

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 1 of 12

A Path Forward to Protocol Independent Distributed M&S

Christopher Metevier, Chris Gaughan Scott Gallant, Kiet (“Jeff”) Truong

SFC Paul Ray Smith Simulation & Technology

Training Center

Effective Applications Corporation

Orlando, FL Chuluota, FL

Chris.Metevier@us.army.mil,

Chris.Gaughan@us.army.mil

Scott@EffectiveApplications.com,

Jeff@EffectiveApplications.com

Gary Smith

Dynamic Animation Systems

Orlando, FL

gsmith@d-a-s.com

ABSTRACT

In order to keep up with the rate of technology advancement, solutions must be created that transcend hardware,

middleware, protocols and data structures to allow for a sustainable implementation. Distributed Modeling &

Simulation (M&S) includes applications executing their intended use for the collective goal of a System of Systems

(SoS) M&S environment. Distributed M&S is fundamentally based on the exchange of information between

functions that may not have been built to work together.

The Modeling Architecture for Technology, Research and EXperimentation (MATREX) program has been a

synchronization point for M&S across the U.S. Army Research, Development and Engineering Command

(RDECOM) for many years. It has brought together models, simulations and tools from the RDECOM labs, centers

and activities into a common architecture and environment. The program’s focus has been on integrating these

disparate applications into a harmonious solution for engineering model development and evaluation, technology

tradeoffs, capability assessments, concept development, experimentation, testing and training. MATREX has

developed tools that support this integration through multiple simulation middleware protocols. It has also developed

tools that abstract away the integration details from the application developer. In particular, it allows the modeler to

develop models while MATREX provides the tools to handle the M&S integration intricacies such as interest

management, encoding/decoding, dead-reckoning, etc.

This paper will describe these Government-owned middleware agnostic tools along with a SoS Systems Engineering

approach and infrastructure that can link M&S functional requirements to model-specific data requirements and code

generated testing. MATREX tools and Systems Engineering process have been used across several programs,

including the Training and Doctrine Command Battle Lab Collaborative Simulation Environment (BLCSE), Army

Test & Evaluation Command Operational Test Command (OTC) Analytic Simulation and Integration Suite (OASIS)

and Brigade Combat Team Modernization Simulation Environment (BSE), to name a few. This methodology could

benefit many more M&S programs.
ABOUT THE AUTHORS

Christopher Metevier is the Technology Program Manager (TPM) of the Modeling Architecture for Technology,

Research, & EXperimentation (MATREX) program at the Simulation and Training Technology Center (STTC)

Human Dimension, Simulation and Training Directorate, Army Research Laboratory (ARL). He has over 20 years of

experience with the Navy and Army in the Modeling & Simulation (M&S) field. His M&S experience extends across

the acquisition lifecycle and includes the research, development, adaptation, integration, experimentation, test, and

fielding of numerous simulation technologies and systems. He received his Master of Business Administration from

Webster University and Bachelor of Science in Electrical Engineering from the University of Central Florida.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 2 of 12

Chris Gaughan is a Chief Engineer working at the US Army STTC Human Dimension, Simulation and Training

Directorate, Army ARL. He is currently the Deputy TPM for RDECOM’s MATREX, a program focused on creating

a composable M&S environment wherein a collection of multi-fidelity models, simulations, tools and resources can

be integrated and mapped to an established architecture for conducting analysis, experimentation and technology

tradeoffs for RDECOM and others. From 2004-2009 he worked at the Edgewood Chemical Biological Center

(ECBC) where he served as the Configuration Manager of the Chemical, Biological, Radiological, Nuclear (CBRN)

Simulation Suite, a tool suite for CBRN materiel and hazard effects simulation. He received his Master of Science

and Bachelor of Science in Electrical Engineering from Drexel University in Philadelphia, PA.

Scott Gallant is a Systems Architect with Effective Applications Corporation. He has over 15 years experience in

distributed computing including US Army M&S. Scott has led technical teams on the MATREX program for

distributed software and federation design, development and execution management in support of technical

assessments, data analysis and experimentation. He has also led the systems engineering team for the implementation

of the described Systems Engineering product infrastructure. Scott currently serves as the System Architect and Lead

Systems Engineer for the MATREX program.

