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ABSTRACT 

 

In order to keep up with the rate of technology advancement, solutions must be created that transcend hardware, 

middleware, protocols and data structures to allow for a sustainable implementation. Distributed Modeling & 

Simulation (M&S) includes applications executing their intended use for the collective goal of a System of Systems 

(SoS) M&S environment. Distributed M&S is fundamentally based on the exchange of information between 

functions that may not have been built to work together. 

 

The Modeling Architecture for Technology, Research and EXperimentation (MATREX) program has been a 

synchronization point for M&S across the U.S. Army Research, Development and Engineering Command 

(RDECOM) for many years. It has brought together models, simulations and tools from the RDECOM labs, centers 

and activities into a common architecture and environment. The program’s focus has been on integrating these 

disparate applications into a harmonious solution for engineering model development and evaluation, technology 

tradeoffs, capability assessments, concept development, experimentation, testing and training. MATREX has 

developed tools that support this integration through multiple simulation middleware protocols. It has also developed 

tools that abstract away the integration details from the application developer. In particular, it allows the modeler to 

develop models while MATREX provides the tools to handle the M&S integration intricacies such as interest 

management, encoding/decoding, dead-reckoning, etc. 

 

This paper will describe these Government-owned middleware agnostic tools along with a SoS Systems Engineering 

approach and infrastructure that can link M&S functional requirements to model-specific data requirements and code 

generated testing. MATREX tools and Systems Engineering process have been used across several programs, 

including the Training and Doctrine Command Battle Lab Collaborative Simulation Environment (BLCSE), Army 

Test & Evaluation Command Operational Test Command (OTC) Analytic Simulation and Integration Suite (OASIS) 

and Brigade Combat Team Modernization Simulation Environment (BSE), to name a few. This methodology could 

benefit many more M&S programs. 
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EFFECTIVE INTEROPERABILITY 

 

Most integrators concentrate on integrating models by 

focusing on the syntax for the interfaces. Although that 

is a critical step, interoperability between models needs 

to be focused first and foremost at the functional level.  

Models within the Department of Defense (DoD) 

Modeling & Simulation (M&S) community are 

developed along disparate timelines and for disparate 

purposes. Programs that fund the development of 

models cannot afford to coordinate across the 

community on requirements so they must concentrate 

on a narrow set of modeling requirements serving their 

highest priority capabilities. Even One Semi-

Automated Forces (OneSAF), a model meant to be 

used across the DoD M&S community, has an 

Operational Requirements Document (ORD) that does 

not fulfill everyone’s requirements. 

 

When migrating a High Level Architecture (HLA) 

(IEEE 1516-2000) application to a Federation Object 

Model (FOM) it was not developed for, developers 

map internal model attributes to the fields found in the 

FOM. Most of the attributes do not map one for one 

and have the same underlying intent. Due to the ill-

matched attributes, a message, an attribute or an object 

can be misused by the model. For example, if we had 

one model representing the hull of a tank, a different 

model representing the turret, and they used a FOM 

with only one platform orientation field, the developers 

would need to decide which model should fill that field 

in. If the field is used for graphical representation of 

platform movement, then the field should be the hull’s 

orientation so it wouldn’t look like the tank was moving 

sideways. However, if the orientation field was used for 

fires modeling, then the orientation of the turret is 

necessary. 

 

As illustrated in the tank example, if we rely on 

developers making object model choices without a 

broader understanding of the functional requirements, 

these types of interface discrepancies will occur and the 

event’s goal(s) will be compromised. A higher level of 

functional requirements and functional design early in 

the event’s lifecycle can help avoid these interface 

interoperability issues. (Tolk, et al., 2003) 

 

Overview of Functionally Oriented Integration 

 

During a System of Systems (SoS) experiment, 

analysis, event, etc., the SoS requirements must be 

understood and continually focused on while designing 

the implemented solution. In the Modeling Architecture 

for Technology, Research and EXperimentation 

(MATREX) distributed architecture (Tufarolo, et al., 

2004), different models will fulfill many different 

pieces of the required functionality, but will need to 

integrate with the rest of the models to accomplish the 

SoS goals. 

