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ABSTRACT

The defense community requires a robust capability to represent and analyze the Irregular Warfare (IW) environment
across the range of tactical, operational, and strategic levels of warfare. In support of this need, TRAC Monterey is
developing a prototype capability that credibly represents ground forces conducting Counter Insurgency (COIN)
operations focusing on the relationships and interactions with a population of interest. While understanding the
validity of the M&S of physics-based systems for a given use is well-understood and physics-based combat models
have a long history of use, methods and tools for assessing the validity of M&S in an IW environment are not readily
available. In recognition of this need, we have developed a measurable, repeatable method for assessing,
understanding, and describing the risk of using an M&S for analysis. This approach is unique in that we have
developed risk measures for using a model or simulation for a specified application and criteria for assessing the risk
of using a model or simulation based on consequence, error, and validation process. To exercise validation methods
developed in this effort, a validation of the Cultural Geography Model (CGM) was performed to assess the
appropriateness of the CGM representation of the Conflict Ecosystem conceptual model; the Social Network
Representation within the CGM and the whether this representation is generalizable to conflict ecosystems in any
region; and the representation of social science theory within the CGM, specifically tracing the implementation of
the Theory of Planned Behavior. The work builds upon the experience and insight gained in the Agent-Based
Simulation (ABS) Verification, Validation, and Accreditation (VV&A) Framework Study sponsored by the Marine
Corps Combat Development Center (MCCDC).
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CULTURAL GEOGRAPHY MODEL

The Cultural Geography (CG) agent-based model (ABM)
provides a re-usable framework for representing populations
within a geographic area of operations. The model is
grounded in emerging military doctrine and social science
theory and provides a landscape of potential futures with
respect to the population's response to the actions and
interactions of friendly, threat, and various other actors. The
population responses to these actions and interactions and
their subsequent responses are captured through measuring
each individual's perception of the adequacy of Security,
Governance, and Infrastructure and how their perceptions
change over time. The CG modeling framework can support
any training or analytical effort that requires information
regarding the indigenous population.

Objectives of the project

This work has three main objectives: (1) assess the CG
Model Conflict Eco-System, use of the Theory of Planned
Behavior, and Social Network Representation; (2) develop
methods for assessing the risk of use; and (3) develop and
implement validation plans for the overarching architecture
and conceptual model implementation in general and for the
use of the CG Model in particular. That is, the overarching
objective is to assess and quantify, if possible, the
operational utility of the CG model and provide any
suggestions, rules, or limitations for using the model for the
problems and uses of interest (i.e., traditional wargame
applications and exploration of potential futures). Some
considerations include perishibility of data, access and
qualifications of needed subject matter experts, and
computational complexity.

VALIDATION OVERVIEW

Standard approaches to validation fall short of achieving the
desired results for the complex behaviors generated by
human behavior models and ABSs (Moya and Weisel 2007).
While results validation and face validation are often used
methods, the difficulties with this approach for simulations
having sensitivity to initial conditions, or chaotic/emergent
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effects, and the difficulties with validating human based
representation models is well known (Harmon 2002). In
previous work, we discussed the various definitions of
validation and how these definitions apply to the validation
of ABS (Moya and Youngblood 2007). Comparison is the
common thread in all of the validation definitions reviewed.
In the case of modeling and simulation (M&S), the thing
being represented (the model or simulation) is compared to
the thing it represents. Validity is a qualitative and not an
absolute assessment. A model is not valid in all cases for all
pursuits; a model may be valid in some instances, but not in
others. Validation can be seen as a communication activity
that enables a model or simulation to meet consumer
requirements to support a specific intended application and
provides information to decision-makers allowing them to
make effective decisions about using a model. This concept
is captured by “intended use” in the DoD definition
(Department of Defense 2007). Intuitively, a model’s
validity is based on how closely the simulation behaviors
match the real world. Determining validity falls involves
more scientific method than proof; we determine a model is
valid when there is insufficient evidence to determine the
model is invalid. That is, we have failed to reject the null
hypothesis that the model is valid.

