits of Second
Life

In reviewing these objectives, we began to
understand the advantages of an open
unscripted virtual world platform (versus a
first- or third-person shooter platform such as
VBS-2 or RealWorld) to incorporate
dynamically created content and participant
free play.

Second Life® (SL) is well known as a social
MMO support grid, on which it has been
possible to build multiple simulations, from
dance clubs to green 3D virtual tours of
locales world wide. We determined that all
known virtual environment platforms and
games generally support a sense of shared
mission context and a measurable “place
proprioception” (sense of virtually physical
location, orientation, movement, and
structure). However, we believe that, owing to
its well-designed framework, supported by
VOIP, rich media (e.g. video-in), and many
other attributes, SL was far superior to other
frameworks as implementation platform.

Additionally, and more importantly in

achieving the design desiderata in emulating a

tactical domain, we determined that SL was a

highly adaptable platform which demonstrates

efficacy in supporting multiple user
communities and use cases. Important in
achieving our design goals were:

1. Real-time distance/distributed
collaboration, model building, analytical
work production

2. Support for the concept of an actual group
or team.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

3. Training and simulation: Short-term
Tactical; Analytical; Procedural and
policy; Leadership; Medium intensity long
duration training

4. Social Contexts: ideation and brain surfing
in non challenging environment

5. Intelligence operations: Active operations,
COUNTERPROINTEL, recruitment,

6. Command Operations Centers (COCs):
real AOI sensor augmented mission C2;
enhanced remote interfaces.

In addition, SL is one of a very few
environments that supports in world “art path”
and content creation. It is quite possible to
watch skyscrapers and Afghan villages rise ex
nihilo into full-blown realizations of areas of
interest. Further, there is built in support for:

* Inter-object communication (in this case,
between in-world sensors and team HUDs;
insurgent (chicken-to-chicken) intelligence
sharing,

* Real-time physics,

* Communications with external services (in
this case Twitter and the Web). This
includes web services proxying real
sensors (in this case, certain elements of
game play are determined by ambient
weather conditions in the real world) and
video feeds. It also includes
communications with external knowledge
stores (in this case MySQL and
Parliament, a semantic database).

All of these platform capabilities were useful
in creating Chicken Chase, a Game of
Counter-insurgency to life, in a single
remarkably short development spiral.

Game Concepts
The supporting web site and in game materials
dispensed by the in world HUD dispenser
explained Chicken Chase as a collaborative
team-based multiplayer game of stalking and
puzzling that combined both real world and

2010 Paper No. 10362 Page 5 of 11

virtual world (Second Life) elements and
data/information streams (twitter, webcams).

Modeling Opposing Forces

It was explained that participants must explore
an urban setting in Second Life and observe
the behavior of a number of “paranoid hens”
who make their way through the streets and
buildings, occasionally laying golden eggs in
the darker corners of the city. Here, we hoped
to give participants a feel for what it’s like to
operate in an alien context, where the
opposing force is essentially unknowable.
Chickens, it was hoped would be a suitable
surrogate for an inscrutable alien populace
whose goals and objectives could be observed
and catalogued, but never really known, much
like current operational constraints. There
was some debate in the design phase about
whether to implement interrogation; in the
interest of fielding a working test bed for our
fundamental goals in a short development
spiral, the idea was rejected.

IED Surrogates

Participants learned that the game objective
was for participants to accumulate as many
eggs as possible for the team. Eggs could be
obtained by touching them in the virtual
environment. Some eggs contained virtual
prizes as added incentive. It was also
explained that like real eggs, the game virtual
eggs had a shelf life, albeit somewhat shorter
than in the real world — eggs disappeared after
some period of time. The teaching objective of
the eggs was to help participants think about

Figure 2: (a) Discovering IED surrogate, (b)
wearing prize

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

how best to collaboratively detect items of
interest in a specific environmental context.

Figure 2 shows a player finding an egg, and
then donning their prize.