 

When integrating models together, we must have an 

understanding of the functions that each model 

implements and their data and functional dependencies 

within a higher level understanding of the system. In 

the above tank example, a requirements decomposition 

from a semantic interoperability perspective would 

identify the need for a FOM change early in the 

development lifecycle. Many management teams will 

attempt to reuse a FOM in order to save costs and 

provide configuration control, however, if interface 

issues are identified, the changes must be made to the 
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FOM in order to have a traceable and valid event. 

Using a FOM as a base for integration is acceptable, 

but assuming that an object model will be suitable for 

all Army events is naïve. 

 

MATREX SYSTEM OF SYSTEMS (SOS) 

SYSTEMS ENGINEERING APPROACH 

 

The MATREX suite of models, tools and architecture 

allow for many different possible configurations of the 

system to achieve the user’s functional requirements. 

The goal is to work with the user to develop an event-

specific System Design Description (SDD) that 

contains their exercise requirements, data 

decomposition requirements, system architecture 

guidelines, scenario, configuration choices and model 

selection. Systems Engineering (SE) for distributed 

systems (Jamshidi, et al., 2008) is complex and unique 

from Systems Engineering for stand-alone software 

systems. The MATREX Systems Engineering (SE) 

process assists the user by mapping their functional 

requirements to model behavior and mapping the 

interfaces to the existing FOM fields as best as 

possible. If necessary, FOM changes are identified and 

submitted to the FOM Management Focus Group for 

inclusion in the next FOM release. As an aside, many 

organizations throughout the military M&S community 

use the MATREX FOM, including RDECOM, the 

Training and Doctrine Command (TRADOC), the 

Army Test & Evaluation Command (ATEC) and the 

Program Executive Office for Integration (PEO I). 

 

The data-driven approach to mapping technical detail 

to the high level requirements produces the mapping 

between the data collected during the exercise, initial 

exercise goals and functional capability data 

decomposition. 

 

The MATREX architecture includes many disparate 

models (differences with functionality, fidelities, 

resolutions, technical dependencies, etc.) that need to 

work together. These models can be combined within 

an architecture that scales by using complicated 

techniques, such as Data Distribution Management 

(DDM) (Van Hook, et al., 1998). Those technical 

complexities force design, development and testing 

collaboration to be well coordinated and as automated 

and data-driven as possible. Simulation requirements 

such as “fair fight” issues, scalability concerns and data 

element analysis force the design to have additional 

architectural strategies that must be uniformly followed. 

These architectural strategies must be captured and 

enforced with an SDD that is linked to the design.  

 

The MATREX program has developed the SDD as a 

product and process to capture the system design at a 

functional level and subsequently link the functional 

design to the technical design. This allows the 

functional requirements to be linked to system design 

and allocated to specific models. The low level 

requirements, object model and test cases can then be 

auto-generated based on model allocation to functions. 

The product is data-driven, easing information 

maintenance duties by linking the products and 

simplifying the editing of the system design. The 

product also allows for auto-generating low level 

specifications, Department of Defense Architecture 

Framework (DoDAF) (DoD CIO 2009) views and test 

cases. 

 
Figure 1.  MATREX SDD Operational View. 

 

Figure 1 shows the overview of the MATREX SDD 

which captures the system design within the MATREX 

Integrated Development Environment (IDE). The 

MATREX IDE is a content management system that 

provides various views into the MATREX system 

design. Since the SDD captures not only the object 

model information, but also the semantics of the data 

exchanges, test threads can be generated from the SDD 

and traced back to high level functional system 

requirements. In addition, the test generation process, 

which is described in the next section, uses a transport 

abstraction layer to allow these tests to be translated 

into various protocols, ensuring portability of the tests 

along with the models. Therefore, the tests evolve and 

migrate to new transport protocols with the SDD. 