VALIDATION OF AGENT-BASED SYSTEMS
Agent-based systems

Although discrete event and time-stepped models dominate
military simulations, multi-agent models providing human
behavior representations are of growing interest to the
military community (Cares 2002). The science of systems
composed of human entities and their interactions lies in
sociology, psychology, and military science. These systems
differ from those in the “hard” sciences in that the
underlying mathematics of the system are unknown (i.e., the
analytic model describing the system’s behavior is not
known).  Rather, they are described by relationships,
expected outcomes under given stimuli, or theory. These
systems are inherently complex and their simulations reflect
that complexity. The hope is that the simple rule structures
of agent based simulations (ABSs) will exhibit emergent
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behavior that can capture the complexities of the battle
space environment.

The ABS paradigm lends itself well to modeling
environments  where the physical, analytical, or
mathematical representation is unknown at the macro-level,
such as found in social systems or when the interactions
between local elements are of primary interest (Moya and
Weisel 2007). The simulations are built from the bottom-up
on local descriptions of behavior with embedded agent-
heterogeneity, the interactions between which generate
complex, aggregate behavior. That is, micro-level modeling
leads to macro-level effects through interactions that occur
and are governed at the local level. Thus, the behavior
emerges rather than being scripted and determined in a top-
down fashion.

The systems modeled using ABS may be difficult to study
because of their complexity, low occurrence, and
unavailability of data, or other reasons. The data available
for building these models are frequently qualitative in nature
and without an analytical foundation. To validate an ABS, it
is important to understand what characterizes the ABS
modeling paradigm from other paradigms and how these
simulations may differ from other types of simulations with
respect to validation.

Intelligent software agents, from which these simulation
systems are comprised, are a natural metaphor for these
types of complex systems (Moya and Tolk 2007). In
general, they are able to act autonomously, manipulate their
environments to accomplish tasks, and adapt to changes in
their environments. Every agent within a multi-agent system
includes an internal state representation, a knowledge base
including a representation of the simulated environment, and
a behavior engine that takes inputs and chooses behaviors
based on the agent’s state and information found in the
knowledge base.  The reasoning or decision-making
architecture found in the behavior engine includes the
agent’s capabilities to react to changes in its environment
and memory capabilities, as well as beliefs and goals.

ABSs are the result of the composition and interaction of
many agents within the simulation environment (Hare and
Deadman 2004). While this aggregation can lead to
predictable results in some domains (e.g., predator-prey
models, traffic models, and economic models), the
mechanism leading to these results is unknown. Agents may
be homogeneous or heterogeneous within their environment,
have varying levels of reactivity, goal orientation, and
learning capabilities, and have behavior and characteristics
described using many rules and parameters. Parameter
levels multiply creating a large number of possible starting
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states for each agent (multiplied again by the number of
agents within the simulation). This creates a large number
of possible trajectories for the simulation. In addition, for
many of these simulations, small changes in starting
parameters can result in large differences in the trajectory
taken by the simulation. Further, since these interactions
occur at the micro-level, these trajectories are “emergent” in
that they are unanticipated from an examination of the rule
sets and knowledge base governing the agents’ behaviors.
In addition, these models often have hidden, unobservable
behaviors.

An agent is someone authorized to act for another. Agents
possess the characteristics of delegacy (authority to act
autonomously on behalf of the client), competency
(capability to effectively manipulate the problem domain
environment to accomplish the prerequisite tasks) and
amenability (ability to adapt behavior to optimize
performance). A software agent is an artificial agent, which
operates in a software environment. An intelligent software
agent pursues of the goals of its clients. As such, intelligent
software agents (artificial agents, operating in a software
environment, that pursue the goals of their client(s)) are a
natural metaphor for many complex systems to which
computer solutions are sought. (Moya and Tolk 2008)
Agents are applicable to systems with the factors shown in
Table 1 (Jennings and Wooldridge, 1998).

