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ABSTRACT

In order to keep up with the rate of technology advancement, solutions must be created that transcend hardware,
middleware, protocols and data structures to allow for a sustainable implementation. Distributed Modeling &
Simulation (M&S) includes applications executing their intended use for the collective goal of a System of Systems
(SoS) M&S environment. Distributed M&S is fundamentally based on the exchange of information between
functions that may not have been built to work together.

The Modeling Architecture for Technology, Research and EXperimentation (MATREX) program has been a
synchronization point for M&S across the U.S. Army Research, Development and Engineering Command
(RDECOM) for many years. It has brought together models, simulations and tools from the RDECOM labs, centers
and activities into a common architecture and environment. The program’s focus has been on integrating these
disparate applications into a harmonious solution for engineering model development and evaluation, technology
tradeoffs, capability assessments, concept development, experimentation, testing and training. MATREX has
developed tools that support this integration through multiple simulation middleware protocols. It has also developed
tools that abstract away the integration details from the application developer. In particular, it allows the modeler to
develop models while MATREX provides the tools to handle the M&S integration intricacies such as interest
management, encoding/decoding, dead-reckoning, etc.

This paper will describe these Government-owned middleware agnostic tools along with a SoS Systems Engineering
approach and infrastructure that can link M&S functional requirements to model-specific data requirements and code
generated testing. MATREX tools and Systems Engineering process have been used across several programs,
including the Training and Doctrine Command Battle Lab Collaborative Simulation Environment (BLCSE), Army
Test & Evaluation Command Operational Test Command (OTC) Analytic Simulation and Integration Suite (OASIS)
and Brigade Combat Team Modernization Simulation Environment (BSE), to name a few. This methodology could
benefit many more M&S programs.
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EFFECTIVE INTEROPERABILITY

Most integrators concentrate on integrating models by
focusing on the syntax for the interfaces. Although that
is a critical step, interoperability between models needs
to be focused first and foremost at the functional level.
Models within the Department of Defense (DoD)
Modeling & Simulation (M&S) community are
developed along disparate timelines and for disparate
purposes. Programs that fund the development of
models cannot afford to coordinate across the
community on requirements so they must concentrate
on a narrow set of modeling requirements serving their
highest priority capabilities. Even One Semi-
Automated Forces (OneSAF), a model meant to be
used across the DoD M&S community, has an
Operational Requirements Document (ORD) that does
not fulfill everyone’s requirements.

When migrating a High Level Architecture (HLA)
(IEEE 1516-2000) application to a Federation Object
Model (FOM) it was not developed for, developers
map internal model attributes to the fields found in the
FOM. Most of the attributes do not map one for one
and have the same underlying intent. Due to the ill-
matched attributes, a message, an attribute or an object
can be misused by the model. For example, if we had
one model representing the hull of a tank, a different
model representing the turret, and they used a FOM
with only one platform orientation field, the developers
would need to decide which model should fill that field
in. If the field is used for graphical representation of
platform movement, then the field should be the hull’s
orientation so it wouldn’t look like the tank was moving
sideways. However, if the orientation field was used for
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fires modeling, then the orientation of the turret is
necessary.

As illustrated in the tank example, if we rely on
developers making object model choices without a
broader understanding of the functional requirements,
these types of interface discrepancies will occur and the
event’s goal(s) will be compromised. A higher level of
functional requirements and functional design early in
the event’s lifecycle can help avoid these interface
interoperability issues. (Tolk, et al., 2003)

Overview of Functionally Oriented Integration

During a System of Systems (SoS) experiment,
analysis, event, etc., the SoS requirements must be
understood and continually focused on while designing
the implemented solution. In the Modeling Architecture
for Technology, Research and EXperimentation
(MATREX) distributed architecture (Tufarolo, et al.,
2004), different models will fulfill many different
pieces of the required functionality, but will need to
integrate with the rest of the models to accomplish the
SoS goals.

