
 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10370 Page 1 of 8 

Challenges to Putting the Real-time Web on Mobile Platforms 

 
Howard Mall John Chludzinski 

 Engineering and Computer Simulations, Inc. Engineering and Computer Simulations, Inc. 

 Orlando, FL Orlando, FL 

 HowardMall@ecsorl.com JohnC@ecsorl.com 

 

 
ABSTRACT 

 

Today's populace is increasingly mobile. They are demanding desktop functionality from their cell phones. 

These platforms provide greater opportunities for people to access training especially for those who are 

busy and geographically dispersed. The proliferation of smartphones has put very capable pocketable 

computers in many hands. Blackberrys became the enterprise standard for mobile e-mail. The iPhone 

changed the game by creating a market for small, focused applications. Android phones are getting 

everybody on the internet all the time.  Let us not forget Windows Mobile and Palm that created the first 

convergence devices called PDA's. 

 

But, all of these different platforms make it difficult and expensive to write one application and distribute 

for all to use.  They must be ported to different hardware, programming environments, and delivery silos. 

This paper will describe using web development to deliver rich applications to varying mobile platforms.  

The domain is synchronous training using the US-Nexus (a virtual world platform being used by a variety of 

federal organizations.)  The approach is to allow mobile phone users to remotely take part in lectures, 

tutorials, and briefings with access to presentations and on-line activities in-sync with participants who are 

attending live or in a virtual world. 

 

This paper describes the use of Web 2.0 techniques to deliver a very non-web mobile user experience. The 

discussion covers strategies for adapting to different screen sizes, designing for touch, server-side client 

session synchronization, and interoperability with non-web services (like messaging.) It also discusses the 

trade-offs for designing an effective mobile training experience focusing on a decision process for what 

features to implement and what to leave out. 

 
ABOUT THE AUTHORS 

 

Howard Mall is Vice President of Engineering at Engineering and Computer Simulations, Inc.  He has 

spent the last five years building various kinds of training systems. He lead efforts for the Navy to develop 

training solutions deployed on cell phones and hand-held computers. For the Army, he delivered the 

Tactical Combat Casualty Care (TC3) Simulation used by combat medics to learn triage and medical 

decision-making on a virtual battlefield. He led the development of the Emergency Management Nexus, a 

next-generation synchronous training platform for the National Guard Bureau that has become a virtual 

world platform serving myriad federal agencies.  He currently oversees multiple engineering efforts at ECS. 

 

John Chludzinski is a senior software engineer with Engineering and Computer Simulations, Inc.   He has 

over 20 years experience in the military simulation and training industry.  Prior the joining ECS, he worked 

as the lead to the network architecture team for the OneTESS project were he oversaw the development of a 

large-scale wireless  network protocol to support real-time training for the Army and Marines.  Since 

joining ECS, his principle responsibility has been to develop of a mobile interface to the NEXUS system. 

 This worked has focused on a web-based approach.  He received his BS from the University of Florida and 

his MS from Rice University. 

 

 

 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10370 Page 2 of 8 

Challenges to Putting the Real-time Web on Mobile Platforms 

 

Howard Mall, John Chludzinski 

Engineering and Computer Simulations, Inc. 

Orlando, FL 

HowardMall@ecsorl.com, JohnC@ecsorl.com 

 

 

INTRODUCTION 

 

The proliferation of “smart” mobile phones has created 

a population that is increasingly connected all the time.  

The iPhone’s “app” store created the expectation and 

demand that people should be able to do practically 

anything on their portable devices including federal 

training (Corbet, 2010).  Through voice, texting, e-

mail, and applications such as Facebook and Twitter 

information is literally delivered into the palm of your 

hand.  Because of their ubiquity and availability mobile 

phones are great platform to deliver training.  Because 

of their capability, “smart” mobile phones are ideal 

(Kolb, 2008). 