Table 1. Factors indicating an agent system

A complex environment, which may be open, dynamic,
or uncertain

Agents are a metaphor in the system

Data, expertise, or control is distributed

Interaction with legacy systems is necessary

A multi-agent system (MAS) is a system that consists of
multiple autonomous entities that build a population of
agents.  Agents carry with them a decision-making
architecture and ability to perceive and react to its
environment as well as potentially goals and beliefs. It is
these characteristics that lead to the metaphor that makes an
agent based paradigm desirable. An agent’s decision-
making capabilities reflects its reasoning methodology such
as deliberative, tropistic, or a hybrid. Thus, neural network
based, rule based, and logic based decision architectures all
provide a basis for the agent based paradigm. The CG
Model uses an event-based framework for next action
selection and a neural network to process the reaction to the
results of that event. The data supporting these reactions is
developed using the Narrative Paradigm.
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Perception refers to the agent’s ability to sense its
environment, the accuracy of that perception, and its
memory of its own and others’ actions. This perception
feeds its beliefs of the environment. It is characterized by
the ability of the agent to access the activity of the
environment, the accuracy of that perception, and its
memory about past events. The CG Model has no memory
of previous events in the version studied nor does it address
accuracy of the perception of the success or failure of
events. However, access is explicitly modeled through the
concept of homophily.

Some agent architectures have implicit goals while others
explicit goals for which they solve the simulation system to
achieve. Agent beliefs include what the agent believes about
its environment, itself, and other agents within the agent
system such as its beliefs about what it has perceived or
sensed in its environment, the implications of these
perceptions, the results of any actions it may take, the
actions others may take, or the results of other agents’
actions. The CG Model captures this through the social
network within its Conflict Eco-System with data developed
using the Narrative Paradigm. Goals, however, are implicit
once the data has been developed.

Validation challenges

Complex systems, emergent behavior, and rapid update
cycles make ABS validation particularly challenging. Both
the validity of the individual agents and the validity of their
interaction within their environment must be examined.
Other considerations are important as well: identifying and
obtaining data, especially for non-quantitative data elements;
determining agent and parameter relationships and effects
quantified in the referent; important dynamic elements and
sensitivity analysis, especially when non-linearity is present;
effects of agent heterogeneity; and the match between the
system of interest and the computer instantiation.

In general, validation activities focus on two key products of
the M&S development lifecycle: the conceptual model and
the M&S results. Three main areas are important for
validating an ABS: the conceptual model (which includes
the theoretical and the mathematical models), the knowledge
base, and the simulation results. The conceptual model and
knowledge base validation reflects the need for a valid
micro-level representation on which these models are
predicated. Results validation ensures the interactions that
occur at the local levels create an appropriately accurate
macro-level representation of the system being modeled (for
the intended use).
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Physics-based modeling uses empirical data as the real
world referent against which simulation results are
compared. The analytic, mathematical model that forms the
basis for the computation in physics-based simulations forms
the conceptual model for these simulations. Validation of
this conceptual model is axiomatic given broad-based
acceptance of physics-based modeling in various scientific
communities. When modeling other types of systems, such
as social systems, the conceptual model on which to base the
computation is not nearly as codified as in physics. These
systems may have little or no mathematical or analytical
foundation. Instead, these systems may have a theory of
behavior as its conceptual referent, an idealized view of
system behavior based on identified circumstances or system
characteristics, or a set(s) of observed data. These form the
system conceptualization against which the developed
mathematical model (to be coded in the computational
model) is compared to determine whether it is sufficiently
complete at the desired fidelity. For ABS, the expectation is
that if all of the appropriate system elements are included,
the simulation’s computations will result in the needed
accuracy for the intended use.

To model social systems, a single model may use multiple
sources to build the conceptual framework, such as subject
matter expert opinion, theory, and data. There could be
multiple, competing theories. Each of these sources could
individually be a referent for a simulation model or could be
compiled together to form a consolidated referent for
another simulation model.  These referents form the
conceptualization of the system of interest and give the basis
against which the conceptual model is compared.

