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ABSTRACT 

 

The defense community requires a robust capability to represent and analyze the Irregular Warfare (IW) environment 

across the range of tactical, operational, and strategic levels of warfare.  In support of this need, TRAC Monterey is 

developing a prototype capability that credibly represents ground forces conducting Counter Insurgency (COIN) 

operations focusing on the relationships and interactions with a population of interest.  While understanding the 

validity of the M&S of physics-based systems for a given use is well-understood and physics‐based combat models 

have a long history of use, methods and tools for assessing the validity of M&S in an IW environment are not readily 

available.  In recognition of this need, we have developed a measurable, repeatable method for assessing, 

understanding, and describing the risk of using an M&S for analysis.  This approach is unique in that we have 

developed risk measures for using a model or simulation for a specified application and criteria for assessing the risk 

of using a model or simulation based on consequence, error, and validation process.  To exercise validation methods 

developed in this effort, a validation of the Cultural Geography Model (CGM) was performed to assess the 

appropriateness of the CGM representation of the Conflict Ecosystem conceptual model; the Social Network 

Representation within the CGM and the whether this representation is generalizable to conflict ecosystems in any 

region; and the representation of social science theory within the CGM, specifically tracing the implementation of 

the Theory of Planned Behavior.  The work builds upon the experience and insight gained in the Agent‐Based 

Simulation (ABS) Verification, Validation, and Accreditation (VV&A) Framework Study sponsored by the Marine 

Corps Combat Development Center (MCCDC).   
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CULTURAL GEOGRAPHY MODEL 

 

The Cultural Geography (CG) agent-based model (ABM) 

provides a re-usable framework for representing populations 

within a geographic area of operations.  The model is 

grounded in emerging military doctrine and social science 

theory and provides a landscape of potential futures with 

respect to the population's response to the actions and 

interactions of friendly, threat, and various other actors.  The 

population responses to these actions and interactions and 

their subsequent responses are captured through measuring 

each individual's perception of the adequacy of Security, 

Governance, and Infrastructure and how their perceptions 

change over time.  The CG modeling framework can support 

any training or analytical effort that requires information 

regarding the indigenous population. 

 

Objectives of the project 

 

This work has three main objectives:  (1) assess the CG 

Model Conflict Eco-System, use of the Theory of Planned 

Behavior, and Social Network Representation; (2) develop 

methods for assessing the risk of use; and (3) develop and 

implement validation plans for the overarching architecture 

and conceptual model implementation in general and for the 

use of the CG Model in particular.  That is, the overarching 

objective is to assess and quantify, if possible, the 

operational utility of the CG model and provide any 

suggestions, rules, or limitations for using the model for the 

problems and uses of interest (i.e., traditional wargame 

applications and exploration of potential futures).  Some 

considerations include perishibility of data, access and 

qualifications of needed subject matter experts, and 

computational complexity.   

 

VALIDATION OVERVIEW 

 

Standard approaches to validation fall short of achieving the 

desired results for the complex behaviors generated by 

human behavior models and ABSs (Moya and Weisel 2007).  

While results validation and face validation are often used 

methods, the difficulties with this approach for simulations 

having sensitivity to initial conditions, or chaotic/emergent 

effects, and the difficulties with validating human based 

representation models is well known (Harmon 2002).  In 

previous work, we discussed the various definitions of 

validation and how these definitions apply to the validation 

of ABS (Moya and Youngblood 2007).  Comparison is the 

common thread in all of the validation definitions reviewed.  

In the case of modeling and simulation (M&S), the thing 

being represented (the model or simulation) is compared to 

the thing it represents.  Validity is a qualitative and not an 

absolute assessment.  A model is not valid in all cases for all 

pursuits; a model may be valid in some instances, but not in 

others.  Validation can be seen as a communication activity 

that enables a model or simulation to meet consumer 

requirements to support a specific intended application and 

provides information to decision-makers allowing them to 

make effective decisions about using a model. This concept 

is captured by “intended use” in the DoD definition 

(Department of Defense 2007).  Intuitively, a model’s 

validity is based on how closely the simulation behaviors 

match the real world.  Determining validity falls involves 

more scientific method than proof; we determine a model is 

valid when there is insufficient evidence to determine the 

model is invalid. That is, we have failed to reject the null 

hypothesis that the model is valid. 