When integrating models together, we must have an
understanding of the functions that each model
implements and their data and functional dependencies
within a higher level understanding of the system. In
the above tank example, a requirements decomposition
from a semantic interoperability perspective would
identify the need for a FOM change early in the
development lifecycle. Many management teams will
attempt to reuse a FOM in order to save costs and
provide configuration control, however, if interface
issues are identified, the changes must be made to the
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FOM in order to have a traceable and valid event.
Using a FOM as a base for integration is acceptable,
but assuming that an object model will be suitable for
all Army events is naive.

MATREX SYSTEM OF SYSTEMS (SOS)
SYSTEMS ENGINEERING APPROACH

The MATREX suite of models, tools and architecture
allow for many different possible configurations of the
system to achieve the user’s functional requirements.
The goal is to work with the user to develop an event-
specific System Design Description (SDD) that
contains  their  exercise  requirements, data
decomposition  requirements, system  architecture
guidelines, scenario, configuration choices and model
selection. Systems Engineering (SE) for distributed
systems (Jamshidi, et al., 2008) is complex and unique
from Systems Engineering for stand-alone software
systems. The MATREX Systems Engineering (SE)
process assists the user by mapping their functional
requirements to model behavior and mapping the
interfaces to the existing FOM fields as best as
possible. If necessary, FOM changes are identified and
submitted to the FOM Management Focus Group for
inclusion in the next FOM release. As an aside, many
organizations throughout the military M&S community
use the MATREX FOM, including RDECOM, the
Training and Doctrine Command (TRADOC), the
Army Test & Evaluation Command (ATEC) and the
Program Executive Office for Integration (PEO ).

The data-driven approach to mapping technical detail
to the high level requirements produces the mapping
between the data collected during the exercise, initial
exercise goals and functional capability data
decomposition.

The MATREX architecture includes many disparate
models (differences with functionality, fidelities,
resolutions, technical dependencies, etc.) that need to
work together. These models can be combined within
an architecture that scales by using complicated
techniques, such as Data Distribution Management
(DDM) (Van Hook, et al., 1998). Those technical
complexities force design, development and testing
collaboration to be well coordinated and as automated
and data-driven as possible. Simulation requirements
such as “fair fight” issues, scalability concerns and data
element analysis force the design to have additional
architectural strategies that must be uniformly followed.
These architectural strategies must be captured and
enforced with an SDD that is linked to the design.
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The MATREX program has developed the SDD as a
product and process to capture the system design at a
functional level and subsequently link the functional
design to the technical design. This allows the
functional requirements to be linked to system design
and allocated to specific models. The low level
requirements, object model and test cases can then be
auto-generated based on model allocation to functions.
The product is data-driven, easing information
maintenance duties by linking the products and
simplifying the editing of the system design. The
product also allows for auto-generating low level
specifications, Department of Defense Architecture
Framework (DoDAF) (DoD CIO 2009) views and test
cases.
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Figure 1. MATREX SDD Operational View.

Figure 1 shows the overview of the MATREX SDD
which captures the system design within the MATREX
Integrated Development Environment (IDE). The
MATREX IDE is a content management system that
provides various views into the MATREX system
design. Since the SDD captures not only the object
model information, but also the semantics of the data
exchanges, test threads can be generated from the SDD
and traced back to high level functional system
requirements. In addition, the test generation process,
which is described in the next section, uses a transport
abstraction layer to allow these tests to be translated
into various protocols, ensuring portability of the tests
along with the models. Therefore, the tests evolve and
migrate to new transport protocols with the SDD.

While developing mechanisms for object model
integration is valuable, they are not always the best
solution. By developing a way to map concepts and
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warfare functions to data elements and then mapping
those data elements to various FOMs, we can directly
map FOM elements to data within the warfare elements
being represented within the M&S environment. If we
can automate and generate the data transformations and
middleware technical details, we can shorten the time
and effort necessary to integrate models. The next
sections will describe how this can be done by evolving
the SDD and its export mechanism to the MATREX
ProtoCore where the applications’ data transformations
are eased or replaced by the exported ProtoCore
business logic and Application Programming Interface
(API).

