Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Configuration Control in a Cross-Distributed Team Environment -
Preventing the Tower of Babel

Kymberly Martin Lawrence Rieger

Reger Army Capabilities Integration Center
Abilene, TX Joint & Army Models & Simulations Division
kym.martin@regermail.com Yorktown, VA

lawrence.rieger@us.army.mil

ABSTRACT

The Battle Lab Collaborative Simulation Environment (BLCSE) is a complex consortium of military, government
civilians, and contractors tasked with integrating simulation technologies and other supporting applications across
geographically distributed sites. A key part of this integration is the interoperability of data between simulations. As
projects, missions and teams grow in scope greater data interoperability challenges ensue. Therefore, a clear method
to configuration manage and control data sets, their changes and related documentation and other files is necessary.
Project management alone isn’t enough to ensure experiment success, you must have a data and software
configuration management process. Configuration Management (CM) is a method that provides structure to a
project. Implementing a configuration managed environment forces discipline where otherwise disorder will ensue.
An agreement among participants is paramount to success. The mechanism to provide control is a combination of
CM and collaborative tools. This paper describes a standard and documented process for data and software
configuration management necessary for terrain, entity data, HLA interoperability files and related configurable
items. It also describes lessons learned in establishing a vigorous scheme of configuration management during a
major distributed event, compares tools and processes available, and concludes with a discussion of configurable
items appropriate to a major distributed simulation event. Armed with the right tools and processes, a simulation
management team can properly manage data changes so that the federation enables training and experimentation,
and the federation users can train to fight and fight to win.

Kymberly Martin has a BS in Electrical Engineering from Kansas State University. She is a member of the IEEE
and the Society of Women Engineers where she is a member of the emerging leader awards committee. She has 15
years experience in systems engineering and configuration management. She is currently the BLCSE configuration
management engineer for Reger Associates, and has previously worked configuration management for the B-1
Bomber program working for Rockwell Collins and was a system engineering test team member for GPS integration
at Holloman AFB. She received her CMSP certification in 2009.

Lawrence A. Rieger is the Technical Configuration Manager for the Army Battle Lab Collaborative Simulation
Environment (BLCSE). He received a BA from Belmont Abbey College in 1976 and an MS from Troy State
University in 1982. He is also a graduate of the Army Command and General Staff College and the Army
Management Staff College. Following active and reserve commissioned service with both light and mechanized
forces, he has spent the last 25 years in the management and development of simulations for training, working in
live, virtual, and constructive environments. His prior assignment was technical deputy to the TRADOC Project
Manager — OneSAF. He received the CMSP in 2008.

2010 Paper No. 10138 Page 1 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Configuration Control in a Cross-Distributed Team Environment -

Preventing the Tower of Babel

Kymberly Martin

Reger

Abilene, TX
kym.martin@regermail.com

INTRODUCTION

Perhaps the greatest challenge in distributed
simulation events is ensuring that all of the various
participating software applications can effectively
exchange data, with everyone having the same
coherent picture of what that data actually means.
Without a common and shared agreement as to the
meaning of the data, and how it is processed, the
simulation federation is unable to provide a stable
environment for successful completion of the events’
objective. It is configuration management that
provides the disciplined process and procedures to
ensure common data models and processes among all
the participants.

Background

In 2005, the TRADOC Futures Center (now the
Army Capabilities Integration Center (ARCIC),
determined the requirement to transition its
simulation infrastructure (The Battle Lab
Collaborative Simulation Environment — BLCSE)
from the existing Distributed Interactive Simulation
(DIS) standard to the High Level Architecture
(HLA). The driving issue was the need of BLCSE to
interoperate as part of a broad Army effort (the
Cross-Command Collaborative Effort — 3CE).

Part of the decision process was the recognition that
with HLA, we needed extremely tight configuration
management of the FOM and enumerations, rather
than being able to rely on the DIS enumerated bit
values. We also recognized the need for strong CM
practices over the version(s) of software applications
being used within an event. The technical assessment

2010 Paper No. 10138 Page 2 of 9

Lawrence Rieger

Army Capabilities Integration Center

Joint & Army Models & Simulations Division
Yorktown, VA

lawrence.rieger@us.army.mil

of the ARCIC was that movement to the HLA would
require very strict Federation Object Model (FOM)
and cross-event entity enumeration configuration
management for a successful transition. Three years
of distributed experimentation events later, our
greatest integration challenge, and source of
simulation interoperability friction, is FOM currency
and ensuring that all simulation federates are using
the exact same list of entity enumerations and the
exact same FOM files.