 

VALIDATION OF AGENT-BASED SYSTEMS 

 

Agent-based systems 

 

Although discrete event and time-stepped models dominate 

military simulations, multi-agent models providing human 

behavior representations are of growing interest to the 

military community (Cares 2002).  The science of systems 

composed of human entities and their interactions lies in 

sociology, psychology, and military science.  These systems 

differ from those in the “hard” sciences in that the 

underlying mathematics of the system are unknown (i.e., the 

analytic model describing the system’s behavior is not 

known).  Rather, they are described by relationships, 

expected outcomes under given stimuli, or theory.  These 

systems are inherently complex and their simulations reflect 

that complexity.  The hope is that the simple rule structures 

of agent based simulations (ABSs) will exhibit emergent 
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behavior that can capture the complexities of the battle 

space environment.   

 

The ABS paradigm lends itself well to modeling 

environments where the physical, analytical, or 

mathematical representation is unknown at the macro-level, 

such as found in social systems or when the interactions 

between local elements are of primary interest (Moya and 

Weisel 2007).  The simulations are built from the bottom-up 

on local descriptions of behavior with embedded agent-

heterogeneity, the interactions between which generate 

complex, aggregate behavior.  That is, micro-level modeling 

leads to macro-level effects through interactions that occur 

and are governed at the local level.  Thus, the behavior 

emerges rather than being scripted and determined in a top-

down fashion.   

 

The systems modeled using ABS may be difficult to study 

because of their complexity, low occurrence, and 

unavailability of data, or other reasons.  The data available 

for building these models are frequently qualitative in nature 

and without an analytical foundation.  To validate an ABS, it 

is important to understand what characterizes the ABS 

modeling paradigm from other paradigms and how these 

simulations may differ from other types of simulations with 

respect to validation. 

 

Intelligent software agents, from which these simulation 

systems are comprised, are a natural metaphor for these 

types of complex systems (Moya and Tolk 2007).  In 

general, they are able to act autonomously, manipulate their 

environments to accomplish tasks, and adapt to changes in 

their environments.  Every agent within a multi-agent system 

includes an internal state representation, a knowledge base 

including a representation of the simulated environment, and 

a behavior engine that takes inputs and chooses behaviors 

based on the agent’s state and information found in the 

knowledge base.  The reasoning or decision-making 

architecture found in the behavior engine includes the 

agent’s capabilities to react to changes in its environment 

and memory capabilities, as well as beliefs and goals.   

 

ABSs are the result of the composition and interaction of 

many agents within the simulation environment (Hare and 

Deadman 2004).  While this aggregation can lead to 

predictable results in some domains (e.g., predator-prey 

models, traffic models, and economic models), the 

mechanism leading to these results is unknown.  Agents may 

be homogeneous or heterogeneous within their environment, 

have varying levels of reactivity, goal orientation, and 

learning capabilities, and have behavior and characteristics 

described using many rules and parameters.  Parameter 

levels multiply creating a large number of possible starting 

states for each agent (multiplied again by the number of 

agents within the simulation).  This creates a large number 

of possible trajectories for the simulation. In addition, for 

many of these simulations, small changes in starting 

parameters can result in large differences in the trajectory 

taken by the simulation.  Further, since these interactions 

occur at the micro-level, these trajectories are “emergent” in 

that they are unanticipated from an examination of the rule 

sets and knowledge base governing the agents’ behaviors.  

In addition, these models often have hidden, unobservable 

behaviors.   

 

An agent is someone authorized to act for another.  Agents 

possess the characteristics of delegacy (authority to act 

autonomously on behalf of the client), competency 

(capability to effectively manipulate the problem domain 

environment to accomplish the prerequisite tasks) and 

amenability (ability to adapt behavior to optimize 

performance).  A software agent is an artificial agent, which 

operates in a software environment. An intelligent software 

agent pursues of the goals of its clients.  As such, intelligent 

software agents (artificial agents, operating in a software 

environment, that pursue the goals of their client(s)) are a 

natural metaphor for many complex systems to which 

computer solutions are sought.  (Moya and Tolk 2008)  

Agents are applicable to systems with the factors shown in 

Table 1 (Jennings and Wooldridge, 1998). 