Finally, applying a manual integration and testing
methodology to complex distributed simulation systems
will produce errors, typically discovered too late in the
schedule to be properly fixed. The following will
describe the MATREX SE products and process, which
enable the seamless interoperability  between
simulations in a distributed SoS test environment.

MIDDLEWARE ARCHITECTURE AGNOSTIC
TOOLS FOR MODELING & SIMULATION

More and more middleware architectures are being
used within the Army and DoD M&S community for
various purposes. Existing infrastructures continue to
be used for legacy simulations that have invested a lot
of resources developing and maturing their
environment. Switching middleware is difficult and
expensive. The major three middleware architectures
being used in DoD M&S are HLA, Distributed
Interactive Simulation (DIS), and Test and Training
Enabling Architecture (TENA). There are even version
differences between standard versions, such as variants
on HLA 1.3-Next Generation (NG) and HLA Institute
of Electrical and Electronics Engineers (IEEE) 1516.
Projects create their own changes to suit their needs
resulting in branches within each of the already
multiple choices. The M&S community continually
diverges in its use of standards, tools and models. This
costs the M&S community time and money porting a
multitude of applications to different middleware
architectures and their variants every few years.

Recognizing the continual technology advancements
and community changes in direction, MATREX has
strived to build middleware agnostic tools to support
M&S projects across DoD. ProtoCore and the
Advanced Testing Capability (ATC) are two such tools.
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ProtoCore

ProtoCore provides simulation developers a single
modern Object Oriented (OO) and type safe API
(Snively, et al.,, 2006) to distributed simulation
services. This API design makes it easier to use and
less error prone than the native APl of some supported
protocols. The type safety allows more errors to be
caught at compile time rather than runtime. The
mechanism provided to connect the API to various
network protocols is done via code generation from a
common Object Model (OM). The underlying plug-in
architecture used by the ProtoCore allows an
application binary to run over various protocols without
modifications. Legacy middleware architectures, used
in many simulation environments, do not make use of
modern programming practices and can be cumbersome
and error prone to use. ProtoCore provides an object-
oriented and event-based software library to ease the
burden (to work on functions like data encoding) on
software developers to use middleware architectures
such as HLA.

Existing tools and applications are preserved, as they
remain portable and easily deployable. Existing object
models are preserved because they can be used with
and migrated to newer protocols. ProtoCore currently
supports plug-ins for HLA 1.3-NG, HLA 1516, TENA
and OneSAF’s Simulation Object Runtime Database
(SORD).

As new functionality is added by and for the DoD M&S
community, ProtoCore stays abreast providing the
benefit of the improved functionality to all applications
using ProtoCore. AIll users will benefit from the
improvements driven by other users. ProtoCore is
government-owned and available for use by DoD
projects.

ProtoCore will be critical to our future plans for code
generation and distributed simulation management and
automation. More information on the path forward will
be described later in this paper.

Advanced Testing Capability

The primary purpose of ATC (McCray, et al., 2008) is
to provide model developers the capability to perform
meaningful and repeatable “black box” analysis on
individual models. The model, or system in this
context, is treated as a black box; all other components,
or actors in this context that would normally interact
with the system are represented by the ATC. The
system/actor relationship allows individual model
component testing without having to stand up the whole
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simulation environment. Specific use cases can be
explored helping bound the problem space when testing
elements of a proposed federation. This makes
debugging easier and lowers the cost of testing.

Through an advanced graphical user interface (GUI),
the user is allowed to graphically define tests that may
be saved and recalled at a later time or sent to other
users. ATC also performs the function of documenting
specific test cases in order to provide reproducibility.
This allows for automation, and thus regression testing
becomes much easier. The ATC allows the users to
graphically create a sequence of actions or events to
stimulate the system under test. The system responses
generated by actor actions are validated. The ATC
generates source code, which is then run to execute the
test and verify results.

Enhancements have been made to integrate the ATC
with our SoS SE approach and tools. Further
improvements are planned and will be described later
in this paper.