 

While developing mechanisms for object model 

integration is valuable, they are not always the best 

solution. By developing a way to map concepts and 
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warfare functions to data elements and then mapping 

those data elements to various FOMs, we can directly 

map FOM elements to data within the warfare elements 

being represented within the M&S environment. If we 

can automate and generate the data transformations and 

middleware technical details, we can shorten the time 

and effort necessary to integrate models. The next 

sections will describe how this can be done by evolving 

the SDD and its export mechanism to the MATREX 

ProtoCore where the applications’ data transformations 

are eased or replaced by the exported ProtoCore 

business logic and Application Programming Interface 

(API). 

 

Finally, applying a manual integration and testing 

methodology to complex distributed simulation systems 

will produce errors, typically discovered too late in the 

schedule to be properly fixed. The following will 

describe the MATREX SE products and process, which 

enable the seamless interoperability between 

simulations in a distributed SoS test environment. 

 

MIDDLEWARE ARCHITECTURE AGNOSTIC 

TOOLS FOR MODELING & SIMULATION 

 

More and more middleware architectures are being 

used within the Army and DoD M&S community for 

various purposes. Existing infrastructures continue to 

be used for legacy simulations that have invested a lot 

of resources developing and maturing their 

environment. Switching middleware is difficult and 

expensive. The major three middleware architectures 

being used in DoD M&S are HLA, Distributed 

Interactive Simulation (DIS), and Test and Training 

Enabling Architecture (TENA). There are even version 

differences between standard versions, such as variants 

on HLA 1.3-Next Generation (NG) and HLA Institute 

of Electrical and Electronics Engineers (IEEE) 1516. 

Projects create their own changes to suit their needs 

resulting in branches within each of the already 

multiple choices. The M&S community continually 

diverges in its use of standards, tools and models. This 

costs the M&S community time and money porting a 

multitude of applications to different middleware 

architectures and their variants every few years. 

 

Recognizing the continual technology advancements 

and community changes in direction, MATREX has 

strived to build middleware agnostic tools to support 

M&S projects across DoD. ProtoCore and the 

Advanced Testing Capability (ATC) are two such tools. 

 

ProtoCore 

 

ProtoCore provides simulation developers a single 

modern Object Oriented (OO) and type safe API 

(Snively, et al., 2006) to distributed simulation 

services. This API design makes it easier to use and 

less error prone than the native API of some supported 

protocols. The type safety allows more errors to be 

caught at compile time rather than runtime. The 

mechanism provided to connect the API to various 

network protocols is done via code generation from a 

common Object Model (OM). The underlying plug-in 

architecture used by the ProtoCore allows an 

application binary to run over various protocols without 

modifications. Legacy middleware architectures, used 

in many simulation environments, do not make use of 

modern programming practices and can be cumbersome 

and error prone to use. ProtoCore provides an object-

oriented and event-based software library to ease the 

burden (to work on functions like data encoding) on 

software developers to use middleware architectures 

such as HLA. 

 

Existing tools and applications are preserved, as they 

remain portable and easily deployable. Existing object 

models are preserved because they can be used with 

and migrated to newer protocols. ProtoCore currently 

supports plug-ins for HLA 1.3-NG, HLA 1516, TENA 

and OneSAF’s Simulation Object Runtime Database 

(SORD). 

 

As new functionality is added by and for the DoD M&S 

community, ProtoCore stays abreast providing the 

benefit of the improved functionality to all applications 

using ProtoCore. All users will benefit from the 

improvements driven by other users. ProtoCore is 

government-owned and available for use by DoD 

projects. 

 

ProtoCore will be critical to our future plans for code 

generation and distributed simulation management and 

automation. More information on the path forward will 

be described later in this paper. 

 

Advanced Testing Capability 

 

The primary purpose of ATC (McCray, et al., 2008) is 

to provide model developers the capability to perform 

meaningful and repeatable “black box” analysis on 

individual models. The model, or system in this 

context, is treated as a black box; all other components, 

or actors in this context that would normally interact 

with the system are represented by the ATC. The 

system/actor relationship allows individual model 

component testing without having to stand up the whole 
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simulation environment. Specific use cases can be 

explored helping bound the problem space when testing 

elements of a proposed federation. This makes 

debugging easier and lowers the cost of testing. 