 

Table 1. Factors indicating an agent system 

A complex environment, which may be open, dynamic, 

or uncertain 

Agents are a metaphor in the system 

Data, expertise, or control is distributed 

Interaction with legacy systems is necessary 

 

A multi-agent system (MAS) is a system that consists of 

multiple autonomous entities that build a population of 

agents.  Agents carry with them a decision-making 

architecture and ability to perceive and react to its 

environment as well as potentially goals and beliefs.  It is 

these characteristics that lead to the metaphor that makes an 

agent based paradigm desirable.  An agent’s decision-

making capabilities reflects its reasoning methodology such 

as deliberative, tropistic, or a hybrid.  Thus, neural network 

based, rule based, and logic based decision architectures all 

provide a basis for the agent based paradigm.  The CG 

Model uses an event-based framework for next action 

selection and a neural network to process the reaction to the 

results of that event.  The data supporting these reactions is 

developed using the Narrative Paradigm. 
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Perception refers to the agent’s ability to sense its 

environment, the accuracy of that perception, and its 

memory of its own and others’ actions.  This perception 

feeds its beliefs of the environment.  It is characterized by 

the ability of the agent to access the activity of the 

environment, the accuracy of that perception, and its 

memory about past events.  The CG Model has no memory 

of previous events in the version studied nor does it address 

accuracy of the perception of the success or failure of 

events.  However, access is explicitly modeled through the 

concept of homophily. 

 

Some agent architectures have implicit goals while others 

explicit goals for which they solve the simulation system to 

achieve.  Agent beliefs include what the agent believes about 

its environment, itself, and other agents within the agent 

system such as its beliefs about what it has perceived or 

sensed in its environment, the implications of these 

perceptions, the results of any actions it may take, the 

actions others may take, or the results of other agents’ 

actions.  The CG Model captures this through the social 

network within its Conflict Eco-System with data developed 

using the Narrative Paradigm.  Goals, however, are implicit 

once the data has been developed. 

 

Validation challenges 

 

Complex systems, emergent behavior, and rapid update 

cycles make ABS validation particularly challenging.  Both 

the validity of the individual agents and the validity of their 

interaction within their environment must be examined.  

Other considerations are important as well: identifying and 

obtaining data, especially for non-quantitative data elements; 

determining agent and parameter relationships and effects 

quantified in the referent; important dynamic elements and 

sensitivity analysis, especially when non-linearity is present; 

effects of agent heterogeneity; and the match between the 

system of interest and the computer instantiation. 

 

In general, validation activities focus on two key products of 

the M&S development lifecycle:  the conceptual model and 

the M&S results.  Three main areas are important for 

validating an ABS: the conceptual model (which includes 

the theoretical and the mathematical models), the knowledge 

base, and the simulation results.  The conceptual model and 

knowledge base validation reflects the need for a valid 

micro-level representation on which these models are 

predicated.  Results validation ensures the interactions that 

occur at the local levels create an appropriately accurate 

macro-level representation of the system being modeled (for 

the intended use).   

 

Physics-based modeling uses empirical data as the real 

world referent against which simulation results are 

compared.  The analytic, mathematical model that forms the 

basis for the computation in physics-based simulations forms 

the conceptual model for these simulations.  Validation of 

this conceptual model is axiomatic given broad-based 

acceptance of physics-based modeling in various scientific 

communities.  When modeling other types of systems, such 

as social systems, the conceptual model on which to base the 

computation is not nearly as codified as in physics.  These 

systems may have little or no mathematical or analytical 

foundation. Instead, these systems may have a theory of 

behavior as its conceptual referent, an idealized view of 

system behavior based on identified circumstances or system 

characteristics, or a set(s) of observed data.  These form the 

system conceptualization against which the developed 

mathematical model (to be coded in the computational 

model) is compared to determine whether it is sufficiently 

complete at the desired fidelity.  For ABS, the expectation is 

that if all of the appropriate system elements are included, 

the simulation’s computations will result in the needed 

accuracy for the intended use.  

 

To model social systems, a single model may use multiple 

sources to build the conceptual framework, such as subject 

matter expert opinion, theory, and data.  There could be 

multiple, competing theories.  Each of these sources could 

individually be a referent for a simulation model or could be 

compiled together to form a consolidated referent for 

another simulation model.  These referents form the 

conceptualization of the system of interest and give the basis 

against which the conceptual model is compared.   

 

The theoretical model, containing all of the agent behaviors 

(in an ABS), relationships, and expected outcomes, then 

forms the referent for the mathematical instantiation of the 

model used to capture the desired system model behaviors.  