AUTOMATIC GENERATION OF
ENGINEERING ARTIFACTS

Current Community Issues

There are many critical qualities that managers of a
simulation environment must achieve: traceability from
requirements to implementation and the resultant data
collected; alignment of data semantics across
applications; ease of maintenance; and change
propagation throughout the architecture. Aligning data
semantics is referring to ensuring applications are
communicating based on a consistent understanding of
the context and connotation of the information being
shared.

When integrating existing applications that are chosen
because they share a common syntax, or even for
political reasons (e.g. someone with the authority
orders the use of a model), the integration of
applications must be backward engineered to the
functionality required. Systems are often chosen
because of the object model and middleware protocol
that they are compatible with. However, compatibility
is more than the ability to communicate without
compilation errors or crashing. The applications’
capability must provide necessary portions of a high
level capability and they must provide that functionality
in semantic harmony with the other applications within
the architecture.
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Events and exercises are notorious for making changes
to the implementation throughout the integration and
preparation. Most of the time, heavy change is still
required up to only a few days or hours before the start
of execution. Engineers often pull off technical
miracles at the last second including working through
the night or using one-time fixes that they know are not
good long term solutions. Sometimes those changes
work out, but frequently they are the cause of reduced
availability, reliability and effective modeling.

Benefits of Automatic Generation of Engineering
Artifacts

MATREX has made great strides in implementing
some of the core building blocks for generative
programming techniques (Czarnecki, et al., 2000) to the
distributed M&S domain. It has become clear that there
are exponential returns on investment when supporting
the design and implementation of distributed M&S
environments.

Capturing the Systems Engineering data within a
database-driven infrastructure has allowed for full
traceability from the top-level functional requirements
through the design and implementation choices through
to the detailed technical engineering artifacts used by
all phases of the exercise implementation. The
engineering artifacts include detailed technical
requirements, systems engineering views for design
discussions and even executable test cases. The next
step will be to generate artifacts that can be used by the
simulation and management applications as shown in
Figure 2.

Top-Down Systems Engineering Benefits

Capturing the modeling requirements through a top-
down decomposition ensures that the engineers
understand the functions and information exchanges
that are required to accomplish the high level modeling
functions. Whether there are applications that can meet
those needs or not, the engineering staff understands
where there are weaknesses or workarounds necessary.
Applications and interface messages can later be
allocated to the functional decomposition. The
applications’ ability to meet the functional requirements
ensures traceability from the implementation back to
the functional needs which can then be tied back to the
purpose of the system as a whole.
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Figure 2. An approach for automating much of the event life cycle.

Code Generation for the Object Model

The MATREX ProtoCore includes a code generation
capability to turn the FOM into a set of programming
classes that can be used by application developers. By
centralizing the generation of classes based on the
evolving FOM definition, there is less reliance on
application developers to all make the same changes
accurately. This also saves time and eases developer
participation within the environment. For instance, if
every developer was relied upon to make the right
changes and make them quickly, there would be a much
larger management burden than just providing the new
classes out to the developers in a single distribution.

Advanced System Black-Box Testing

The ATC described above stores test cases in an
Extensible Markup Language (XML) file called the
Test Case Markup Language (TCML). The XML file
format is currently exported by the MATREX SDD so
that ATC test cases are explicitly generated from
systems engineering decisions and design captured in a
systems engineering database. This alleviates a great
deal of time for integration and testing staff by avoiding
the need to manually change hundreds of tests and test
processes due to a few small design changes. The code
generation integration of ProtoCore with the ATC also
means that object model changes are easy to adapt to
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over the evolving versions and instantiations of the
MATREX architecture.

The ATC can test each system individually according
to the design captured within the systems engineering
infrastructure. These independent tests eliminate the
complexity of a SoS architecture and can isolate
interface details in an easy to execute testing
environment. Since the tests are automatically
generated from the design phase, test cases can be
distributed to the developers the same day that the
engineering decisions are being made. Development
teams can code to the provided tests rather than spend
their own time developing independent and possibly
erroneous tests.

Test cases can be developed that test a subset of the
systems to be integrated to increase the scope of the
testing while maintaining an appropriate level of
isolation from the complex SoS environment. Testing
threads can further diagnose problems when integrating
disparate applications built by numerous development
teams.