 

Through an advanced graphical user interface (GUI), 

the user is allowed to graphically define tests that may 

be saved and recalled at a later time or sent to other 

users. ATC also performs the function of documenting 

specific test cases in order to provide reproducibility. 

This allows for automation, and thus regression testing 

becomes much easier. The ATC allows the users to 

graphically create a sequence of actions or events to 

stimulate the system under test. The system responses 

generated by actor actions are validated. The ATC 

generates source code, which is then run to execute the 

test and verify results. 

 

Enhancements have been made to integrate the ATC 

with our SoS SE approach and tools. Further 

improvements are planned and will be described later 

in this paper. 

 

AUTOMATIC GENERATION OF 

ENGINEERING ARTIFACTS 

 

Current Community Issues 

 

There are many critical qualities that managers of a 

simulation environment must achieve: traceability from 

requirements to implementation and the resultant data 

collected; alignment of data semantics across 

applications; ease of maintenance; and change 

propagation throughout the architecture. Aligning data 

semantics is referring to ensuring applications are 

communicating based on a consistent understanding of 

the context and connotation of the information being 

shared. 

 

When integrating existing applications that are chosen 

because they share a common syntax, or even for 

political reasons (e.g. someone with the authority 

orders the use of a model), the integration of 

applications must be backward engineered to the 

functionality required. Systems are often chosen 

because of the object model and middleware protocol 

that they are compatible with. However, compatibility 

is more than the ability to communicate without 

compilation errors or crashing. The applications’ 

capability must provide necessary portions of a high 

level capability and they must provide that functionality 

in semantic harmony with the other applications within 

the architecture. 

 

Events and exercises are notorious for making changes 

to the implementation throughout the integration and 

preparation. Most of the time, heavy change is still 

required up to only a few days or hours before the start 

of execution. Engineers often pull off technical 

miracles at the last second including working through 

the night or using one-time fixes that they know are not 

good long term solutions. Sometimes those changes 

work out, but frequently they are the cause of reduced 

availability, reliability and effective modeling. 

 

Benefits of Automatic Generation of Engineering 

Artifacts 

 

MATREX has made great strides in implementing 

some of the core building blocks for generative 

programming techniques (Czarnecki, et al., 2000) to the 

distributed M&S domain. It has become clear that there 

are exponential returns on investment when supporting 

the design and implementation of distributed M&S 

environments. 

 

Capturing the Systems Engineering data within a 

database-driven infrastructure has allowed for full 

traceability from the top-level functional requirements 

through the design and implementation choices through 

to the detailed technical engineering artifacts used by 

all phases of the exercise implementation. The 

engineering artifacts include detailed technical 

requirements, systems engineering views for design 

discussions and even executable test cases. The next 

step will be to generate artifacts that can be used by the 

simulation and management applications as shown in 

Figure 2. 

 

Top-Down Systems Engineering Benefits 

 

Capturing the modeling requirements through a top-

down decomposition ensures that the engineers 

understand the functions and information exchanges 

that are required to accomplish the high level modeling 

functions. Whether there are applications that can meet 

those needs or not, the engineering staff understands 

where there are weaknesses or workarounds necessary. 

Applications and interface messages can later be 

allocated to the functional decomposition. The 

applications’ ability to meet the functional requirements 

ensures traceability from the implementation back to 

the functional needs which can then be tied back to the 

purpose of the system as a whole. 
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Figure 2.  An approach for automating much of the event life cycle. 

 

Code Generation for the Object Model 

 

The MATREX ProtoCore includes a code generation 

capability to turn the FOM into a set of programming 

classes that can be used by application developers. By 

centralizing the generation of classes based on the 

evolving FOM definition, there is less reliance on 

application developers to all make the same changes 

accurately. This also saves time and eases developer 

participation within the environment. For instance, if 

every developer was relied upon to make the right 

changes and make them quickly, there would be a much 

larger management burden than just providing the new 

classes out to the developers in a single distribution. 