Kiet (“Jeff”) Truong is a Principal Systems Engineer with Effective Applications. He has over 20 years of

Systems/Software Engineering and Technical Management experience in distributed M&S, embedded systems,

telecommunication/networking systems, and network management systems. He has led a team responsible for

defining and managing the interface requirements for the Brigade Combat Team Modernization (BCTM) M&S

System of Systems (SoS). He also chaired a Federation Object Model Working Group to define object model and

federation agreements for MATREX and the BCTM SoS simulation events. Jeff currently serves as a Systems

Engineer for the MATREX program responsible for the requirement definition of the MATREX M&S tools. He is

also working with other RDECOM Labs and Centers to mature their M&S models and integrate them into the

MATREX Federation.

Gary Smith is a Principal Software Engineer with Dynamic Animation Systems, Inc. He has over 10 years

experience in DoD M&S as a technical lead engineer, software engineer and software developer. He has led

technical teams on the MATREX program for systems engineering, distributed software design and development

efforts as well as integration and testing efforts that support an execution for a customer in support of data analysis,

experimentation, and fielded testing. Gary is currently the Technical Lead for the MATREX program.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 3 of 12

A Path Forward to Protocol Independent Distributed M&S

Christopher Metevier, Chris Gaughan Scott Gallant, Kiet (“Jeff”) Truong

SFC Paul Ray Smith Simulation & Technology

Training Center

Effective Applications Corporation

Orlando, FL Chuluota, FL

Chris.Metevier@us.army.mil,

Chris.Gaughan@us.army.mil

Scott@EffectiveApplications.com,

Jeff@EffectiveApplications.com

Gary Smith

Dynamic Animation Systems

Orlando, FL

gsmith@d-a-s.com

EFFECTIVE INTEROPERABILITY

Most integrators concentrate on integrating models by

focusing on the syntax for the interfaces. Although that

is a critical step, interoperability between models needs

to be focused first and foremost at the functional level.

Models within the Department of Defense (DoD)

Modeling & Simulation (M&S) community are

developed along disparate timelines and for disparate

purposes. Programs that fund the development of

models cannot afford to coordinate across the

community on requirements so they must concentrate

on a narrow set of modeling requirements serving their

highest priority capabilities. Even One Semi-

Automated Forces (OneSAF), a model meant to be

used across the DoD M&S community, has an

Operational Requirements Document (ORD) that does

not fulfill everyone’s requirements.

When migrating a High Level Architecture (HLA)

(IEEE 1516-2000) application to a Federation Object

Model (FOM) it was not developed for, developers

map internal model attributes to the fields found in the

FOM. Most of the attributes do not map one for one

and have the same underlying intent. Due to the ill-

matched attributes, a message, an attribute or an object

can be misused by the model. For example, if we had

one model representing the hull of a tank, a different

model representing the turret, and they used a FOM

with only one platform orientation field, the developers

would need to decide which model should fill that field

in. If the field is used for graphical representation of

platform movement, then the field should be the hull’s

orientation so it wouldn’t look like the tank was moving

sideways. However, if the orientation field was used for

fires modeling, then the orientation of the turret is

necessary.

As illustrated in the tank example, if we rely on

developers making object model choices without a

broader understanding of the functional requirements,

these types of interface discrepancies will occur and the

event’s goal(s) will be compromised. A higher level of

functional requirements and functional design early in

the event’s lifecycle can help avoid these interface

interoperability issues. (Tolk, et al., 2003)

Overview of Functionally Oriented Integration

During a System of Systems (SoS) experiment,

analysis, event, etc., the SoS requirements must be

understood and continually focused on while designing

the implemented solution. In the Modeling Architecture

for Technology, Research and EXperimentation

(MATREX) distributed architecture (Tufarolo, et al.,

2004), different models will fulfill many different

pieces of the required functionality, but will need to

integrate with the rest of the models to accomplish the

SoS goals.

When integrating models together, we must have an

understanding of the functions that each model

implements and their data and functional dependencies

within a higher level understanding of the system. In

the above tank example, a requirements decomposition

from a semantic interoperability perspective would

identify the need for a FOM change early in the

development lifecycle. Many management teams will

attempt to reuse a FOM in order to save costs and

provide configuration control, however, if interface

issues are identified, the changes must be made to the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 4 of 12

FOM in order to have a traceable and valid event.

Using a FOM as a base for integration is acceptable,

but assuming that an object model will be suitable for

all Army events is naïve.