 

But, there are several issues in designing training 

experiences using mobile phones: 

• Platform: There are a number of mobile 

phone operating systems to be supported to 

have good proliferation.  That includes a 

variety of development environments and 

legal requirements that must be navigated 

when delivering an application. 

• Interface Constraints: Small screens and 

varying input methods require creative design 

to be functional and effective. 

• Internet Lag: Mobile networks are not as 

quick or responsive as broadband. 

• Interoperability: For inter-connected 

applications this can be an important issue 

especially if you are delivering a mobile 

application that duplicates functionality of and 

synchronizes with a desktop application. 

 

The decision process must take into account these 

considerations when designing a mobile application for 

training.  The particular application that we address is 

for synchronous (live-on-the-web) training that is 

facilitated by a traditional instructor.  We have the 

added constraint of connecting with and duplicating a 

set of features of an on-line virtual world (Nexus).  We 

will describe how we approached the design of our 

mobile application based on these requirements.  We 

will then describe a general decision process 

extrapolated from this work.  One we hope will be 

found useful for future developers creating training 

applications for mobile platforms. 

 

 

BACKGROUND 

 

The design of mobile applications is not new.  The 

original Palm Pilot worked because it was simple and 

effective (Obendorf, 2008).  It also had a number of 

developers creating applications for it years before the 

iPhone Appstore.  It also had an excellent set of design 

guidelines.  Now, there even more choices in operating 

systems and each have their own design guidelines that 

should be reviewed before taking on development 

(Jacko, 2007). 

 

Mobile Operating Systems 

We had experience with creating applications using 

Flash on Windows Mobile before taking on this task.  It 

was expected at the time that Android would have 

Flash before the iPhone.  We would develop our Nexus 

Mobile application on Android and still be able to 

support the number of medical training applications 

that we had already written.  The popularity of the 

iPhone, however, was not to be discounted lightly. 

 
Windows Mobile 

Windows Mobile has now been coalesced and 

upgraded to the Windows Phone 7 release.   Over the 

course of our experience and work we used Windows 

Mobile running on Personal Digital Assistants (PDA’s).  

Microsoft supports development for Windows Mobile 

through the Visual Studio suite of tools that provide 

Application Programmer Interfaces (API’s) in a well-

known Integrated Development Environment (IDE) 

with which most Windows developers are familiar.  

The OS is open to installing software from any source 

without a silo much as you might purchase or write 

software for the Windows OS on your desktop.  It is 

typically stylus-based but can be used with a fingertip if 

the buttons are made large enough. 

 

Windows Mobile has had a version of Flash for years.  

Flash is a development environment that is used to 

create “rich web applications” through a browser plug-



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10370 Page 3 of 8 

in.   Flash was selected so digital artists could compose 

highly visual applications leaving the programmers to 

concentrate on the logical elements.  Flash was run 

inside of an ActiveX control on the Windows Mobile 

device.  Using this technique, it was not a web 

application but was a standalone program that 

leveraged a web development process. 

 

A feature of this technique was that the application 

could be tested within a web browser without having to 

install to the Windows Mobile device.  It was expected 

that this would also make porting the application to 

other devices much easier as Flash was deployed on 

more and more platforms.  However, Flash on some of 

the most popular mobile operating systems have yet to 

been problematic and in the case of the iPhone it looks 

like it is an impossibility (Chen, 2010). 

 
Android 

Android development was selected as the first platform 

to target for the Mobile Nexus.  Android is 

fundamentally a linux kernel with phone oriented 

libraries.  It has an application layer that can run Java 

applications as well as those natively compiled. 

 

The internet search company Google develops 

Android.  Google periodically releases the operating 

system as open source software.  Google also supplies a 

Software Development Kit freely available for 

download and use.  There is also an application store 

called Android Market similar to the iPhone Appstore.  

This is the easiest way to install applications but there 

are alternative ways that are free to the user. 