The theoretical model, containing all of the agent behaviors
(in an ABS), relationships, and expected outcomes, then
forms the referent for the mathematical instantiation of the
model used to capture the desired system model behaviors.
The mathematical description forms the referent for the
computational, algorithmic instantiation of the model. Each
of these relationships is one-to-many; that is, there are many
mathematical descriptions for a given conceptual model and
there are many algorithms to capture a mathematical
description.  Whether the chosen capture method is
appropriate depends on the required parameters and the
level of accuracy desired. Lastly, expected model results
and behaviors found in the conceptual model, as well as
expected results from real world data, other models, direct
calculation, or other sources, form the referent against which
results from simulation runs are compared. Three of the
main models are the theoretical model, the mathematical
model, and the instantiated or coded model. The theoretical
model describes the basic theory used to substantiate the
description of the system under consideration.  The
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validation process in this domain requires a determination
that the system conceptualization matches available data and
theory for the system containing all of the relevant aspects of
that system necessary to support the intended use. When
data or theory (possibly multiple theories) is in conflict, then
the choices made and their justifications are documented to
ensure traceability throughout the process. The theoretical
model, when built, needs to drive to a sufficiently detailed
system description to enable building a mathematical system
description. The mathematical model is the translation of
the theoretical model in mathematical language (e.g.,
equations) so that it can be further translated into code.

In physics-based modeling, the mathematical model is the
analytic model. In the ABS construct, the mathematical
model is the specific choice of how rules are implemented
within the system model. For instance, the conceptual
model may have a state value increasing with certain stimuli.
The mathematical model is the formulae used to calculate
the state value changes as a function of the relevant stimuli.
More than one formulation could be possible. The coded
model is the algorithm instantiated in the computer used to
calculate the mathematical formulation of the theoretical
system model.

Unlike in physics-based models, when an ABS is applied the
theory underlying the system often is unknown. Further,
data supporting model development is sparse. Therefore,
there is little data available for simulation and model
developers to use to build and test their models. This means
that the referent against which the simulation model is
compared may be difficult to obtain and, perhaps, may have
to be built during the model development process.
Documentation of the assumptions, references, and
justifications for the choices made to develop the conceptual
model can support validation, as well as support model use
by providing a communication mechanism between
developers, users, and decision-makers.

Any ABS validation methodology needs to address
parameter interdependencies, property interactions, and
behavior change sensitivities (i.e., the complex behavior
space). Thus, the basis of any methodology is a firm
grounding in theory. Additionally, the methodology needs
to communicate necessary information about the model so
effective decisions about its use can be made. Finally, the
methodology needs the flexibility to meet various
development levels, applications, and intended uses.

The intended use of a simulation determines the level of
accuracy required. A representative simulation that
accurately represents trends within the modeled system may
be all that is required for some analytical applications.
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Accuracy improvements may be required to support
experiments and training. Continuous improvement would
support system predictions in applications, such as test and
evaluation, where the system in the model should be truly
representative of the system being modeled.

Predictive capability, and hence required accuracy, is
different for ABS than for other conventional and physics-
based simulations. In usage terms, ABS are probably best
suited to explore the system and test hypotheses rather than
for predictive analysis. In a predictive vein, the best result
an ABS is likely to achieve is identification of potential
trends within the system and determination of robust
solutions. Such considerations suggest the need for the
development of an analytic paradigm that will allow ABS to
realize their potential as valid analytic tools. One type of
analysis could be to experiment with social systems in ways
not feasible with the real world system in order to test
hypotheses about those systems. The intended use for this
type of simulation might be for building intuition.

ABSs require validation on multiple levels. Since the
conceptual models are not fixed within their communities
the way that physical models are, the referent from which
the conceptual model is derived may require some level of
validation. This validation effort may consist of reconciling
different theories or SME opinions. At the very least, it
should consist of documenting the choices made and the
support for those decisions.