 

Advanced System Black-Box Testing 

 

The ATC described above stores test cases in an 

Extensible Markup Language (XML) file called the 

Test Case Markup Language (TCML). The XML file 

format is currently exported by the MATREX SDD so 

that ATC test cases are explicitly generated from 

systems engineering decisions and design captured in a 

systems engineering database. This alleviates a great 

deal of time for integration and testing staff by avoiding 

the need to manually change hundreds of tests and test 

processes due to a few small design changes. The code 

generation integration of ProtoCore with the ATC also 

means that object model changes are easy to adapt to 

over the evolving versions and instantiations of the 

MATREX architecture. 

 

The ATC can test each system individually according 

to the design captured within the systems engineering 

infrastructure. These independent tests eliminate the 

complexity of a SoS architecture and can isolate 

interface details in an easy to execute testing 

environment. Since the tests are automatically 

generated from the design phase, test cases can be 

distributed to the developers the same day that the 

engineering decisions are being made. Development 

teams can code to the provided tests rather than spend 

their own time developing independent and possibly 

erroneous tests. 

 

Test cases can be developed that test a subset of the 

systems to be integrated to increase the scope of the 

testing while maintaining an appropriate level of 

isolation from the complex SoS environment. Testing 

threads can further diagnose problems when integrating 

disparate applications built by numerous development 

teams. 

 

We have also developed the capability to export 

sequence diagrams from the commercial tool 

MagicDraw and import the sequence into ATC for test 

case generation. This effort demonstrates the ability to 

pull in sequence diagrams in standard XML Metadata 
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Interchange (XMI) format from existing commercial 

tools to incorporate within DoD M&S community. 

 

Architectural Design Agreements 

 

In SoS environments like the MATREX, the Federation 

Agreements Document (FAD) (MATREX FAD, 2010) 

is used to explain architectural interoperability 

agreements to all the developers that need to integrate 

their applications. That document captures agreements 

on the use of coordinate systems, dead-reckoning and 

the heartbeat timing and distance thresholds for objects. 

 

The MATREX ProtoCore software library is already 

used by many applications as their tool for 

interoperability with the simulation middleware 

protocol, so adding architectural compliance was the 

next obvious step, including capabilities such as 

coordinate conversions and dead-reckoning (Aronson, 

1997). The additions can be made more flexible if they 

are driven by the systems engineering infrastructure. If 

architectural design decisions could be automatically 

driven by the systems engineers it would further 

decrease the software modification time and chance for 

discrepancies in application adjustments as the 

technical characteristics of the system are changed. 

 

The design for dead-reckoning was kept dynamic so an 

operator could change the dead-reckoning distance and 

timing thresholds during run-time. This allows the 

operator to control the execution performance and 

accuracy from a central point. This can be used to 

recover the system from technical issues of slow 

performance, to accelerate the scenario without 

flooding the network or to change the dead-reckoning 

attributes of forces based on spatial considerations such 

as prioritizing updates for entities within an area of 

interest for the analysis of the scenario. 

 

APPLICATION OF AUTOMATED MATREX 

CAPABILITIES 

 

The MATREX program has made major strides in the 

execution of its objective goals. This section will walk 

through an example to demonstrate current progress 

and to illustrate the current system.  

 

The design information is captured in a relational 

database and focused on components and the events 

between components. The SDD traverses the 

information within the database to automatically draw 

the sequence diagrams. This alleviates the need for a 

human to draw a picture and upload it to the system. 

The user can simply change the interaction or 

component allocation information and the changes are 

automatically seen within sequence diagrams. 

 

 
Figure 3.  Sample functional sequence diagram in 

the MATREX SDD 

 

The sequence diagram above in Figure 3 is the 

functional view which is void of any implementation 

details. This can be developed without knowledge of 

the technical solution and be focused on the 

decomposition of the functional requirement. The 

sequence diagram below in Figure 4 is the allocated 

version of the same sequence diagram. This has models 

assigned to some components and abstract components 

that are linked to other discrete sequence diagrams. The 

example here shows interactions of the Sensor Data and 

Management Services (SDMS) (Mayott, et al., 2010), 

which is currently being integrated into the MATREX 

environment, with an external communications effects 

server. 
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Figure 4.  Sample component sequence diagram in 

the MATREX SDD 

 

The SDD can generate the TCML file based on test set 

data assigned to this sequence diagram. Figure 5 shows 

a portion of the generated TCML file from the SDD 

sequence diagrams in figures 3 and 4. 