The mathematical description forms the referent for the 

computational, algorithmic instantiation of the model.  Each 

of these relationships is one-to-many; that is, there are many 

mathematical descriptions for a given conceptual model and 

there are many algorithms to capture a mathematical 

description.  Whether the chosen capture method is 

appropriate depends on the required parameters and the 

level of accuracy desired.  Lastly, expected model results 

and behaviors found in the conceptual model, as well as 

expected results from real world data, other models, direct 

calculation, or other sources, form the referent against which 

results from simulation runs are compared.  Three of the 

main models are the theoretical model, the mathematical 

model, and the instantiated or coded model.  The theoretical 

model describes the basic theory used to substantiate the 

description of the system under consideration.  The 
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validation process in this domain requires a determination 

that the system conceptualization matches available data and 

theory for the system containing all of the relevant aspects of 

that system necessary to support the intended use.  When 

data or theory (possibly multiple theories) is in conflict, then 

the choices made and their justifications are documented to 

ensure traceability throughout the process.  The theoretical 

model, when built, needs to drive to a sufficiently detailed 

system description to enable building a mathematical system 

description.  The mathematical model is the translation of 

the theoretical model in mathematical language (e.g., 

equations) so that it can be further translated into code. 

 

In physics-based modeling, the mathematical model is the 

analytic model.  In the ABS construct, the mathematical 

model is the specific choice of how rules are implemented 

within the system model.  For instance, the conceptual 

model may have a state value increasing with certain stimuli.  

The mathematical model is the formulae used to calculate 

the state value changes as a function of the relevant stimuli.  

More than one formulation could be possible.  The coded 

model is the algorithm instantiated in the computer used to 

calculate the mathematical formulation of the theoretical 

system model. 

 

Unlike in physics-based models, when an ABS is applied the 

theory underlying the system often is unknown.  Further, 

data supporting model development is sparse.  Therefore, 

there is little data available for simulation and model 

developers to use to build and test their models.  This means 

that the referent against which the simulation model is 

compared may be difficult to obtain and, perhaps, may have 

to be built during the model development process.  

Documentation of the assumptions, references, and 

justifications for the choices made to develop the conceptual 

model can support validation, as well as support model use 

by providing a communication mechanism between 

developers, users, and decision-makers. 

 

Any ABS validation methodology needs to address 

parameter interdependencies, property interactions, and 

behavior change sensitivities (i.e., the complex behavior 

space).  Thus, the basis of any methodology is a firm 

grounding in theory.  Additionally, the methodology needs 

to communicate necessary information about the model so 

effective decisions about its use can be made.  Finally, the 

methodology needs the flexibility to meet various 

development levels, applications, and intended uses.   

 

The intended use of a simulation determines the level of 

accuracy required.  A representative simulation that 

accurately represents trends within the modeled system may 

be all that is required for some analytical applications.  

Accuracy improvements may be required to support 

experiments and training.  Continuous improvement would 

support system predictions in applications, such as test and 

evaluation, where the system in the model should be truly 

representative of the system being modeled.    

 

Predictive capability, and hence required accuracy, is 

different for ABS than for other conventional and physics-

based simulations.  In usage terms, ABS are probably best 

suited to explore the system and test hypotheses rather than 

for predictive analysis.  In a predictive vein, the best result 

an ABS is likely to achieve is identification of potential 

trends within the system and determination of robust 

solutions.  Such considerations suggest the need for the 

development of an analytic paradigm that will allow ABS to 

realize their potential as valid analytic tools.   One type of 

analysis could be to experiment with social systems in ways 

not feasible with the real world system in order to test 

hypotheses about those systems.   The intended use for this 

type of simulation might be for building intuition.   

 

ABSs require validation on multiple levels.  Since the 

conceptual models are not fixed within their communities 

the way that physical models are, the referent from which 

the conceptual model is derived may require some level of 

validation.  This validation effort may consist of reconciling 

different theories or SME opinions.   At the very least, it 

should consist of documenting the choices made and the 

support for those decisions.    