MATREX SYSTEM OF SYSTEMS (SOS)

SYSTEMS ENGINEERING APPROACH

The MATREX suite of models, tools and architecture

allow for many different possible configurations of the

system to achieve the user’s functional requirements.

The goal is to work with the user to develop an event-

specific System Design Description (SDD) that

contains their exercise requirements, data

decomposition requirements, system architecture

guidelines, scenario, configuration choices and model

selection. Systems Engineering (SE) for distributed

systems (Jamshidi, et al., 2008) is complex and unique

from Systems Engineering for stand-alone software

systems. The MATREX Systems Engineering (SE)

process assists the user by mapping their functional

requirements to model behavior and mapping the

interfaces to the existing FOM fields as best as

possible. If necessary, FOM changes are identified and

submitted to the FOM Management Focus Group for

inclusion in the next FOM release. As an aside, many

organizations throughout the military M&S community

use the MATREX FOM, including RDECOM, the

Training and Doctrine Command (TRADOC), the

Army Test & Evaluation Command (ATEC) and the

Program Executive Office for Integration (PEO I).

The data-driven approach to mapping technical detail

to the high level requirements produces the mapping

between the data collected during the exercise, initial

exercise goals and functional capability data

decomposition.

The MATREX architecture includes many disparate

models (differences with functionality, fidelities,

resolutions, technical dependencies, etc.) that need to

work together. These models can be combined within

an architecture that scales by using complicated

techniques, such as Data Distribution Management

(DDM) (Van Hook, et al., 1998). Those technical

complexities force design, development and testing

collaboration to be well coordinated and as automated

and data-driven as possible. Simulation requirements

such as “fair fight” issues, scalability concerns and data

element analysis force the design to have additional

architectural strategies that must be uniformly followed.

These architectural strategies must be captured and

enforced with an SDD that is linked to the design.

The MATREX program has developed the SDD as a

product and process to capture the system design at a

functional level and subsequently link the functional

design to the technical design. This allows the

functional requirements to be linked to system design

and allocated to specific models. The low level

requirements, object model and test cases can then be

auto-generated based on model allocation to functions.

The product is data-driven, easing information

maintenance duties by linking the products and

simplifying the editing of the system design. The

product also allows for auto-generating low level

specifications, Department of Defense Architecture

Framework (DoDAF) (DoD CIO 2009) views and test

cases.

Figure 1. MATREX SDD Operational View.

Figure 1 shows the overview of the MATREX SDD

which captures the system design within the MATREX

Integrated Development Environment (IDE). The

MATREX IDE is a content management system that

provides various views into the MATREX system

design. Since the SDD captures not only the object

model information, but also the semantics of the data

exchanges, test threads can be generated from the SDD

and traced back to high level functional system

requirements. In addition, the test generation process,

which is described in the next section, uses a transport

abstraction layer to allow these tests to be translated

into various protocols, ensuring portability of the tests

along with the models. Therefore, the tests evolve and

migrate to new transport protocols with the SDD.

While developing mechanisms for object model

integration is valuable, they are not always the best

solution. By developing a way to map concepts and

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 5 of 12

warfare functions to data elements and then mapping

those data elements to various FOMs, we can directly

map FOM elements to data within the warfare elements

being represented within the M&S environment. If we

can automate and generate the data transformations and

middleware technical details, we can shorten the time

and effort necessary to integrate models. The next

sections will describe how this can be done by evolving

the SDD and its export mechanism to the MATREX

ProtoCore where the applications’ data transformations

are eased or replaced by the exported ProtoCore

business logic and Application Programming Interface

(API).

Finally, applying a manual integration and testing

methodology to complex distributed simulation systems

will produce errors, typically discovered too late in the

schedule to be properly fixed. The following will

describe the MATREX SE products and process, which

enable the seamless interoperability between

simulations in a distributed SoS test environment.

MIDDLEWARE ARCHITECTURE AGNOSTIC

TOOLS FOR MODELING & SIMULATION

More and more middleware architectures are being

used within the Army and DoD M&S community for

various purposes. Existing infrastructures continue to

be used for legacy simulations that have invested a lot

of resources developing and maturing their

environment. Switching middleware is difficult and

expensive. The major three middleware architectures

being used in DoD M&S are HLA, Distributed

Interactive Simulation (DIS), and Test and Training

Enabling Architecture (TENA). There are even version

differences between standard versions, such as variants

on HLA 1.3-Next Generation (NG) and HLA Institute

of Electrical and Electronics Engineers (IEEE) 1516.