 

 
Figure 5.  Test Case Markup Language File 

 

The TCML file is ingested by the ATC, which will 

allow the user to either tweak the test case and/or 

generate a working HLA federate. The federate 

publishes the prescribed stimuli and validates the model 

under test send the prescribed response. Figure 6 shows 

a screen shot of the ATC with this TCML file loaded. 

 

 
Figure 6.  ATC User Interface 

 

The self-addressed event is not included in the ATC 

because it is merely descriptive of the action to be 

taken internally by the right-hand component.  

 

The federate that ATC generates can be edited to 

change the internal business logic of the federate to 

increase the complexity of the test and/or be the basis 

for a surrogate federate when a model is not available. 

The benefit of the developing surrogates based on an 

SDD export is that the interfaces are identical to the 

design decisions made during the Systems Engineering 

process. The surrogate federate will abide by the same 

interface as the model it is replacing. In the SDMS 

example, the passed test case will ensure the ability of 

SDMS to interact with this external communications 

effects server by publishing the interactions subscribed 

to by SDMS without SDMS needing to actually use the 

external server for all testing. 

 

MATREX has completed the described work and will 

be continuing to improve the functionality of our 

process and tools to ease the implementation of 

distributed simulation. We describe some of our plans 

for the future in the next section. 

 

A VISION OF THE FUTURE 

 

Developing distributed simulation environments to 

answer analytical questions has proven difficult for 

decades within the DoD M&S community. The 

MATREX program has experienced large amounts of 

the interoperability challenges and witnessed 

community peers struggle as well. The program has 

made great strides in SoS SE for distributed simulation 

and plans on continuing to push the state-of-the-art for 

SoS SE for distributed simulation. Some plans and 

ideas for the future are described below. 

 

An overarching goal of MATREX is to reduce the cost 

while increasing the accuracy of distributed simulation 

using modern software development and integration 

techniques. Tools for developing models and 

generating software already exist. MATREX will apply 

proven tools and techniques to distributed modeling 

and simulation. 

 

Integrated Application Deployment 

 

It is currently possible to remotely deploy applications 

to lab machines and remotely launch applications based 

on a set of well defined configuration files. MATREX 

plans to expand this capability with a look at 

virtualization technology to improve the automation 

and flexibility based on the systems engineering design 

and configuration choices.  
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The deployment of models will need to be flexible to 

change with each purpose for the modeling and 

simulation instantiation. The models that need to be 

deployed, the number of instances required, the types 

of machines, the network topology and many more 

details are driven by the scenario, functions performed 

and the models themselves. Linking the application 

details with scenario qualities and functional 

interoperability will be the key to automating the 

deployment of the simulation environment. 

 

System Configuration 

 

Configuration of the participating systems within a SoS 

architecture are both application-specific as well as 

based on the scaling strategy and scenario that will be 

executed. By capturing and linking application 

configuration requirements to scenarios and functional 

requirements for the architecture, configuration options 

are mapped to the appropriate use and the proper 

configuration is automatically exported depending on 

the scenario and functions the systems engineers 

require for any given instantiation of the architecture. 

The M&S infrastructure, such as the middleware and its 

configuration, is also based on the scale and 

architecture of the implementation required. As 

engineers are making design decisions within the 

systems engineering infrastructure, the middleware 

configuration is predictable and can also be 

automatically exported from the systems engineering 

tool. 

 

Integrated Scenario Development and Initialization 

 

The MATREX SDD is currently limited to the 

functions required rather than the scenario in which 

those functions will be used. To facilitate deployment 

and configuration becoming automated, the basis for 

both must be captured in our SoS SE infrastructure, the 

SDD. As scenario information is added within the 

SDD, predicting the appropriate system configuration 

to execute the scenario becomes more robust. The SoS 

environment can also be remotely initialized from a 

central point. 