 

The development environment took some time to set 

up.  Documentation at the time was sparse making the 

learning curve for application development high.  Skills 

developed for Android are focused and have very little 

crossover to other mobile development platforms.  It 

became quickly apparent that becoming a productive 

Android programmer would take a significant amount 

of time. 

 
iPhone 

iPhone development requires Apple hardware, a 

purchased developer’s license, and an iPhone software 

development kit for use with Apple’s IDE: Xcode.  

Distribution of iPhone applications depends on the 

purchased license.  With the standard license 

applications must be distributed through the Appstore.  

The Enterprise license allows applications to be 

distributed throughout a particular company or 

organization. 

 

Devices intended for testing must be registered with the 

Apple iPhone developer website.  Applications must 

also be digitally signed and deployed for those 

registered devices.  The process takes a while to get 

right the first time, but becomes less onerous with 

practice. 

 

The iPhone has distinctive graphical user interface 

components (i.e. widgets) and a unique multi-touch 

input system.  This makes having a consistent user 

experience with an application developed for multiple 

platforms difficult.  The iPhone is a singular device that 

drives applications to conform to a particular look and 

feel. 

 
Other Platforms 

The Blackberry OS, Nokia’s Symbian OS, and Palm’s 

WebOS was surveyed as part of this work but no 

significant programming occurred for these platforms.  

Blackberry offers Java and web technologies (HTML 

and javascript) to create applications for their OS.  

Nokia’s Symbian has been around for a very long time 

and is installed on many mobile phones throughout the 

world.  It is a C/C++ Software Development Kit (SDK) 

that is available for a variety of IDE’s.  WebOS’s SDK 

uses HTML and javascript to create applications, but 

now offers C/C++ plugin development as well. 

 

 

REQUIREMENTS 

 

As part of a larger research effort, we were tasked to 

bring the capabilities found in the Nexus virtual 

environment to mobile devices.  The Nexus provides 3-

D environments in which multiple users may enter as 

‘avatars’ (virtual representations of themselves) and 

meet and take part in training.  The first Nexus use case 

was for on-line synchronous classrooms where multiple 

students could take part in virtual lectures.  This use 

case required the implementation of: 

• voice over internet protocol (VOIP) so 

students could listen to an instructor, ask 

questions, and participate in class, 

• text chat as an alternative way to communicate 

and ask questions, 

• synchronized presentation slides (i.e. 

Powerpoint) so instructors could share content 

and visuals with students as they do in a live 

setting, 

• an attendee’s list so students and instructors 

can see the names of who is in class, and 

• class scheduling so that instructors could set 

up classes and students could find and attend 

them in the virtual world. 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10370 Page 4 of 8 

These tools and services were developed in addition to 

the geographical immersion and presence supplied by a 

user’s avatar in a 3-D virtual world.  

 

This use case became the driver for the development of 

the Nexus-Mobile research and development effort.  

There were many questions to be answered: 

• What platforms should we target?  Which ones 

should take priority? 

• How would we have to redesign the interfaces 

in order to be useful on a mobile platform? 

• How could we achieve interoperability with 

the current Nexus client/server desktop 

solution? 

• Is 3-D viable on mobile platforms?  

• But most importantly, just how far could we 

get in supplying a similar experience of a 

virtual classroom on a mobile device? 

 

 

DESIGN CONSIDERATIONS 

 

Because of the inherent constraints on screen size and 

computing power imposed by mobile devices several 

design decisions had to be considered before 

implementation. 

 

3-D or not to 3-D 

A survey of the platforms showed that there were 

nascent 3-D capabilities available on many of these 

devices especially the iPhone, Windows Mobile, and 

Android.  However, there was a dearth of development 

tools or reasonable art and modeling pipelines available 

on these devices.  To deliver a 3-D capability would 

require the development of a game engine for the 

selected platform.  The resources required would not 

allow any of the application requirements to be 

achieved if 3-D became a priority, thus it was decided 

that 3-D capabilities would be addressed later as time 

and resources permitted.  