Projects create their own changes to suit their needs

resulting in branches within each of the already

multiple choices. The M&S community continually

diverges in its use of standards, tools and models. This

costs the M&S community time and money porting a

multitude of applications to different middleware

architectures and their variants every few years.

Recognizing the continual technology advancements

and community changes in direction, MATREX has

strived to build middleware agnostic tools to support

M&S projects across DoD. ProtoCore and the

Advanced Testing Capability (ATC) are two such tools.

ProtoCore

ProtoCore provides simulation developers a single

modern Object Oriented (OO) and type safe API

(Snively, et al., 2006) to distributed simulation

services. This API design makes it easier to use and

less error prone than the native API of some supported

protocols. The type safety allows more errors to be

caught at compile time rather than runtime. The

mechanism provided to connect the API to various

network protocols is done via code generation from a

common Object Model (OM). The underlying plug-in

architecture used by the ProtoCore allows an

application binary to run over various protocols without

modifications. Legacy middleware architectures, used

in many simulation environments, do not make use of

modern programming practices and can be cumbersome

and error prone to use. ProtoCore provides an object-

oriented and event-based software library to ease the

burden (to work on functions like data encoding) on

software developers to use middleware architectures

such as HLA.

Existing tools and applications are preserved, as they

remain portable and easily deployable. Existing object

models are preserved because they can be used with

and migrated to newer protocols. ProtoCore currently

supports plug-ins for HLA 1.3-NG, HLA 1516, TENA

and OneSAF’s Simulation Object Runtime Database

(SORD).

As new functionality is added by and for the DoD M&S

community, ProtoCore stays abreast providing the

benefit of the improved functionality to all applications

using ProtoCore. All users will benefit from the

improvements driven by other users. ProtoCore is

government-owned and available for use by DoD

projects.

ProtoCore will be critical to our future plans for code

generation and distributed simulation management and

automation. More information on the path forward will

be described later in this paper.

Advanced Testing Capability

The primary purpose of ATC (McCray, et al., 2008) is

to provide model developers the capability to perform

meaningful and repeatable “black box” analysis on

individual models. The model, or system in this

context, is treated as a black box; all other components,

or actors in this context that would normally interact

with the system are represented by the ATC. The

system/actor relationship allows individual model

component testing without having to stand up the whole

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 6 of 12

simulation environment. Specific use cases can be

explored helping bound the problem space when testing

elements of a proposed federation. This makes

debugging easier and lowers the cost of testing.

Through an advanced graphical user interface (GUI),

the user is allowed to graphically define tests that may

be saved and recalled at a later time or sent to other

users. ATC also performs the function of documenting

specific test cases in order to provide reproducibility.

This allows for automation, and thus regression testing

becomes much easier. The ATC allows the users to

graphically create a sequence of actions or events to

stimulate the system under test. The system responses

generated by actor actions are validated. The ATC

generates source code, which is then run to execute the

test and verify results.

Enhancements have been made to integrate the ATC

with our SoS SE approach and tools. Further

improvements are planned and will be described later

in this paper.

AUTOMATIC GENERATION OF

ENGINEERING ARTIFACTS

Current Community Issues

There are many critical qualities that managers of a

simulation environment must achieve: traceability from

requirements to implementation and the resultant data

collected; alignment of data semantics across

applications; ease of maintenance; and change

propagation throughout the architecture. Aligning data

semantics is referring to ensuring applications are

communicating based on a consistent understanding of

the context and connotation of the information being

shared.

When integrating existing applications that are chosen

because they share a common syntax, or even for

political reasons (e.g. someone with the authority

orders the use of a model), the integration of

applications must be backward engineered to the

functionality required. Systems are often chosen

because of the object model and middleware protocol

that they are compatible with. However, compatibility

is more than the ability to communicate without

compilation errors or crashing. The applications’

capability must provide necessary portions of a high

level capability and they must provide that functionality

in semantic harmony with the other applications within

the architecture.