 

The conceptual model from which the computer 

instantiation is derived also requires validation.  That is, 

since the verbal description of each conceptual model can 

have many mathematical interpretations, the mathematical 

instantiation chosen requires validation.  This includes but 

may not be limited to the agents’ rule base, their interaction 

mechanisms, their available behaviors, and the knowledge 

base that drives behavior selection.  One might argue that 

this is verification versus validation, but since this is an issue 

of system description system rather than of coding which 

lies in the realm of computer systems engineering, this 

assessment falls more appropriately into the realm of 

validation.  For instance, the desired relationships and their 

descriptive mechanisms may be appropriately coded, but if 

the resulting interactions and behaviors could still result in 

modeling the system incorrectly (i.e., the wrong thing was 

modeled) since the specific mathematics of these 

interactions may not be known, leaving the model develop to 

choose (perhaps in concert with SMEs).  Since the 

implications of choices made in bottom-up development on 

the emergent behaviors may not be obvious and may only be 

discovered during the validation process, the process of 

discovering this error could require a change in the
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Figure 1.  CG Model as a typical multi-agent system 

conceptual/mathematical model for the system and further 

validation.   

 

CG Model as a multi-agent system 

 

While the CG model is an agent based simulation in the 

sense that agents form a metaphor for the system and the 

modeled environment is dynamic and uncertain [Jennings 

and Wooldridge 1998], the CG model follows an event-

based modeling paradigm as an activation mechanism for its 

behavior engine.  The desired output from the model 

following each event is the updated distribution on issue 

stances.  The CG model uses the Narrative Paradigm as its 

foundational social science concept for the data generation.  

The Narrative Paradigm suggests that for each agent, new 

issue stances are a function of current issue stances, current 

beliefs, and knowledge of an event.  It provides a basis for 

the strength of foundational beliefs.  The Theory of Planned 

Behavior provides a framework for guiding agents’ beliefs 

and intentions control mechanisms on behavior, while 

Homophily determines communication through the 

mechanism that with similar social characteristics (social 

status or values) tend to associate with one another.  It 

provides a mechanism for both the knowledge of an 

endogenous event and direction of influence.  Figure 1 is a 

conceptual representation of the CG Model as a typical 

multi-agent system.   

Events in the model are determined through actions taken by 

other actors (2) such as Host Nation, Insurgents, or Control 

Forces (exogenous events) or resulting from the ability of 

agents to obtain commodities (3) through access to 

infrastructure (endogenous events).  Actions taken by the 

Other Actors are based in the Theory of Planned Behavior 

and can be provided within the CG Model through an event 

list, human-in-the-loop wargaming, or other simulations.  

Infrastructure represents providing of goods and services 

and are modeled by a multi-server queues.   

 

An agent can experience an event directly or can learn about 

an event from another agent.  Agents know of exogenous 

events based on their proximity to the location of the event, 

and it is assumed that all agents know immediately about 

exogenous events that occur within their location.  Agents 

form intentions to pass on information on events (both 

endogenous and exogenous) to other agents through the 

social network, which represents relationships and influence 

based on the qualitative social theories of Homophily, 

Influence, and Trust.  The likelihood of an agent changing 

its viewpoint on an issue is based the homophily between the 

agents.  The CG models uses its implementation of 

homophily to determine the impact of the message in a way 

such that “the impact of a message sent through the social 

network is similar to first-hand knowledge” with decreasing 
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impact for dissimilar agents.  A more detailed description of 

the CG model can be found in Alt et al [2009]. 

 

Agent Taxonomy within the CG Model 

 

The taxonomy for agents and multi-agent systems developed 

by Moya and Tolk [2007], gives a properties based method 

for describing an agent based simulation with respect to the 

simulation environment, the community of agents (i.e., the 

multi-agent system), and the agents within the system itself.  

Creating a taxonomical description of agent based 

simulation allows the focusing of assessments to areas 

clearly identified in affecting agent behavior.  A description 

of the CG model as a multi-agent system is given in Table 

1with the elements of the individual agent description as 

shown in Figure 2.  As discussed in the table, individual 

agents in the system have no memory except that which 

exists organically in the description of the Bayesian 

network.  This lack of memory may be a limitation of the 

CG model depending on the specific implementation of the 

Bayesian network for a given application. 

 

Figure 2.  Typical agent [Moya and Tolk 2007] 

The key in assessing the CG model is in assessing the 

characterization of the agents within the model and the 

methodology used to update the agents’ state (current 

beliefs, memory and goals) and the agents’ method for 

selecting actions based on its communication with other 

agents (Homophily) and perception of the environment.   