 

Platform 

The selection of a mobile operating system(s) to target 

became the most difficult design decision.  Many false 

starts occurred before a good general approach was 

settled upon.  

 

Windows Mobile has a proven development 

environment but its market penetration was small.  

Nexus Mobile would need to reach a wide audience to 

be successful.  Windows Mobile devices no longer 

experience the same public enthusiasm that other 

platforms such as the iPhone and Android now have 

(comScore, 2010). 

 

The iPhone is very popular and has a significant 

amount of capability.  However, the public distribution 

of applications afforded by Apple’s Appstore was seen 

as making the distribution of sensitive training 

materials problematic.  The Nexus being used primarily 

by federal agencies was expected to require tighter 

control of the software and user accounts for access.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Nexus Desktop with open windows 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10370 Page 5 of 8 

iPhone development also required Apple desktop and 

laptop computers increasing development costs. 

 

Android was seen as the next up-and-comer and a good 

platform for experimentation.  However, the 

development environment and documentation at the 

time it was being evaluated proved immature and 

sparse.  One developer would experience a steep 

learning curve that would delay release of any useful 

software. 

 

Blackberry was also considered because of its ubiquity 

in government organizations where it used primarily for 

e-mail.  At the time of the review, the Blackberry 

hardware was not very powerful and (depending on the 

reseller) the ability to deploy applications or access 

certain capabilities of the device (e.g. WiFi) took it out 

of the running. 

 

Web Browser as Platform 

After some experimentation, the final decision was to 

choose the web browser as the platform.  Many of the 

most popular devices come pre-installed or can install 

from after market vendors (i.e. Opera) very capable 

web browsers capable of advanced features like 

Asynchronous Javascript And eXtensible Markup 

Language (XML) (AJAX).  Using advanced web 

development technique allows for applications to 

approach the capabilities of desktop (or in this case 

palmtop) applications.    

 

The program logic would reside on a web application 

server and the use of Cascading Style Sheets (CSS) 

would provide rendering to different screen sizes.  This 

has several distinct advantages: 

• This would cover Windows Mobile, iPhone, 

and Android out of the box and it was found 

that Opera for the Blackberry could also 

support the requirements. 

• There is no installation of software on the 

device avoiding security restrictions and 

obviating the need for upgrade strategies. 

• There is a significant amount of development 

environments, languages, documentation, and 

resources available for developing web 

applications. 

• Features could be authored and deployed 

rapidly to fuel the research and development 

effort. 

 

User Interface 

The size of the screen is the single most important 

design constraint when developing applications for 

mobile devices.  This effects what information the user 

can see and how they interact with it. 

 

Figure 1 shows a screenshot of the Nexus virtual world 

client.  There are a number of tools that can 

concurrently be viewed and accessed as windows that 

overlay the 3-D environment.  A mobile screen does 

not have the pixel real-estate or viewable area to allow 

this kind of interface to be useable. 

 

The decision was that each tool would be a single 

screen on the mobile device and that the interface 

would allow the user to rapidly switch between all of 

them.  A learning event (virtual class) would be the 

context for all these screens and would tie them all 

together. 

 

The user experience was designed to flow like this: 

1. The user logs into the Mobile Nexus 

environment using their credentials  

2. They select an icon that takes them to a screen 

listing all of the training events to which they 

are subscribed. 

3. The user clicks on a training event and now all 

of their “tabs” have information related to the 

context of the event. 

4. The attendees list now has a list of all the 

people in the event.  These could be people 

using the virtual world or people like the user 

who are using a mobile device. 

5. The presentation tab now shows a slide that 

the instructor has chosen to display.  The 

user’s slides stay in sync with the ones the 

instructor is choosing to show. 

6. The chat tab is a chat room for all the 

attendees.  They can ask questions or 

document key points in text communicated on 

this channel 

7. All of these tabs should be available from any 

screen so the user can quickly jump between 

any of the tools within the context of the 

education event they are attending. 

 

The discussion of the implementation of this flow 

resides below. 