We have also developed the capability to export
sequence diagrams from the commercial tool
MagicDraw and import the sequence into ATC for test
case generation. This effort demonstrates the ability to
pull in sequence diagrams in standard XML Metadata
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Interchange (XMI) format from existing commercial
tools to incorporate within DoD M&S community.

Architectural Design Agreements

In SoS environments like the MATREX, the Federation
Agreements Document (FAD) (MATREX FAD, 2010)
is used to explain architectural interoperability
agreements to all the developers that need to integrate
their applications. That document captures agreements
on the use of coordinate systems, dead-reckoning and
the heartbeat timing and distance thresholds for objects.

The MATREX ProtoCore software library is already
used by many applications as their tool for
interoperability with the simulation middleware
protocol, so adding architectural compliance was the
next obvious step, including capabilities such as
coordinate conversions and dead-reckoning (Aronson,
1997). The additions can be made more flexible if they
are driven by the systems engineering infrastructure. If
architectural design decisions could be automatically
driven by the systems engineers it would further
decrease the software modification time and chance for
discrepancies in application adjustments as the
technical characteristics of the system are changed.

The design for dead-reckoning was kept dynamic so an
operator could change the dead-reckoning distance and
timing thresholds during run-time. This allows the
operator to control the execution performance and
accuracy from a central point. This can be used to
recover the system from technical issues of slow
performance, to accelerate the scenario without
flooding the network or to change the dead-reckoning
attributes of forces based on spatial considerations such
as prioritizing updates for entities within an area of
interest for the analysis of the scenario.

APPLICATION OF AUTOMATED MATREX
CAPABILITIES

The MATREX program has made major strides in the
execution of its objective goals. This section will walk
through an example to demonstrate current progress
and to illustrate the current system.

The design information is captured in a relational
database and focused on components and the events
between components. The SDD traverses the
information within the database to automatically draw
the sequence diagrams. This alleviates the need for a
human to draw a picture and upload it to the system.
The wuser can simply change the interaction or
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component allocation information and the changes are
automatically seen within sequence diagrams.
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Figure 3. Sample functional sequence diagram in
the MATREX SDD

The sequence diagram above in Figure 3 is the
functional view which is void of any implementation
details. This can be developed without knowledge of
the technical solution and be focused on the
decomposition of the functional requirement. The
sequence diagram below in Figure 4 is the allocated
version of the same sequence diagram. This has models
assigned to some components and abstract components
that are linked to other discrete sequence diagrams. The
example here shows interactions of the Sensor Data and
Management Services (SDMS) (Mayott, et al., 2010),
which is currently being integrated into the MATREX
environment, with an external communications effects
server.
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Figure 4. Sample component sequence diagram in
the MATREX SDD

The SDD can generate the TCML file based on test set
data assigned to this sequence diagram. Figure 5 shows
a portion of the generated TCML file from the SDD
sequence diagrams in figures 3 and 4.

(TestCase>

{Name>Determine communication path and latency<- Name>
{Descriptions>

{ObjectModelName> fom_v6_0_31MARZ010<~0bjectModellame >

<(ICMLVersion»1.0-beta /TCMLVersion»

{Component>
<Mame>3DMS Task Manager Service (TMS)<( Name:
MotesyThe TMS serves as a Cateway between the Sensor Data Management
<OrderIndex>1</0OrderIndex>
(Stereotype ATC>Systemd Stereotype ATC>
{/Component >
{Component>
<Mame>Communicated Message Handler< Name>
(MotesyThe generie function for all functions that send communicated )
<{OrderIndex’2</OrderIndex>
(Stereotype ATCrActor{/Stereatype ATC>
{/Cemponent >
Eventy
Mame>Determine comm. path and latency<Name>
«Type> INTERACTIONC  Type>
<EwventID»>707<{/EventID>
MotesyDetermine comm path exists and latency(Notes>
<{Originater>1</Originator>
(Receiver:2¢ Recelvery
<Delay>0<{ Dalay>
(MinWaityb0< MinWaity
<MaxWait>300< MaxWait>
OrderIndex> 1</ Orderindex>
<{TestDataSet_ATC>
(MName>Determine communication path and latency - Test set 1¢Wamed
{UMTyperinteractions.JWMF<{/OMType>
<Attribute>
<Name>0Originator< Name>
Values
ValidationFlagrfalsed ValidationFlag>
WalueryTHMS-1</Value)
< alue>
</Attribute)