Table 2.  CG model as a multi-agent system 

Category Classification and Description 

Situated environment 

Closed (outside of a federated environment):  changes to the environment come from within the 

simulation 

Static:  agents or model inputs to the simulation cause all environmental changes 

Deterministic:  agent actions have the same effects each time with identical seeds for stochastic 

model elements 

Agent population 

Heterogeneous:  instantiations vary between agents with homogeneous descriptor parameters 

(e.g., Stereotype) 

Independent (between agent population vice within agent population) 

No (community) goals 

Perception Partial 

Communication Through homophily with agents having first hand-knowledge 

Memory None 

Decision making 

Tropistic:  Agents execute no deliberative planning functions; determine their prevailing 

environmental beliefs (i.e., occurrence of an event, effect of event on viewpoint on others like 

them) through their social network; and have only implicit goals as described by their Beliefs, 

Viewpoints and action selection.   

RISK 

 

The oft quoted “All models are wrong, some models are 

useful,” attributed to Box, highlights that it is important to 

understand the risk in using a model and its simulation 

(M&S) results when making a decision.  This enables 

judicious application and use of M&S.  The primary 

purpose, and importance, of conducting validation activities 

is to assess the risk of using an M&S for a specific 

application of use.  The validation process culminates in the 

communication of that risk to model and simulation users 

and the recipients of their data.  This includes determining 

that the simulation is correct and meets requirements 

through software engineering and other processes but is not 

limited to that.  It also includes providing users with 

sufficient information to determine if the simulation can 

meet their needs as well as determining the simulation’s 

capabilities, limitations, and performance relative to the 

real-world objects it simulates.   

 

Currently there is extensive work ongoing in Risk Based 

Verification, Validation, and Accreditation (VV&A) for the 
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Acquisition M&S VV&A Sub-group (Youngblood 2010).  

This work conducted an extensive literature survey to 

develop an ontology of more than 200 methods for risk 

based assessment methods for VV&A.  Risk areas within 

the methodology supported by this ontology rely on the 

identification by the user of the role of M&S (e.g., the 

decisions to be supported and how the M&S supports those 

decisions), the importance of M&S in that role, and the 

validation maturity required.  Thus, the risk of using a 

model is a function of consequence, error, and the 

validation process.  Necessary to determining error is an 

understanding of the essential elements to the problem 

being addressed by M&S and an assessment on the degree 

to and manner in which these essential elements of the 

requisite decision problem are included in the model.  These 

essential elements are included in the conceptual model of 

the system for the M&S.  Missing, incomplete, or poorly 

described elements may indicate a higher risk level.  

Consequence is a direct function of the use.  Error is a 

function of both the accuracy of the model (input data and 

description) and simulation results.  The RBA methodology 

requires the identification of consequence either explicitly 

as an estimate of the consequences associated with an 

intended use along with an estimate of the probabilities of 

simulation limitations leading to consequences or implicitly 

through an importance level assignment associated with the 

consequences of the intended use.  These methods reflect 

the guidance for risk assessments found in DoD MIL-STD-

882D.   

 

Therefore, the intended use of the simulation results 

determines the level of acceptable risk allowable in the 

M&S.  Thus, it drives the level of representation fidelity 

needed and degree of acceptable abstraction in the 

conceptual model as well as the level and kind of accuracy, 

or type of validity relation, describing the sufficiency of 

match to the referent for an M&S.  For example, some 

analytical applications may only need a representative 

simulation that accurately represents trends within the 

modeled system.  Improvements in representation and 

accuracy may be required to support experiments and 

training.  Predictive applications, such as test and 

evaluation, require further improvements in representation 

and accuracy.  Therefore, intended use specifies the 

validation criteria for the M&S along with focusing 

validation efforts and providing guidelines for mitigation 

for missed criteria.   

 

While risk assessment is a critical, if not the critical, 

outcome in any validation process, the complexity of the 

results space limits the ability to test a model’s ability to 

address an intended use, especially in Human Behavior 

Representation (HBR) models.  That is, even if a substantial 

amount of data were available for accuracy comparisons, in 

general the number of feasible parameter settings exceeds 

even a reasonable exploration of the possibilities (Moya, 

McKenzie, and Nguyen 2008).  Stochastic models 

exacerbate this sampling problem.  Limitations in the 

techniques available for validity comparisons worsen the 

problem further, especially in determining what to compare 

to in HBR models.  This, then, leads to qualitative 

assessments of risk with little or no analytic underpinning; 

void rigorous, traceable, repeatable assessments; and ill-

defined and poorly understood consequences both with 

respect to the model being used and the decisions based on 

its use, particularly for models in which there is little 

empirical data and accepted computational representation.  