The conceptual model from which the computer
instantiation is derived also requires validation. That is,
since the verbal description of each conceptual model can
have many mathematical interpretations, the mathematical
instantiation chosen requires validation. This includes but
may not be limited to the agents’ rule base, their interaction
mechanisms, their available behaviors, and the knowledge
base that drives behavior selection. One might argue that
this is verification versus validation, but since this is an issue
of system description system rather than of coding which
lies in the realm of computer systems engineering, this
assessment falls more appropriately into the realm of
validation. For instance, the desired relationships and their
descriptive mechanisms may be appropriately coded, but if
the resulting interactions and behaviors could still result in
modeling the system incorrectly (i.e., the wrong thing was
modeled) since the specific mathematics of these
interactions may not be known, leaving the model develop to
choose (perhaps in concert with SMEs). Since the
implications of choices made in bottom-up development on
the emergent behaviors may not be obvious and may only be
discovered during the validation process, the process of
discovering this error could require a change in the
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Figure 1. CG Model as a typical multi-agent system

conceptual/mathematical model for the system and further
validation.

CG Model as a multi-agent system

While the CG model is an agent based simulation in the
sense that agents form a metaphor for the system and the
modeled environment is dynamic and uncertain [Jennings
and Wooldridge 1998], the CG model follows an event-
based modeling paradigm as an activation mechanism for its
behavior engine. The desired output from the model
following each event is the updated distribution on issue
stances. The CG model uses the Narrative Paradigm as its
foundational social science concept for the data generation.
The Narrative Paradigm suggests that for each agent, new
issue stances are a function of current issue stances, current
beliefs, and knowledge of an event. It provides a basis for
the strength of foundational beliefs. The Theory of Planned
Behavior provides a framework for guiding agents’ beliefs
and intentions control mechanisms on behavior, while
Homophily  determines communication through the
mechanism that with similar social characteristics (social
status or values) tend to associate with one another. It
provides a mechanism for both the knowledge of an
endogenous event and direction of influence. Figure 1 is a
conceptual representation of the CG Model as a typical
multi-agent system.
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Events in the model are determined through actions taken by
other actors (2) such as Host Nation, Insurgents, or Control
Forces (exogenous events) or resulting from the ability of
agents to obtain commodities (3) through access to
infrastructure (endogenous events). Actions taken by the
Other Actors are based in the Theory of Planned Behavior
and can be provided within the CG Model through an event
list, human-in-the-loop wargaming, or other simulations.
Infrastructure represents providing of goods and services
and are modeled by a multi-server queues.

An agent can experience an event directly or can learn about
an event from another agent. Agents know of exogenous
events based on their proximity to the location of the event,
and it is assumed that all agents know immediately about
exogenous events that occur within their location. Agents
form intentions to pass on information on events (both
endogenous and exogenous) to other agents through the
social network, which represents relationships and influence
based on the qualitative social theories of Homophily,
Influence, and Trust. The likelihood of an agent changing
its viewpoint on an issue is based the homophily between the
agents. The CG models uses its implementation of
homophily to determine the impact of the message in a way
such that “the impact of a message sent through the social
network is similar to first-hand knowledge” with decreasing
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impact for dissimilar agents. A more detailed description of
the CG model can be found in Alt et al [2009].

Agent Taxonomy within the CG Model

The taxonomy for agents and multi-agent systems developed
by Moya and Tolk [2007], gives a properties based method
for describing an agent based simulation with respect to the
simulation environment, the community of agents (i.e., the
multi-agent system), and the agents within the system itself.
Creating a taxonomical description of agent based
simulation allows the focusing of assessments to areas
clearly identified in affecting agent behavior. A description
of the CG model as a multi-agent system is given in Table
1with the elements of the individual agent description as
shown in Figure 2. As discussed in the table, individual
agents in the system have no memory except that which
exists organically in the description of the Bayesian
network. This lack of memory may be a limitation of the
CG model depending on the specific implementation of the
Bayesian network for a given application.

Agent

Communication
=
e c
a Reasoning / Decision-making 0
: g
& Reactivity Beliefs = Memory = Goals

Figure 2. Typical agent [Moya and Tolk 2007]

The key in assessing the CG model is in assessing the
characterization of the agents within the model and the
methodology used to update the agents’ state (current
beliefs, memory and goals) and the agents’ method for
selecting actions based on its communication with other
agents (Homophily) and perception of the environment.