Events and exercises are notorious for making changes

to the implementation throughout the integration and

preparation. Most of the time, heavy change is still

required up to only a few days or hours before the start

of execution. Engineers often pull off technical

miracles at the last second including working through

the night or using one-time fixes that they know are not

good long term solutions. Sometimes those changes

work out, but frequently they are the cause of reduced

availability, reliability and effective modeling.

Benefits of Automatic Generation of Engineering

Artifacts

MATREX has made great strides in implementing

some of the core building blocks for generative

programming techniques (Czarnecki, et al., 2000) to the

distributed M&S domain. It has become clear that there

are exponential returns on investment when supporting

the design and implementation of distributed M&S

environments.

Capturing the Systems Engineering data within a

database-driven infrastructure has allowed for full

traceability from the top-level functional requirements

through the design and implementation choices through

to the detailed technical engineering artifacts used by

all phases of the exercise implementation. The

engineering artifacts include detailed technical

requirements, systems engineering views for design

discussions and even executable test cases. The next

step will be to generate artifacts that can be used by the

simulation and management applications as shown in

Figure 2.

Top-Down Systems Engineering Benefits

Capturing the modeling requirements through a top-

down decomposition ensures that the engineers

understand the functions and information exchanges

that are required to accomplish the high level modeling

functions. Whether there are applications that can meet

those needs or not, the engineering staff understands

where there are weaknesses or workarounds necessary.

Applications and interface messages can later be

allocated to the functional decomposition. The

applications’ ability to meet the functional requirements

ensures traceability from the implementation back to

the functional needs which can then be tied back to the

purpose of the system as a whole.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 7 of 12

Figure 2. An approach for automating much of the event life cycle.

Code Generation for the Object Model

The MATREX ProtoCore includes a code generation

capability to turn the FOM into a set of programming

classes that can be used by application developers. By

centralizing the generation of classes based on the

evolving FOM definition, there is less reliance on

application developers to all make the same changes

accurately. This also saves time and eases developer

participation within the environment. For instance, if

every developer was relied upon to make the right

changes and make them quickly, there would be a much

larger management burden than just providing the new

classes out to the developers in a single distribution.

Advanced System Black-Box Testing

The ATC described above stores test cases in an

Extensible Markup Language (XML) file called the

Test Case Markup Language (TCML). The XML file

format is currently exported by the MATREX SDD so

that ATC test cases are explicitly generated from

systems engineering decisions and design captured in a

systems engineering database. This alleviates a great

deal of time for integration and testing staff by avoiding

the need to manually change hundreds of tests and test

processes due to a few small design changes. The code

generation integration of ProtoCore with the ATC also

means that object model changes are easy to adapt to

over the evolving versions and instantiations of the

MATREX architecture.

The ATC can test each system individually according

to the design captured within the systems engineering

infrastructure. These independent tests eliminate the

complexity of a SoS architecture and can isolate

interface details in an easy to execute testing

environment. Since the tests are automatically

generated from the design phase, test cases can be

distributed to the developers the same day that the

engineering decisions are being made. Development

teams can code to the provided tests rather than spend

their own time developing independent and possibly

erroneous tests.

Test cases can be developed that test a subset of the

systems to be integrated to increase the scope of the

testing while maintaining an appropriate level of

isolation from the complex SoS environment. Testing

threads can further diagnose problems when integrating

disparate applications built by numerous development

teams.

We have also developed the capability to export

sequence diagrams from the commercial tool

MagicDraw and import the sequence into ATC for test

case generation. This effort demonstrates the ability to

pull in sequence diagrams in standard XML Metadata

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 8 of 12

Interchange (XMI) format from existing commercial

tools to incorporate within DoD M&S community.

Architectural Design Agreements

In SoS environments like the MATREX, the Federation

Agreements Document (FAD) (MATREX FAD, 2010)

is used to explain architectural interoperability

agreements to all the developers that need to integrate

their applications. That document captures agreements

on the use of coordinate systems, dead-reckoning and

the heartbeat timing and distance thresholds for objects.

The MATREX ProtoCore software library is already

used by many applications as their tool for

interoperability with the simulation middleware

protocol, so adding architectural compliance was the

next obvious step, including capabilities such as

coordinate conversions and dead-reckoning (Aronson,

1997). The additions can be made more flexible if they

are driven by the systems engineering infrastructure. If

architectural design decisions could be automatically

driven by the systems engineers it would further

decrease the software modification time and chance for

discrepancies in application adjustments as the

technical characteristics of the system are changed.