While the RBA methodology provides an overarching 

process for risk-based validation assessments and a library 

of techniques from which to choose (i.e., it gives the 

possibility of from what), it provides little basis for how to 

choose or to apply these techniques.   

 

Therefore, this project operated from the viewpoint of 

developing a validation methodology tailored specifically to 

the CG Model identifying potential risk areas, tests, and 

criteria for the spectrum of intended uses of the model.  

This resulted in a validation plan for the CG Model 

tailorable to a specific use based on guidelines for 

developing validation criteria embedded within the plan 

itself.  The intent of this general CG Model validation plan 

was not to develop a wholesale validation of the CG model 

rather it specifically recognizes that each use of a model is 

unique by providing a basis for validating the model when 

used and to support ongoing development. 

 

Components of Risk 

 

The DoD Risk Management Guide for DoD Acquisition 

(Defense Acquisition University 2003) identifies two 

components toward risk in general: 

 

1) The probability or likelihood of achieving (not 

achieving) a given outcome 

2) The consequences of achieving (not achieving) a 

given outcome 

There is higher risk with a higher likelihood or with 

significant consequences.  Risk assessment includes both 

the identification of risk (determination of outcomes) and 

the analysis of risk (determination of probability and 

consequence of an outcome).  It is in this latter aspect that 

M&S often plays a role.  That is, the intended use for an 

M&S is to identify and help to mitigate risk, identified as 

part of some specified objective.  However, the use of M&S 
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in this analysis poses an inherent source of risk.  The 

sources of risk could lie in the development of the model, 

development risk, or in the running of the simulation, 

operational risk (Modeling and Simulation Coordination 

Office 2004b).  Development risk is that the model does not 

meet the requirements for its intended use.  Operational risk 

is that the M&S exhibits insufficient accuracy to provided 

needed information.  The V&V process addresses both 

these risk areas.  When considering intended use, risk can 

be described generally using the three familiar error types:   

 

1) Type I Error:  Reject correct information; the 

information provided by the M&S is not used in 

solving the problem even though the information 

provided is correct. 

2) Type II Error:  Accept incorrect information; the 

information provided by the M&S is used in 

solving the problem, however, the information 

provided is incorrect. 

3) Type III Error:  Solve the wrong problem; the 

information provided by the M&S is irrelevant to 

the actual problem to be solved.   

Validation primarily assesses the Type II error.  The 

Verification, Validation, and Accreditation Recommended 

Practices Guide (VV&A RPG) discusses this as follows 

(Modeling and Simulation Coordination Office 2004a).  

When assessing the consequences of using incorrect data in 

a decision, considerations include who is affected, the 

severity of the effect, and the visibility of the consequences.  

Development risk assesses the effect of not meeting 

requirements, the likelihood of a deficiency, and the 

probability that a deficiency will cause the M&S not to meet 

requirements.  These assessments drive toward the 

fundamental assessment of whether the M&S support the 

intended use.  Operational risk assesses the probability of 

making an incorrect decision, the effect and visibility of 

making an incorrect decision, and specific user 

considerations.   

 

When deciding to use information from an M&S, 

quantitative assessments might be provided in the following 

ways.  First, risk might be assessed as 

Risk(Outcome)=Pr(Outcome)×Value(Outcome).  

Alternatively, a region of risk acceptability might be 

identified as shown in Figure 3, adapted from (Guarro and 

Vessely 2004).   

 

This leads to a specific, yet general, methodology for risk 

based validation assessments.  Consequence of using the 

model is determined by the user not the validator.   

 

Figure 3.  Notional Region of Risk Acceptance 

Validation processes provide an estimator for the likelihood 

of having the bad outcome as a result of a type II error (i.e., 

type II error is zero if all trajectories are tested with a 

positive result).  Stronger validation processes and more 

testing reduce the error associated with this assessment, 

tightening error bands, and allowing for a more confident 

assessment of risk with the model.  When no more testing 

can reduce the risk assessment (e.g., if no matter how tight 

the error bands get risk will still be assessed at YELLOW or 

if no matter the probability of a type II error the possible 

consequence has the same risk assessment), then the amount 

of validity testing is sufficient.  This matches intuition in 

that if the consequence is low, then less testing is required. 