Sensors
The game attempted to give users a feel for
working with sensors in situ. Although

traditional doctrine says that sensors are
placed by and for the benefit the company
intelligence function, attitudes are changing
such that organic sensors (i.e., travel with and
emplaced by operating squads) for blue force
protection or situation awareness are being
seriously considered.

We devised a virtual sensor that corresponded
in many ways to real sensors. For example,
only a portion of a player’s sensors can be
powered at any given time, and sensors
automatically shut themselves down after
fifteen minutes of continuous operation, and
disappear after one hour. This was an attempt
to emulate sensor duty cycle, and educate
users on the limits of networked sensing. In
the game, users could select to receive Twitter
notifications (tweets) when sensors shut down
just as they received tweets from sensors
about interesting nearby chicken events. The
choice of which sensors should be active
could be controlled in-world or through
Twitter or the web. Sensor placement is
manipulated only within the virtual world.

We also incorporated real world sensors, using
the CitySense (CitySense 2007) array as
surrogate for sensors placed by SCAMP or
other Company level assets. The CitySense
array is deployed all around Cambridge, MA
and detects primarily atmospheric health in
the urban domain. The detection interval is on
the order of a few seconds, which was judged
as sufficiently dynamic to affect game
behavior. These sensors actually correlated to
insurgent behavior. If the real world weather

2010 Paper No. 10362 Page 6 of 11

tended toward windy or rainy, the chickens
uniformly would flock or defer egg laying
activities (the surrogate for IED
emplacement). We attempted in this way to
help wusers become attuned to social
(sometimes called “atmospheric”) changes in
the overall population throughout the AOI.

We suggested some elements of game tactics,
such as, “One approach is simply to chase the
chickens around, but they’re very touchy, so
this doesn’t generally work well. Because the
hens are so wily and elusive, each user can
employ some number of chicken-sensors that
are capable of reporting in Second Life,
through Twitter or the Web when a chicken
has passed by, or when a nearby chicken has
laid an egg. Naturally, chickens aren’t afraid
of sensors the way they’re afraid of people.”

Note Taking, Spreading (Dis)information
We also designed in a capability for
participants to “mark up” the virtual world
with graffiti applied to buildings that can be
seen by their teammates — notes about what
they’ve seen or sensed at a particular location.
These graffiti could be placed anywhere in-
world directly by the user, or indirectly
through Twitter or the web at any of the user’s
sensor locations.

Individual and Team Exploration

As participants explore the virtual world and
the communication channels between virtual-
world sensors, Twitter, and the web, it is
hoped that they will notice other connections
between the virtual world and the real world:
weather, traffic, live video streams, and
chicken behavior. When it rains in
Cambridge, it rains in the virtual world.
Outside temperature and wind conditions in
Cambridge have effects on where chickens go
and the places where they are most likely to
lay eggs. A BBN employee entering or
exiting the main corporate campus (on a
scrubbed-but-live video feed viewable in the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

virtual world or on the web) may cause a
chicken to emerge from a particular building
in the virtual world N (ten) seconds later.

The ultimate goal of the game from the
players’ standpoint is to collaborate with
teammates (both in the virtual world and
electronically through the Web) to combine
their knowledge and sensor data to accumulate
as many eggs as possible for the team. Team
scores are updated in real time to the game site
(Score) as game play continues over long
periods of time. One of the advantages of an
open game environment such as SL is that
well designed games can continue to unfold in
real time regardless of the episodic
involvement of human players.; this is in
contrast to typical game environments that
exist only as long as the player’s engagement.

Implementation

The game implementation used a combination
of external web servers or proxies and the
internal Second Life scripting language
(Linden Scripting Language or LSL). LSL is
an event driven language (see LSLBook0S,
LSLBook09) that enables proactive (scheduled
or asynchronous) and reactive (to user
interaction, other objects, external events)
automation; physics emulation; environmental
controls (both virtual and acting as control
surfaces for physical world systems);
Integration of multimedia, and
communications with the outside world. It is
uniquely suited to the demands of a dynamic
MMO environment and was a critical success
factor in our ability to create the environment.
An LSL script encodes a Finite State Machine
(LSLWIKI), with callbacks for the range of
possible triggering events. Exhibit 1 shows the
simplest possible script. Exhibit 2 shows a
fully functional script as used in the game.