The design for dead-reckoning was kept dynamic so an

operator could change the dead-reckoning distance and

timing thresholds during run-time. This allows the

operator to control the execution performance and

accuracy from a central point. This can be used to

recover the system from technical issues of slow

performance, to accelerate the scenario without

flooding the network or to change the dead-reckoning

attributes of forces based on spatial considerations such

as prioritizing updates for entities within an area of

interest for the analysis of the scenario.

APPLICATION OF AUTOMATED MATREX

CAPABILITIES

The MATREX program has made major strides in the

execution of its objective goals. This section will walk

through an example to demonstrate current progress

and to illustrate the current system.

The design information is captured in a relational

database and focused on components and the events

between components. The SDD traverses the

information within the database to automatically draw

the sequence diagrams. This alleviates the need for a

human to draw a picture and upload it to the system.

The user can simply change the interaction or

component allocation information and the changes are

automatically seen within sequence diagrams.

Figure 3. Sample functional sequence diagram in

the MATREX SDD

The sequence diagram above in Figure 3 is the

functional view which is void of any implementation

details. This can be developed without knowledge of

the technical solution and be focused on the

decomposition of the functional requirement. The

sequence diagram below in Figure 4 is the allocated

version of the same sequence diagram. This has models

assigned to some components and abstract components

that are linked to other discrete sequence diagrams. The

example here shows interactions of the Sensor Data and

Management Services (SDMS) (Mayott, et al., 2010),

which is currently being integrated into the MATREX

environment, with an external communications effects

server.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 9 of 12

Figure 4. Sample component sequence diagram in

the MATREX SDD

The SDD can generate the TCML file based on test set

data assigned to this sequence diagram. Figure 5 shows

a portion of the generated TCML file from the SDD

sequence diagrams in figures 3 and 4.

Figure 5. Test Case Markup Language File

The TCML file is ingested by the ATC, which will

allow the user to either tweak the test case and/or

generate a working HLA federate. The federate

publishes the prescribed stimuli and validates the model

under test send the prescribed response. Figure 6 shows

a screen shot of the ATC with this TCML file loaded.

Figure 6. ATC User Interface

The self-addressed event is not included in the ATC

because it is merely descriptive of the action to be

taken internally by the right-hand component.

The federate that ATC generates can be edited to

change the internal business logic of the federate to

increase the complexity of the test and/or be the basis

for a surrogate federate when a model is not available.

The benefit of the developing surrogates based on an

SDD export is that the interfaces are identical to the

design decisions made during the Systems Engineering

process. The surrogate federate will abide by the same

interface as the model it is replacing. In the SDMS

example, the passed test case will ensure the ability of

SDMS to interact with this external communications

effects server by publishing the interactions subscribed

to by SDMS without SDMS needing to actually use the

external server for all testing.

MATREX has completed the described work and will

be continuing to improve the functionality of our

process and tools to ease the implementation of

distributed simulation. We describe some of our plans

for the future in the next section.

A VISION OF THE FUTURE

Developing distributed simulation environments to

answer analytical questions has proven difficult for

decades within the DoD M&S community. The

MATREX program has experienced large amounts of

the interoperability challenges and witnessed

community peers struggle as well. The program has

made great strides in SoS SE for distributed simulation

and plans on continuing to push the state-of-the-art for

SoS SE for distributed simulation. Some plans and

ideas for the future are described below.

An overarching goal of MATREX is to reduce the cost

while increasing the accuracy of distributed simulation

using modern software development and integration

techniques. Tools for developing models and

generating software already exist. MATREX will apply

proven tools and techniques to distributed modeling

and simulation.

Integrated Application Deployment

It is currently possible to remotely deploy applications

to lab machines and remotely launch applications based

on a set of well defined configuration files. MATREX

plans to expand this capability with a look at

virtualization technology to improve the automation

and flexibility based on the systems engineering design

and configuration choices.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 10 of 12

The deployment of models will need to be flexible to

change with each purpose for the modeling and

simulation instantiation. The models that need to be

deployed, the number of instances required, the types

of machines, the network topology and many more

details are driven by the scenario, functions performed

and the models themselves. Linking the application

details with scenario qualities and functional

interoperability will be the key to automating the

deployment of the simulation environment.