 

While quantitative assessments of risk are desirable, these 

are not always possible.  The VV&A RPG suggests that 

qualitative assessments of risk can be applied, noting that 

the DoD MIL-STD-882D:  Standard Practice for System 

Safety provides an accepted example for these qualitative 

assessments.  This military standard provides qualitative 

descriptions for both probability and consequence 

categories, which could be adapted to the simulation context 

of interest.   

 

Risk and Intended Use 

 

A key insight from the ABS VV&A Framework Study, 

commissioned by the MCCDC Operations Analysis 

Division (OAD) to address shortcomings of the VV&A RPG 

with respect to the simulations of interest (IW-ABS for 

analysis), is that the validation of models in support of 

analysis resides within the analysis process itself.  That is, 

validation cannot be decoupled from the analysis plan, 

process, and results.  Results from applying the developed 

ABS VV&A Framework Study determined that generic 

model descriptions and applications of use were insufficient 

to address the appropriateness of using an M&S.  It 

indicated the critical importance of clearly specifying the 

intended use for the M&S in the  
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Table 3.  MIL-STD-882D example with color coding 

 
 

validation efforts beyond generic descriptions.  It 

became obvious that validation is an analysis process, 

intrinsically intertwined with the analysis for which the 

(M&S) is employed as a tool.  

 

Consider the mishap risk assessment values from MIL-

STD-882D with the addition of color coding of risk 

levels (e.g., RED, ORANGE, YELLOW, and GREEN) 

shown in Table 3.  Examples of consequences found in 

MIL-STD-882D relate consequences to specific 

outcome areas such as safety, cost, performance, 

schedule, political, or other areas.  However, to make 

this effective, consequence and the probability of 

achieving that consequence must be clearly defined in 

order to craft the decision problem. 

 

Formalizing Risk 

 

A fundamental paradigm shift is required in assessing 

the risk of using a social science based simulation to 

support decision-making.  In particular, to effectively 

assess risk in using the simulation, it is critical that 

consequence be clearly understood and articulated with 

respect to its use.  This is directly in line with the 

research described above with one fundamental 

difference.  The research above presumes that V&V 

efforts can be specified after the probability of a 

consequence due to simulation limitation is assessed.  

However, it is unclear how a simulation limitation can 

be assessed prior to validation activities.  Validation 

uncovers limitations rather than applies efforts to 

limitations.   

Therefore, rather than using a priori risk assessments to 

guide validation efforts (i.e., arbitrarily equating 

importance of a simulation element to risk), validation 

efforts ought to lead instead to an assessment of risk.  

This needs to be bounded in a clear definition of the 

meaning of consequence and thereby the meaning of 

the probability of achieving that consequence of using 

the model.   

 

This implies that consequence is only important as it 

relates to using the output from an M&S that is 

“incorrect.”  Informally, a consequence only matters if 

it occurs because of information provided by an M&S.  

If the outcome would have occurred anyway, there is 

no risk in the sense of M&S.  Thus, the probability 

must be related to the likelihood that the information 

provided by the M&S will incorrectly lead to an 

alternative solution that will cause a worse consequence 

than would have occurred otherwise.    

 

 

Figure 4.  Risk assessment shown as a classic s-

curve 

More formally, β = P(ξ │T(M) → ξ).  Here ξ is a 

state, trajectory, or other condition, perhaps formalized 

as a logical statement in first-order predicate calculus, 

Z, or some other logical language, that is predicted to 

exist in the simulated system as a result of simulation-

based analysis (i.e. T(M) → ξ ).  Likewise consequence 

is the “cost” of ξ occurring in the simulated system, 

perhaps in relation to ξ. Consequence may be 

measured, or estimated, on a variety of scales.  Utility 
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theory may be applied directly to the consequence axis 

of the risk function. 

 

Therefore, risk assessments in the use of simulation will 

need to clearly articulate the possible alternative 

consequences of using the M&S and their relationships 

to each other should an alternative path be chosen as a 

result of using the model.  Only then, can probabilities 

of achieving these outcomes be crafted and, potentially, 

estimated through a validation process.   
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