This simplest of scripts illustrates some

elements of script structure. First of all,
scripting in SL is done in the Linden Scripting

2010 Paper No. 10362 Page 7 of 11

Language, usually referred to as LSL. It has
syntax similar to the common C or Java

default
{
state entry()
{
11Say (0, "Hello, Avatar!");

}

touch start (integer total number)
{
11Say (0, "Touched.");

}

Exhibit 1: The LSL “Hello World” Script

programming languages, and is event-driven,
meaning that the flow of the program is
determined by events such as receiving
messages, collisions with other objects, or
user actions.

LSL has an explicit state model, and models
scripts as finite state machines, meaning that
different classes of behaviors can be captured
in separate states, and there are explicit
transitions between the states. At a bare
minimum, a script must contain the default
state, which must define at least one event
handler. Scripts may contain additional states,
each of which must define at least one event
handler. Scripts may also contain user-defined
functions and global variables.

LSL has some unusual built-in data types,
such as vectors and quaternions, as well as a
wide variety of functions for manipulating the
simulation of the physical world, for
interacting with player avatars, and for
communicating with the real world beyond
SL. Multiple scripts are often used in a single
in-world entity (e.g., the insurgents in the
game have eight separate scripts representing
eight finite state machines or FSMs).
Although scripts in the same entity may
interact, each runs its own event triggers and
handlers. Performance characteristics for

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

event handling are well known and
documented by Linden Labs (LSLWIKI).

External services were written in Python and
offered a typical Web 2.0 web services API as
CGI scripts. Because LSL was limited in its
ability to absorb large amounts of HTML
outputs, proxies were used to facilitate
communication between the outside world and
the game.

Game Environment

The Game environment was created on a
portion of a standard Second Life region and
consisted of a typically urban cityscape
(shown in Figure 1 above) used to represent
the area of interest (AOI). Informational
billboards explained game play so that no
external game manual was necessary. In
addition, a complete set of game instructions,
hints, and insights were maintained online
(Openmap08) No access restrictions were
applied as we sought to encourage as many
teams as possible to compete. An urban
environment was laid down hand using
standard “in world” construction tools from
both custom and off the shelf parts such as
buildings and vehicles. All controllers and
HUDs span of control encompassed the entire
65,536 square meters of the region. The
insurgents’ range of communication
encompassed the same area, thus emulating
the real world ability to use mobile
communications. For example, one chicken
might report that it had detected a blue force
member (i.e., player) in a specific area and
cause changes in game play

Game Controller

The game controller is implemented as an in-
world object, managing communications
between all game entities including insurgents
and human users as well as the virtual sensors
they place in the game space, acting
essentially as a communications router. The
controller connects to the external game data
base via outbound HTTP connection (using a

2010 Paper No. 10362 Page 8 of 11

fixed URL), and with internal objects
(players’ HUDs, etc) via normal in-game
broadcast messaging.

The controller’s responsibilities include
checking to assure that the maximum number
of sensors allowed per team has not been
exceeded, “rezzing” or instantiating a
requested sensor, telling the sensor to move to
the requesting player’s geo-coordinates, and
setting up a specific channel for future
communications between player control

objects (e.g. the user’s game HUD) and the
sensor. Figure 3 depicts a player placing a
virtual sensor.

| ! °
N

\

"\

Flgure 3 Player deploylng v1rfua1 sensor

Game HUD

Users were issued a game HUD that allowed
placement of wvirtual sensors, reporting of
status of all the sensors, and other team
affiliation activities. Figure 3 above and
Figure 4 shows the game HUD.