System Configuration

Configuration of the participating systems within a SoS

architecture are both application-specific as well as

based on the scaling strategy and scenario that will be

executed. By capturing and linking application

configuration requirements to scenarios and functional

requirements for the architecture, configuration options

are mapped to the appropriate use and the proper

configuration is automatically exported depending on

the scenario and functions the systems engineers

require for any given instantiation of the architecture.

The M&S infrastructure, such as the middleware and its

configuration, is also based on the scale and

architecture of the implementation required. As

engineers are making design decisions within the

systems engineering infrastructure, the middleware

configuration is predictable and can also be

automatically exported from the systems engineering

tool.

Integrated Scenario Development and Initialization

The MATREX SDD is currently limited to the

functions required rather than the scenario in which

those functions will be used. To facilitate deployment

and configuration becoming automated, the basis for

both must be captured in our SoS SE infrastructure, the

SDD. As scenario information is added within the

SDD, predicting the appropriate system configuration

to execute the scenario becomes more robust. The SoS

environment can also be remotely initialized from a

central point.

The MATREX design pattern for simulation

initialization is to provide the scenario details, such as

initial platform attributes and force laydown, over the

simulation middleware at the beginning of the exercise.

The structure of the information and the design

paradigm are already in place to expand the SDD to

incorporate scenario information and export the

necessary engineering artifacts to configure simulation

management tools, such as simulation initialization,

data collection and execution monitoring (Kolek, et al.,

2000).

A subtle benefit for incorporating the scenario

information within the systems engineering tool is that

in many cases the functional design depends on how the

scenario will be executed. Similar to how military

operations depend on the mission, the execution of the

mission with M&S applications also depend on many

parameters, many of which are based on the scenario.

Active Design-Based System Monitoring

Active monitoring and system management can help

engineers recognize issues early so they can fix them

without a lot of wasted execution time and cycles. As

more information is captured about the execution

environment, more information will be available to

recognize when the system is performing adequately

and when the system is beginning to fail.

Monitoring information exchanges at run-time ensures

that the implementation does not deviate from the

design. Part of the monitoring includes monitoring

performance via response time of applications, queue

lengths of applications sending and receiving

information and machine diagnostics such memory

footprints and processor loads.

Surrogate Model Generation

MATREX already has the technical ability to generate

working applications within the ATC. Those

applications can be generated to subscribe and publish

object model elements based on the sequence diagrams

defined within the SDD. The next logical step will be to

expand the generation of the test federates to include

more complex execution behaviors such as the

generation of working code blocks within the generated

federates from pseudocode (Roy, 2006).

Data Collection and Mapping to Requirements

In order to deploy, configure, initialize and monitor the

execution of the simulation environment, high level

requirements (the purpose of the simulation) must be

mapped to the technical design and ultimately to the

object model details and application details (Fogus, et

al., 2006). The data collection plan is based on

information that is already available to the system:

object model object, interactions, parameters and

attributes that are required in order to have the

functional capabilities implemented.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 11 of 12

There is then enough information to tie object model

elements collected with the high level functional

requirements. MATREX does not organically manage a

data collection and analysis tool but does use a few that

can be given the data collection requirements and

ultimately the information necessary for the system to

provide an analyst focused and direct data results from

the simulation run.

The DoD Standard Practice Documentation of V&V

for Models and Simulations (DAU, 2008) is the basis.

User Interface to an Automated M&S Environment

One of our objective goals is to provide the previously

explained SoS SE infrastructure with an interface easy

to use and instantiate the desired M&S environment

rapidly and provide the resultant data in the user’s

inbox overnight. The intended interface will be a

directed interview akin to the Turbo Tax® interface.

The choices for the users will be derived by their

choices to previous steps within the process.

The implied requirements for this goal are to have

machine understanding of the warfare functional

capabilities and their mapping to the possible technical

solutions, the interoperability of multiple technical

solutions, and the implementation of the solution

through automated deployment, configuration,

initialization and data collection of the relevant

information and its application to the analyst use cases.

Ultimately, as the automation increases throughout the

process, the ability to execute analysis events without

large efforts from engineers improves. The goal is to

allow an analyst to use this systems engineering tool to

design, deploy, configure and manage the SoS

architecture based on accredited models. The execution

run could occur on a representative set of lab machines

that can be setup on the fly to accommodate the

captured execution configuration. These machines

could be at various geographic locations with results

compiled and sent to the analyst automatically when

complete.