Table 2. CG model as a multi-agent system

Category Classification and Description

Closed (outside of a federated environment): changes to the environment come from within the

simulation
Situated environment

Static: agents or model inputs to the simulation cause all environmental changes

Deterministic: agent actions have the same effects each time with identical seeds for stochastic

model elements

Heterogeneous:
Agent population (e.g., Stereotype)

No (community) goals

instantiations vary between agents with homogeneous descriptor parameters

Independent (between agent population vice within agent population)

Perception Partial
Communication Through homophily with agents having first hand-knowledge
Memory None
Tropistic:  Agents execute no deliberative planning functions; determine their prevailing

Decision making

Viewpoints and action selection.

environmental beliefs (i.e., occurrence of an event, effect of event on viewpoint on others like
them) through their social network; and have only implicit goals as described by their Beliefs,

RISK

The oft quoted “All models are wrong, some models are
useful,” attributed to Box, highlights that it is important to
understand the risk in using a model and its simulation
(M&S) results when making a decision. This enables
judicious application and use of M&S. The primary
purpose, and importance, of conducting validation activities
is to assess the risk of using an M&S for a specific
application of use. The validation process culminates in the
communication of that risk to model and simulation users
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and the recipients of their data. This includes determining
that the simulation is correct and meets requirements
through software engineering and other processes but is not
limited to that. It also includes providing users with
sufficient information to determine if the simulation can
meet their needs as well as determining the simulation’s
capabilities, limitations, and performance relative to the
real-world objects it simulates.

Currently there is extensive work ongoing in Risk Based
Verification, Validation, and Accreditation (VV&A) for the
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Acquisition M&S VV&A Sub-group (Youngblood 2010).
This work conducted an extensive literature survey to
develop an ontology of more than 200 methods for risk
based assessment methods for VV&A. Risk areas within
the methodology supported by this ontology rely on the
identification by the user of the role of M&S (e.g., the
decisions to be supported and how the M&S supports those
decisions), the importance of M&S in that role, and the
validation maturity required. Thus, the risk of using a
model is a function of consequence, error, and the
validation process. Necessary to determining error is an
understanding of the essential elements to the problem
being addressed by M&S and an assessment on the degree
to and manner in which these essential elements of the
requisite decision problem are included in the model. These
essential elements are included in the conceptual model of
the system for the M&S. Missing, incomplete, or poorly
described elements may indicate a higher risk level.
Consequence is a direct function of the use. Error is a
function of both the accuracy of the model (input data and
description) and simulation results. The RBA methodology
requires the identification of consequence either explicitly
as an estimate of the consequences associated with an
intended use along with an estimate of the probabilities of
simulation limitations leading to consequences or implicitly
through an importance level assignment associated with the
consequences of the intended use. These methods reflect
the guidance for risk assessments found in DoD MIL-STD-
882D.

Therefore, the intended use of the simulation results
determines the level of acceptable risk allowable in the
M&S. Thus, it drives the level of representation fidelity
needed and degree of acceptable abstraction in the
conceptual model as well as the level and kind of accuracy,
or type of validity relation, describing the sufficiency of
match to the referent for an M&S. For example, some
analytical applications may only need a representative
simulation that accurately represents trends within the
modeled system. Improvements in representation and
accuracy may be required to support experiments and
training. Predictive applications, such as test and
evaluation, require further improvements in representation
and accuracy. Therefore, intended use specifies the
validation criteria for the M&S along with focusing
validation efforts and providing guidelines for mitigation
for missed criteria.

While risk assessment is a critical, if not the critical,
outcome in any validation process, the complexity of the
results space limits the ability to test a model’s ability to
address an intended use, especially in Human Behavior
Representation (HBR) models. That is, even if a substantial
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amount of data were available for accuracy comparisons, in
general the number of feasible parameter settings exceeds
even a reasonable exploration of the possibilities (Moya,
McKenzie, and Nguyen 2008). Stochastic models
exacerbate this sampling problem. Limitations in the
techniques available for validity comparisons worsen the
problem further, especially in determining what to compare
to in HBR models. This, then, leads to qualitative
assessments of risk with little or no analytic underpinning;
void rigorous, traceable, repeatable assessments; and ill-
defined and poorly understood consequences both with
respect to the model being used and the decisions based on
its use, particularly for models in which there is little
empirical data and accepted computational representation.
While the RBA methodology provides an overarching
process for risk-based validation assessments and a library
of techniques from which to choose (i.e., it gives the
possibility of from what), it provides little basis for how to
choose or to apply these techniques.