Figure 5. Test Case Markup Language File

The TCML file is ingested by the ATC, which will
allow the user to either tweak the test case and/or
generate a working HLA federate. The federate
publishes the prescribed stimuli and validates the model
under test send the prescribed response. Figure 6 shows
a screen shot of the ATC with this TCML file loaded.

I

Eile Help
¢ TestPlan i ool o
% Determine communication path and |atency f IT' Q @ =2
¢ T SDMS Task Manager Senice (TWS) = -
Determine communication path and latency
— Daterming comm, path and latency
== Comm path exists and latency delay applied <=fystanss <<hdares
o T Communicated Message Handler SDMS Tudk Conpomicat..

I
1 e o pthand it
E iR " .

5 (et MRsce ey
[Im.! W cios ey ch]ayﬂ il

Figure 6. ATC User Interface

2010 Paper No. 10397 Page 9 of 12

The self-addressed event is not included in the ATC
because it is merely descriptive of the action to be
taken internally by the right-hand component.

The federate that ATC generates can be edited to
change the internal business logic of the federate to
increase the complexity of the test and/or be the basis
for a surrogate federate when a model is not available.
The benefit of the developing surrogates based on an
SDD export is that the interfaces are identical to the
design decisions made during the Systems Engineering
process. The surrogate federate will abide by the same
interface as the model it is replacing. In the SDMS
example, the passed test case will ensure the ability of
SDMS to interact with this external communications
effects server by publishing the interactions subscribed
to by SDMS without SDMS needing to actually use the
external server for all testing.

MATREX has completed the described work and will
be continuing to improve the functionality of our
process and tools to ease the implementation of
distributed simulation. We describe some of our plans
for the future in the next section.

A VISION OF THE FUTURE

Developing distributed simulation environments to
answer analytical questions has proven difficult for
decades within the DoD M&S community. The
MATREX program has experienced large amounts of
the interoperability challenges and  witnessed
community peers struggle as well. The program has
made great strides in SoS SE for distributed simulation
and plans on continuing to push the state-of-the-art for
SoS SE for distributed simulation. Some plans and
ideas for the future are described below.

An overarching goal of MATREX is to reduce the cost
while increasing the accuracy of distributed simulation
using modern software development and integration
techniques. Tools for developing models and
generating software already exist. MATREX will apply
proven tools and techniques to distributed modeling
and simulation.

Integrated Application Deployment

It is currently possible to remotely deploy applications
to lab machines and remotely launch applications based
on a set of well defined configuration files. MATREX
plans to expand this capability with a look at
virtualization technology to improve the automation
and flexibility based on the systems engineering design
and configuration choices.
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The deployment of models will need to be flexible to
change with each purpose for the modeling and
simulation instantiation. The models that need to be
deployed, the number of instances required, the types
of machines, the network topology and many more
details are driven by the scenario, functions performed
and the models themselves. Linking the application
details with scenario qualities and functional
interoperability will be the key to automating the
deployment of the simulation environment.

System Configuration

Configuration of the participating systems within a SoS
architecture are both application-specific as well as
based on the scaling strategy and scenario that will be
executed. By capturing and linking application
configuration requirements to scenarios and functional
requirements for the architecture, configuration options
are mapped to the appropriate use and the proper
configuration is automatically exported depending on
the scenario and functions the systems engineers
require for any given instantiation of the architecture.
The M&S infrastructure, such as the middleware and its
configuration, is also based on the scale and
architecture of the implementation required. As
engineers are making design decisions within the
systems engineering infrastructure, the middleware
configuration is predictable and can also be
automatically exported from the systems engineering
tool.