These are non-trivial accomplishments that MATREX

is looking forward to tackling. Preliminary design plans

exist for execution in FY11 and beyond and the

program plans to report its successes and lessons

learned in future publications.

ACKNOWLEDGEMENTS

This paper is based on work executed over the last four

years for which we’d like to acknowledge some of the

personnel most involved in its development and

maturation. Those personnel are: Sid Antommarchi,

Tracey Beauchat, Jon Clegg, Jim Gallogly, David Itkin,

Rich Leslie, Richard Mangieri, Lee Mangold, Tom

McAfee, Paul McCray, Rachel Offutt, Keith Snively,

Jeff Swauger, and John Vintilescu. We’d like to also

acknowledge our management personnel that helped

provide vision, resources and encouragement: Chris

Bailey, Tom Hurt, Tom Mathis, Joe McDonnell and

Dave Poole. Finally, we’d like to acknowledge the

Office of the Assistant Secretary of the Army

(Acquisition, Logistics, and Technology) and

RDECOM for providing the support necessary to

continue these critical efforts.

REFERENCES

Acquisition Community Connection at Defense

Acquisition University (DAU). 2008. MIL-STD-3022

DoD Standard Practice Documentation of V&V for

Models and Simulations. Available via

https://acc.dau.mil/CommunityBrowser.aspx?id=205

916.

J. Aronson. 1997. Dead Reckoning: Latency Hiding for

Networked Games. Available via

http://www.gamasutra.com/view/feature/3230/dead_r

eckoning_latency_hiding_for_.php.

K. Czarnecki and U. Eisenecker. 2000. Generative

Programming: Methods, Tools, and Applications. 1
st

ed. Addison-Wesley Professional.

Department of Defense (DoD) Chief Information

Officer. 2009. DoD Architecture Framework 2.0.

Available via http://cio-

nii.defense.gov/docs/DoDAF%20V2%20-

%20Volume%201.pdf.

M. Fogus, H. Borum, D. Prochnow and K. Penn. 2006.

MATREX Data Collection and Analysis: Linking

Simulation Results to Military Analyst Requirements.

Simulation Interoperability Workshop Fall

Conference, September 2006, 06F-SIW-048.

Institute of Electrical and Electronics Engineers.

Standard for Modeling and Simulation (M&Amp;S)

High Level Architecture (HLA) - Framework and

Rules. Available via

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumb

er=893287.

M. Jamshidi. 2008. System of Systems Engineering. 1
st

ed. Wiley.

S. Kolek, S. Boswell and H Wolfson. 2000. Toward

Predictive Models of Federation Performance:

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

2010 Paper No. 10397 Page 12 of 12

Essential Instrumentation. Simulation

Interoperability Workshop Fall Conference,

September 2000, 00F-SIW-085.

MATREX Federation Agreements Document. 2010.

Available via https://www.matrex.rdecom.army.mil.

G. Mayott, W. Self, J. McDonnell and G. Miller. 2010.

SOA approach to Battle Command to Simulation

interoperability. SPIE Defense, Security, and

Sensing, April 2010.

P. McCray and K. Snively. 2008. Functional

Component Testing for Distributed Simulations.

Simulation Interoperability Workshop Spring

Conference, April 2008, 08S-SIW-063.

G. Roy. 2006. Designing and Explaining Programs

With a Literate Pseudocode. Journal on Educational

Resources in Computing (JERIC) by Association for

Computing Machinery (ACM). Volume 6, Issue 1

(March 2006). ACM, New York, NY USA.

K. Snively and P. Grim. 2006. ProtoCore: A Transport

Independent Solution for Simulation Interoperability.

Simulation Interoperability Workshop, September

2006, 06F-SIW-093.

A. Tolk and J. Muguira. 2003. The Levels of Conceptual

Interoperability Model. Simulation Interoperability

Workshop Fall Conference, September 2003, 03F-

SIW-007.

J. Tufarolo, R. Leslie and D. Lewis. 2004. Distributed

Integration for the V0.5 MATREX. Simulation

Interoperability Workshop, Spring 2004, 04S-SIW-

131.

D. Van Hook and J. Calvin. 1998. Data Distribution

Management in RTI 1.3. Simulation Interoperability

Workshop Spring Conference, Spring 1998, 98S-

SIW-206.