Therefore, this project operated from the viewpoint of
developing a validation methodology tailored specifically to
the CG Model identifying potential risk areas, tests, and
criteria for the spectrum of intended uses of the model.
This resulted in a validation plan for the CG Model
tailorable to a specific use based on guidelines for
developing validation criteria embedded within the plan
itself. The intent of this general CG Model validation plan
was not to develop a wholesale validation of the CG model
rather it specifically recognizes that each use of a model is
unique by providing a basis for validating the model when
used and to support ongoing development.

Components of Risk

The DoD Risk Management Guide for DoD Acquisition
(Defense Acquisition University 2003) identifies two
components toward risk in general:

1) The probability or likelihood of achieving (not
achieving) a given outcome

2) The consequences of achieving (not achieving) a
given outcome

There is higher risk with a higher likelihood or with
significant consequences. Risk assessment includes both
the identification of risk (determination of outcomes) and
the analysis of risk (determination of probability and
consequence of an outcome). It is in this latter aspect that
M&S often plays a role. That is, the intended use for an
M&S is to identify and help to mitigate risk, identified as
part of some specified objective. However, the use of M&S
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in this analysis poses an inherent source of risk. The
sources of risk could lie in the development of the model,
development risk, or in the running of the simulation,
operational risk (Modeling and Simulation Coordination
Office 2004b). Development risk is that the model does not
meet the requirements for its intended use. Operational risk
is that the M&S exhibits insufficient accuracy to provided
needed information. The V&V process addresses both
these risk areas. When considering intended use, risk can
be described generally using the three familiar error types:

1) Type | Error: Reject correct information; the
information provided by the M&S is not used in
solving the problem even though the information
provided is correct.

2) Type Il Error:  Accept incorrect information; the
information provided by the M&S is used in
solving the problem, however, the information
provided is incorrect.

3) Type Il Error: Solve the wrong problem; the
information provided by the M&S is irrelevant to
the actual problem to be solved.

Validation primarily assesses the Type Il error. The
Verification, Validation, and Accreditation Recommended
Practices Guide (VV&A RPG) discusses this as follows
(Modeling and Simulation Coordination Office 2004a).
When assessing the consequences of using incorrect data in
a decision, considerations include who is affected, the
severity of the effect, and the visibility of the consequences.
Development risk assesses the effect of not meeting
requirements, the likelihood of a deficiency, and the
probability that a deficiency will cause the M&S not to meet
requirements. These assessments drive toward the
fundamental assessment of whether the M&S support the
intended use. Operational risk assesses the probability of
making an incorrect decision, the effect and visibility of
making an incorrect decision, and specific user
considerations.

When deciding to use information from an M&S,
quantitative assessments might be provided in the following
ways. First, risk  might be assessed as
Risk(Outcome)=Pr(Outcome)xValue(Outcome).
Alternatively, a region of risk acceptability might be
identified as shown in Figure 3, adapted from (Guarro and
Vessely 2004).

This leads to a specific, yet general, methodology for risk

based validation assessments. Consequence of using the
model is determined by the user not the validator.
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Risk Area

Consequence

Figure 3. Notional Region of Risk Acceptance

Validation processes provide an estimator for the likelihood
of having the bad outcome as a result of a type Il error (i.e.,
type Il error is zero if all trajectories are tested with a
positive result). Stronger validation processes and more
testing reduce the error associated with this assessment,
tightening error bands, and allowing for a more confident
assessment of risk with the model. When no more testing
can reduce the risk assessment (e.g., if no matter how tight
the error bands get risk will still be assessed at YELLOW or
if no matter the probability of a type Il error the possible
consequence has the same risk assessment), then the amount
of validity testing is sufficient. This matches intuition in
that if the consequence is low, then less testing is required.