Integrated Scenario Development and Initialization

The MATREX SDD is currently limited to the
functions required rather than the scenario in which
those functions will be used. To facilitate deployment
and configuration becoming automated, the basis for
both must be captured in our SoS SE infrastructure, the
SDD. As scenario information is added within the
SDD, predicting the appropriate system configuration
to execute the scenario becomes more robust. The SoS
environment can also be remotely initialized from a
central point.

The MATREX design pattern for simulation
initialization is to provide the scenario details, such as
initial platform attributes and force laydown, over the
simulation middleware at the beginning of the exercise.
The structure of the information and the design
paradigm are already in place to expand the SDD to
incorporate scenario information and export the
necessary engineering artifacts to configure simulation
management tools, such as simulation initialization,
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data collection and execution monitoring (Kolek, et al.,
2000).

A subtle benefit for incorporating the scenario
information within the systems engineering tool is that
in many cases the functional design depends on how the
scenario will be executed. Similar to how military
operations depend on the mission, the execution of the
mission with M&S applications also depend on many
parameters, many of which are based on the scenario.

Active Design-Based System Monitoring

Active monitoring and system management can help
engineers recognize issues early so they can fix them
without a lot of wasted execution time and cycles. As
more information is captured about the execution
environment, more information will be available to
recognize when the system is performing adequately
and when the system is beginning to fail.

Monitoring information exchanges at run-time ensures
that the implementation does not deviate from the
design. Part of the monitoring includes monitoring
performance via response time of applications, queue
lengths of applications sending and receiving
information and machine diagnostics such memory
footprints and processor loads.

Surrogate Model Generation

MATREX already has the technical ability to generate
working applications within the ATC. Those
applications can be generated to subscribe and publish
object model elements based on the sequence diagrams
defined within the SDD. The next logical step will be to
expand the generation of the test federates to include
more complex execution behaviors such as the
generation of working code blocks within the generated
federates from pseudocode (Roy, 2006).

Data Collection and Mapping to Requirements

In order to deploy, configure, initialize and monitor the
execution of the simulation environment, high level
requirements (the purpose of the simulation) must be
mapped to the technical design and ultimately to the
object model details and application details (Fogus, et
al.,, 2006). The data collection plan is based on
information that is already available to the system:
object model object, interactions, parameters and
attributes that are required in order to have the
functional capabilities implemented.
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There is then enough information to tie object model
elements collected with the high level functional
requirements. MATREX does not organically manage a
data collection and analysis tool but does use a few that
can be given the data collection requirements and
ultimately the information necessary for the system to
provide an analyst focused and direct data results from
the simulation run.

The DoD Standard Practice Documentation of V&V
for Models and Simulations (DAU, 2008) is the basis.

User Interface to an Automated M&S Environment

One of our objective goals is to provide the previously
explained SoS SE infrastructure with an interface easy
to use and instantiate the desired M&S environment
rapidly and provide the resultant data in the user’s
inbox overnight. The intended interface will be a
directed interview akin to the Turbo Tax® interface.
The choices for the users will be derived by their
choices to previous steps within the process.

The implied requirements for this goal are to have
machine understanding of the warfare functional
capabilities and their mapping to the possible technical
solutions, the interoperability of multiple technical
solutions, and the implementation of the solution
through  automated  deployment, configuration,
initialization and data collection of the relevant
information and its application to the analyst use cases.

Ultimately, as the automation increases throughout the
process, the ability to execute analysis events without
large efforts from engineers improves. The goal is to
allow an analyst to use this systems engineering tool to
design, deploy, configure and manage the SoS
architecture based on accredited models. The execution
run could occur on a representative set of lab machines
that can be setup on the fly to accommodate the
captured execution configuration. These machines
could be at various geographic locations with results
compiled and sent to the analyst automatically when
complete.

These are non-trivial accomplishments that MATREX
is looking forward to tackling. Preliminary design plans
exist for execution in FY11l and beyond and the
program plans to report its successes and lessons
learned in future publications.
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