 

The MATREX design pattern for simulation 

initialization is to provide the scenario details, such as 

initial platform attributes and force laydown, over the 

simulation middleware at the beginning of the exercise. 

The structure of the information and the design 

paradigm are already in place to expand the SDD to 

incorporate scenario information and export the 

necessary engineering artifacts to configure simulation 

management tools, such as simulation initialization, 

data collection and execution monitoring (Kolek, et al., 

2000). 

 

A subtle benefit for incorporating the scenario 

information within the systems engineering tool is that 

in many cases the functional design depends on how the 

scenario will be executed. Similar to how military 

operations depend on the mission, the execution of the 

mission with M&S applications also depend on many 

parameters, many of which are based on the scenario. 

 

Active Design-Based System Monitoring 

 

Active monitoring and system management can help 

engineers recognize issues early so they can fix them 

without a lot of wasted execution time and cycles. As 

more information is captured about the execution 

environment, more information will be available to 

recognize when the system is performing adequately 

and when the system is beginning to fail. 

 

Monitoring information exchanges at run-time ensures 

that the implementation does not deviate from the 

design. Part of the monitoring includes monitoring 

performance via response time of applications, queue 

lengths of applications sending and receiving 

information and machine diagnostics such memory 

footprints and processor loads. 

 

Surrogate Model Generation 

 

MATREX already has the technical ability to generate 

working applications within the ATC. Those 

applications can be generated to subscribe and publish 

object model elements based on the sequence diagrams 

defined within the SDD. The next logical step will be to 

expand the generation of the test federates to include 

more complex execution behaviors such as the 

generation of working code blocks within the generated 

federates from pseudocode (Roy, 2006). 

 

Data Collection and Mapping to Requirements 

 

In order to deploy, configure, initialize and monitor the 

execution of the simulation environment, high level 

requirements (the purpose of the simulation) must be 

mapped to the technical design and ultimately to the 

object model details and application details (Fogus, et 

al., 2006). The data collection plan is based on 

information that is already available to the system: 

object model object, interactions, parameters and 

attributes that are required in order to have the 

functional capabilities implemented.  
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There is then enough information to tie object model 

elements collected with the high level functional 

requirements. MATREX does not organically manage a 

data collection and analysis tool but does use a few that 

can be given the data collection requirements and 

ultimately the information necessary for the system to 

provide an analyst focused and direct data results from 

the simulation run. 

 

The DoD Standard Practice Documentation of V&V 

for Models and Simulations (DAU, 2008) is the basis. 

 

User Interface to an Automated M&S Environment 

 

One of our objective goals is to provide the previously 

explained SoS SE infrastructure with an interface easy 

to use and instantiate the desired M&S environment 

rapidly and provide the resultant data in the user’s 

inbox overnight. The intended interface will be a 

directed interview akin to the Turbo Tax® interface. 

The choices for the users will be derived by their 

choices to previous steps within the process. 

 

The implied requirements for this goal are to have 

machine understanding of the warfare functional 

capabilities and their mapping to the possible technical 

solutions, the interoperability of multiple technical 

solutions, and the implementation of the solution 

through automated deployment, configuration, 

initialization and data collection of the relevant 

information and its application to the analyst use cases.  

 

Ultimately, as the automation increases throughout the 

process, the ability to execute analysis events without 

large efforts from engineers improves. The goal is to 

allow an analyst to use this systems engineering tool to 

design, deploy, configure and manage the SoS 

architecture based on accredited models. The execution 

run could occur on a representative set of lab machines 

that can be setup on the fly to accommodate the 

captured execution configuration. These machines 

could be at various geographic locations with results 

compiled and sent to the analyst automatically when 

complete. 

 

These are non-trivial accomplishments that MATREX 

is looking forward to tackling. Preliminary design plans 

exist for execution in FY11 and beyond and the 

program plans to report its successes and lessons 

learned in future publications. 
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