Figure 4: Game Control Head Up Display (HUD)

The “S+” button allowed a user to lay down a
virtual sensor, the Chicken icon, to create a
team, and the “R” button reports the status of
all sensors laid down by the team.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

In Figure 5 below, a player has clicked on the
HUD Chicken icon and is being asked to reply
in normal text chat with a team name, which
he has done.

TEAM JUSTICE LEAGUE

Figure 5: Player sets up team name

SL makes provisions for HUD creation
relatively the same as any other scripted
object. When a HUD is in the inventory of a
player, one clicks on it and selects “attach to
HUD” position. As seen in Figure 5 above, the
user has chosen screen lower left as the HUD
position.

The HUD wuses an outbound HTTP
communications channel to create the team
name on the game site (Score09) and to add to
the score when IEDS (eggs) are discovered
and touched (as surrogate for deactivation).

-

Figure 6: Actions controlled by isurgnt Al

2010 Paper No. 10362 Page 9 of 11

Scripted Object Rezzer

A single object handles the creation of all in-
world scripted game objects: chickens and
eggs through sensors and graffiti objects. It
creates instances of (or rezzes) the various
objects required for game play. Some objects
such as chickens are instantiated according to
a simple timer. Others are created on depend
as a result of messaging from the game
controller. All objects are created at a central
point near the rezzer and then moved to their
target location before relinquishing control to
the scripts in each type of object.

Insurgents

Insurgents were modeled as chickens who
appear at random and follow what seem to
human observers a random path walking
through the game environment and doing
normal “chicken” activities. Independent state
machines handle the various functions shown
in Figure 6.

The artificial intelligence (AI) necessary to
run a chicken was all written in LSL, but in
future versions where human-like actors are
anticipated, a combination of server based Al
and in game will be used.

The Brain module handles navigation through
the game space and coordinates all other
chicken actions. Although the
circumnavigation of the game space may
appear random to a casual human game
participant, the insurgents are “wire guided”,
their path through the game space by
following a paths defined by a map of the
AOQI. The brain then chooses between options
at each waypoint based on simple heuristics.
Each waypoint may be labeled as a simple
transit point, a feeding area where the chicken
will linger for a while, a nesting zone where it
might lay an egg or a death trap such as the
neighborhood restaurant.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

The map is acquired via HTTP at chicken
instantiation time and the chicken will traverse
the map until it expires.

The Legs module handles locomotion through
the map, taking instructions from the brain as
to the next goal and autonomously handling
collisions with players, steps and the like.

The Eyes, Ears, and Touch functions sense
player avatars, signaling the brain so that it
can react via behavioral changes. The
Emotion function causes the chicken’s
internal state to be visible to the observer,
emitting a trail of smoke when “suspicious” of
players in the area, or more rarely to explode.

Finally, the Beak module both emits clucking
sounds audible to players, and sends messages
to the Twitter gateway, informing subscribers
to the “Chicken Feed” what each insurgent is

proximate blue forces in but detect indigenous
populations.

Sensors (physical)
Physical sensors were mediated via a Python
proxy. Each in-world virtual sensor

representation polled the real sensor at 30-
second intervals. This pull notification is
probably non-optimal, but was sufficient for
the small number of real sensors used
experimentally. A likely improvement can be
gained by using an in-world HTTP Server to
act as a push notification proxy for all the
virtual instances of real sensors in the Second
Life region. Owing to the CitySense
architecture, which does not do data push; an
external Python proxy was still required.