While quantitative assessments of risk are desirable, these
are not always possible. The VV&A RPG suggests that
qualitative assessments of risk can be applied, noting that
the DoD MIL-STD-882D: Standard Practice for System
Safety provides an accepted example for these qualitative
assessments.  This military standard provides qualitative
descriptions for both probability and consequence
categories, which could be adapted to the simulation context
of interest.

Risk and Intended Use

A key insight from the ABS VV&A Framework Study,
commissioned by the MCCDC Operations Analysis
Division (OAD) to address shortcomings of the VV&A RPG
with respect to the simulations of interest (IW-ABS for
analysis), is that the validation of models in support of
analysis resides within the analysis process itself. That is,
validation cannot be decoupled from the analysis plan,
process, and results. Results from applying the developed
ABS VV&A Framework Study determined that generic
model descriptions and applications of use were insufficient
to address the appropriateness of using an M&S. It
indicated the critical importance of clearly specifying the
intended use for the M&S in the
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Table 3. MIL-STD-882D example with color coding

f’:\:: J:II:;{ITY Catastrophic Critical Marginal Negligible
Frequent 7 13
Probable 9 16
Occasional 6 11

Remote 8 10 14

Improbable 12 15 17

RISK LEVEL 1-5 = High 6-9 = Serious 10-17 = Medium 18-20 = Low

validation efforts beyond generic descriptions. It
became obvious that validation is an analysis process,
intrinsically intertwined with the analysis for which the
(M&S) is employed as a tool.

Consider the mishap risk assessment values from MIL-
STD-882D with the addition of color coding of risk
levels (e.g., RED, ORANGE, YELLOW, and GREEN)
shown in Table 3. Examples of consequences found in
MIL-STD-882D relate consequences to specific
outcome areas such as safety, cost, performance,
schedule, political, or other areas. However, to make
this effective, consequence and the probability of
achieving that consequence must be clearly defined in
order to craft the decision problem.

Formalizing Risk

A fundamental paradigm shift is required in assessing
the risk of using a social science based simulation to
support decision-making. In particular, to effectively
assess risk in using the simulation, it is critical that
consequence be clearly understood and articulated with
respect to its use. This is directly in line with the
research described above with one fundamental
difference. The research above presumes that V&V
efforts can be specified after the probability of a
consequence due to simulation limitation is assessed.
However, it is unclear how a simulation limitation can
be assessed prior to validation activities. Validation
uncovers limitations rather than applies efforts to
limitations.

Therefore, rather than using a priori risk assessments to
guide validation efforts (i.e., arbitrarily equating
importance of a simulation element to risk), validation
efforts ought to lead instead to an assessment of risk.
This needs to be bounded in a clear definition of the
meaning of consequence and thereby the meaning of
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the probability of achieving that consequence of using
the model.

This implies that consequence is only important as it
relates to using the output from an M&S that is
“incorrect.” Informally, a consequence only matters if
it occurs because of information provided by an M&S.
If the outcome would have occurred anyway, there is
no risk in the sense of M&S. Thus, the probability
must be related to the likelihood that the information
provided by the M&S will incorrectly lead to an
alternative solution that will cause a worse consequence
than would have occurred otherwise.

Risk

Figure 4. Risk assessment shown as a classic s-
curve

More formally, B = P(—=& | T(M) — &). Here & is a
state, trajectory, or other condition, perhaps formalized
as a logical statement in first-order predicate calculus,
Z, or some other logical language, that is predicted to
exist in the simulated system as a result of simulation-
based analysis (i.e. T(M) — & ). Likewise consequence
is the “cost” of —& occurring in the simulated system,
perhaps in relation to & Consequence may be
measured, or estimated, on a variety of scales. Utility
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theory may be applied directly to the consequence axis
of the risk function.

Therefore, risk assessments in the use of simulation will
need to clearly articulate the possible alternative
consequences of using the M&S and their relationships
to each other should an alternative path be chosen as a
result of using the model. Only then, can probabilities
of achieving these outcomes be crafted and, potentially,
estimated through a validation process.
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