 

Architecture 

Asynchronous Javascript And XML (AJAX) is a 

technique for making web applications feel like desktop 

applications (Malan, 2009).  The most telltale sign of 

an old style web application is the refresh screen.  The 

web pages take input from the user and enact 

transactions with the web server.  A call to a particular 

web page supplies data to it, the web page carries out 

some program logic and then sends HyperText Markup 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10370 Page 6 of 8 

Language (HTML) to the browser to be rendered as the 

result.  The state of the application is held by the server 

through a backing store or the web server’s limited 

session context. 

 

Old-style web applications can be a plodding and non-

responsive experience for the user.  AJAX provides a 

way to make transactions with the web application 

server that are transparent to the user and are processed 

in the background.  Some of the program logic can also 

be shifted to the client using javascript. 

 

The architectural design of a mobile web application 

must take into account these capabilities.  The 

developer must figure out how all the different 

interactions with the server will be orchestrated and 

how results will be displayed to the user. 

 

A functional breakdown of user interaction is useful in 

determining what atomic activities will be provided to 

the web application on the server.    Thinking of web 

pages as remote procedure calls made by the client is a 

useful approach for analysis and design. 

 

 

 

IMPLEMENTATION 

 

Platform 

 The web browser is the platform, but even so we 

selected the iPhone as the initial device on which to 

test.  The iPhone’s browser is based on rendering code 

called webkit.  Webkit is also the same code found in 

Android’s stock web browser.  The iPhone also has 

high expectations as far as capabilities due to its large 

number of high quality applications (Yang 2010).  If 

the web experience can be shown to be usable and 

attractive then it becomes a good exemplar for the 

approach. 

 

Architecture 

We selected Seaside as our application server.  This is 

a development environment based on the Smalltalk 

programming language geared toward web 

applications.  It has a very robust environment for 

debugging.  It supports the scale required.  It also 

supports a programmatic rather than transactional 

model of web applications that allows multi-user 

synchronized sessions to be written more easily than 

other web application frameworks.  It implements an 

abstraction layer using the JQuery javascript library 

that delivers many conveniences for web interfaces in 

the browser. 

 

Interface 

Figures 2, 3, and 4 show some of the screens from 

Nexus-Mobile.  They demonstrate the design principal 

of do one thing and do it well.  Each screen supports 

one tool supporting the use case of a virtual classroom. 

 

Figure 2 shows the screen for joining a learning event 

(i.e. classroom).  All of the eligible learning events are 

in a list and clicking on them does only one thing- give 

the user access to the event and populate their tools 

with the data associated with the event.  Chat becomes 

the event’s chat room.  Presentation becomes the 

event’s presentation.  The attendee’s list is populated 

with the names of the students attending the learning 

event. 

 

Figure 3 shows the screen for chat.  This was kept very 

simple with a single input, a list of posts, and send 

button.   The button was made large enough to support 

a finger tap.  In most all mobile web browsers clicking 

in the message box will invoke the on-screen keyboard. 

 

Figure 4 shows the screen for presentation slides.  

Buttons were first tried for navigating the slides if you 

were the presenter.  However, this took up too much 

screen real estate.  Keeping it simple and taking 

advantage of touch, the new implementation required 

 
 

Figure 2: Agenda Screen 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10370 Page 7 of 8 

the user to tap on left side of the slide to move to the 

previous slide and tap on the right side of the slide to 

advance to the next slide. 

 

 

RECOMMENDATIONS 

 

This Mobile Nexus research and development project is 

on-going, but with regard to mobile application design 

especially for federal training we can make some 

recommendations for others building their own mobile 

applications. 

 

Build web applications unless the requirements just 

don’t support it.  If you have to do intense graphics or 

multimedia then you will have to write a native 

application.  Being able to use the application off-line 

also precludes a web application.  However, many 

mobile browsers are supporting HTML5 capabilities 

that support off-line running of web applications now. 