Twitter
An external Python proxy was used as the
target of “tweets” outbound from sensors or

up to. insurgents within the game. The proxy
tweet (string action, l1ist params) {
string x = "http://<server>/cgi/TwitProx.cgi?action=" + action;

integer 1i;
integer 1 = llGetListLength (params) ;
for (i=0; i<l; i+=2) {

x += "&"+11lList2String(params,i)+"="+11lEscapeURL (1llList2String(params, (i + 1));

}

11HTTPRequest (x, [],"")
}

default {
touch_start(integer n) {
tweet ("register", ["user","USR", "password", "PASS"]) ;
tweet ("post", ["to", "bbn fvwc", "message", "cluck-cluck"]);
tweet ("directmessage", ["to", "bbn fvwc", "message", "touched by"+llDetectedName (0)]) ;

}
http_response (key req, integer status, list metadata,
llOwnerSay ("Response from Twitter is "+body);
}
}

string body) {

Exhibit 2: Twitter Handler LSL code

Sensors (virtual)

The virtual sensors specifically detected
passing chickens and their activities in the
area, thus emulating a combination of IR
tripwire sensors and imagers. An
accommodation was made in the design of the
sensors to be smart enough to ignore

2010 Paper No. 10362 Page 10 of 11

enabled user registrations, direct message, and
private message send-and-receive via XML
over HTTP, typical of Web 2.0 AJAX
applications.

Thus a typical outbound message from LSL
would resemble Exhibit 2 (which also serves

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

to illustrate the succinctness of the language).
Notice that outbound HTTP request done in
the tweet function are part of the non event-
handling auxiliary function, but http
response is a built-in asynchronous event
handler. Figure 7 shows the result of virtual
sensors “tweeting” to a game player’s twitter
account.

Send ~|l a direct message.

Direct messages sent only to you

Inbox Sent

B B I\ bbn_fvwc Sensor in alleyway near sign at <224.73030,
DN 63.67002, 22.93421> Powering Down.@2009-11-16
14:28:24

BB [\ bbn_fvwc Sensor Near Lon Won Restaurant at <223.48280,
i~ 39.73821, 22.91856> Detected : Hen272@2009-11-16
14:26:01

B B I\ bbn_fvwc Sensor Near Lon Won Restaurant at <223.48280,
oo 39.73821, 22.91856> Detected : Hen272@2009-11-16
: 14:25:51

Figure 7: “Tweets” from in-game Sensors

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the
contributions to the design and

implementation of the experiment of our
colleagues Dr. Bruce Roberts and Kerry
Moffit. We also owe a huge debt of gratitude
to Tami Griffith (RDECOM/STTC) for her
tireless support and advocacy of virtual worlds
in the DoD and the Federal sector in general.

REFERENCES

Citysense09: CitySense - An Open, Urban-

Scale Sensor Network Testbed:
http://www.citysense.net/
COPO6:

http://proceedings.esri.com/library/userconf/
proc06/papers/papers/pap 2220.pdf

2010 Paper No. 10362 Page 11 of 11

ND10: National Defense, April, 2010. “Airmen
to Live Out Their Careers in Cyberspace”.
http://www.nationaldefensemagazine.org/arc
hive/2010/May/Pages/AirmentoLiveOutThei
rCareersInCyberspace.aspx

FVWCO09:http://fvwc.army.mil/FVWC-
Main.html

LSLBook08: Scripting Your World: The
Official Guide to Second Life Scripting
D. Moore, M. Thome, and K. Z. Haigh
Sybex Publishing, 2008

LSLBook09: http://syw.fabulo.us

Openmap08:
http://openmap.bbn.com/ChickenChase/

SL: Second Life home URL: Secondlife.com

Soc09: http://twitter.com/peosoldier

Socl0: Marines Ban Twitter,
Facebook
http://www.wired.com/dangerroom/2009/08/
marines-ban-twitter-myspace-facebook/

Soc2-10: Soldiers in Afghanistan use iPhone
app to battle Taliban:
http://www.phonedog.com/2009/12/29/soldi
ers-in-afghanistan-use-iphone-app-to-battle-
taliban/

Score09:
http://openmap.bbn.com/ChickenChase/cgi/
TeamPage.cgi?action=show

SL: secondlife.com

Process99: Processes, and Products. The US
Army Training Support Center, (1999).
Proceedings of the Second Training
Effectiveness Symposium, Hampton, VA.

MySpace,