 

Build a Service Oriented Architecture (SOA) to support 

your multiple clients.  The logic of the web application 

server should be written as a set of services available to 

any interface.  This will allow you to build any number 

of clients that utilize these core capabilities. 

 

A SOA is also a good approach if you need to create a 

hybrid native/web application.  Some native 

applications are simply site specific browsers- a native 

program that accesses and utilized a single website.  

This is often done so that a web application can go 

through the sales cycle of a native application.  This 

approach can also be used if a single feature must be 

native but the rest can be a web based.  You are able to 

gain the benefits of a web application while still 

satisfying requirements that can only fulfilled natively. 

 

Finally, leverage toolkits liberally but judiciously.  

Toolkits really quicken the development cycle.  They 

provide convenience for complicated code.  They also 

abstract much of the non-standard behavior of many of 

the most popular web browsers. 

Figure 4: Presenter Screen 

Their simplicity, however, comes at the cost of 

flexibility.  They can be as constraining as the platform 

you are targeting.  Be very careful when mixing 

toolkits, especially javascript web toolkits (e.g. 

JQuery), they often do not play well together. 

 

 

FUTURE WORK 

 

The future of Nexus-Mobile falls into two main areas: 

interoperability and native capability. 

 

Nexus core services must be integrated into the web 

application for complete interoperability.  This will 

require the core services of the Nexus to provide web 

frontends that can be accessed by web applications.  

For example, the chat server will be accessed both by 

client applications and the web application server 

acting as a client. 

 

The 3-D environment and VOIP are two areas that still 

need to be addressed by this work.  3-D Virtual World 

capabilities have two avenues to explore: a native 

application that renders 3-D content using the graphical 

capabilities of the mobile device or “framethrower” 

technology which renders 3-D content on a server and 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Presenter Screen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Chat Screen 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010 

2010 Paper No. 10370 Page 8 of 8 

then feeds video down to the client.  Some initial 

experiments using a framethrower on the iPhone have 

worked but experience significant lag.  Native 3-D 

mobile applications still have the problems mentioned 

at the beginning of the paper, but now many open 

source engines are being ported to mobile platforms 

(e.g Ogre3D (Rogers, 2009)). 

 

 

 

REFERENCES 

 

Chen, Brian X. (2010).  Adobe Gives Up on Flash for 

iPhone, iPad.  Retrieved June 21, 2010 from 

http://www.wired.com/gadgetlab/2010/04/adobe-

flash-iphone/ 

 

comScore (2010). January 2010 U.S. Mobile 

Subscriber Market Share Report.  

http://www.comscore.com/Press_Events/Press_Relea

ses/2010/3/comScore_Reports_January_2010_U.S._

Mobile_Subscriber_Market_Share   

 

Corbet, Peter (2010).  Apps for the Army builds 53 

Apps in 75 Days.  Retrieved May 25, 2010 from 

http://www.istrategylabs.com/2010/05/apps-for-the-

army-yields-53-apps-in-75-days/ 

 

Jacko, Julie A (2007).  Human-computer Interaction: 

Interaction platforms and techniques.  Springer Press. 

 

 

Kolb, L. (2009).  Cell Phones as Learning Tools.  

Journal for Michigan Association for Computer 

Users (MACUL).  Fall 2007. 

 

Malan, David J. (2009).  Building Dynamic Websites.  

Computer Science Lecture.  Harvard University. 

 

Obendorf, Harmut (2008).  The Making of the Palm 

Pilot – Reflections on a Minimal Information 

Appliance.  Department for Informatics - University 

of Hamburg. 

 

Rogers, David (2009).  Q&A Ogre Iphone.  Retrieved 

June 28, 2010 from http://www.3d-

test.com/interviews/ogre3d_iphone_1.htm. 

 

Yang, Daylen (2010).  iPhone Case Study: The App 

Store and SDK.  Retrieved June 19, 2010 from 

http://issuu.com/daylen/docs/iphone.  

 