In addition to the increased Configuration
Management requirements of moving into an HLA
environment, ARCIC was also beginning to see
initial information assurance requirements, from the
then emerging DoD Information Assurance
Certification and Accreditation Process (DIACAP)
requirements, which would demand a much higher
level of configuration management and configuration
control than the existing DoD Information
Technology Security Certification and Accreditation
Process (DITSCAP).

Once the decision to move forward was made,
ARCIC developed an initial Configuration Control
Board (CCB) charter and draft configuration
management processes to govern the transition of
BLCSE to HLA. This process was complicated by
the distributed environment and the practical reality
that the configuration control board neither owned
nor could control the various simulations that were
nominally being managed for BLCSE events.

A management process was developed during this
period which separated the proponency of a
simulation, and the resulting proponent managed

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

baseline, from the event specific versions which were
separately managed and controlled by ARCIC and
the event technical manager. This became the basis
for the BLCSE configuration management process,
and is shown in Figure 1. We also developed
(purchased) a set of configuration management tools
which supported our processes, and developed a
taxonomy for our processes.

Definitions

These five definitions provide the context for this
paper:

e Configuration Management: The
identification of the configuration of software at
discrete points in time and the systematic control
of changes to the identified configuration for the
purpose of maintaining software integrity,
traceability and accountability throughout the
software life cycle.

e Configuration Control: After establishing a
configuration, the evaluation and approval of
changes to the configuration and to the
interrelationships among system components.

e Baseline: A simulation software package that is
under configuration management and in
continued development or maintenance for use
by customers.

e Version (Release): An approved shapshot of the
system at appropriate points in the development
life cycle.

e Configurable Items: Specified items (software,
documents, hardware) which are content and
change controlled for a specified event or period.

Configuration Management and Configuration
Control

There are three variations of configuration
management and control executed within BLCSE.
The first is Software Baseline Configuration
Management, which is the process whereby each
application proponent maintains configuration

2010 Paper No. 10138 Page 3 of 9

management and configuration accounting over that
application. This is essentially cradle to grave
control and documentation of everything done to that
software application during its lifespan.

The second is Event Configuration Management,
where a particular application version is adapted and
controlled for a specific event, after which that
configuration branch is archived and no longer part
of the software baseline.

The third is Event Configuration Control, which is
the deliberate process of controlling which particular
versions of the various applications are permitted to
participate in the event federation. There are specific
processes for managing each of these types of
management. The interrelationship between these
processes are shown in Figure 1.

Of note is the process flow ensuring that event driven
changes, new capabilities and functionality fixes, are
evaluated for insertion into the core baseline version
of the simulation, either the proponent baseline
version or the BLCSE reference version, or both.

Vx| ofBaseling Yersion

/ SimA| Frepenent Bevelcpawnt

=

Yerslon L (V10 (1.0 80 || v20 /w10 || vi0

1

BLCSERefarance y inA | [sim8}fsim ¢| [sim Ofysim €] sim]
Version: Toolbox V1.0 : v20][v10] V1.0 k.

Sim 0| [sim £] [sim
V2 || VA [Vx

Figure 1: Configuration Control Process

Froponent Baseline 4/ Sim A] [Sim B][Sim € ﬁm in E] [Sim F

ExperimantVersion

Software Baseline Configuration Management

For OneSAF development, we initially use a PM
OneSAF delivered baseline or a version from a

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

previous event. For other products, like terrain or
scenarios, it will depend on the requirements for the
event whether we use a previous baseline or start a
new baseline.

During the integration process for that event, each
product is separately and collectively tested and any
issues or deficiencies found are documented and a
change request is created and evaluated by the
developers and the Technical Configuration
Controller(TCC). If the change request is approved,
new baselines with the fixes are built and provided to
the community for further testing.

Event Configuration Management

While very similar to the software baseline
configuration management, event management has
several distinct differences. While baseline
configuration is generally guided by adding
functionality and stability to the product itself, an
event version if focused on providing specific
functionality needed for a single use case, and on
making that functionality operate within a specific
environment. Often overall stability and user
population considerations are secondary to immediate
need.

Event versions are published at a much faster rate
than are baseline configurations, which may not
publish new versions until a significant single change
is completed, or a critical mass of small changes are
accumulated. Event versions are generally released
on a specified schedule -- normally weekly once later
integration is underway -- and may include frequent
single-change version releases (“drops”) necessary to
fix a specific fault. The final significant difference is
the end-of-event termination of that version branch,
when all changes made during the event are
examined for application back to the baseline, and
then the remaining changes are archived as dead files.

PROCESS FOR CONTROLLING THE
CONFIGURATION OF A FEDERATION.

The key to our event federation configuration control
was the development of a specific web portal that

2010 Paper No. 10138 Page 4 of 9

functioned as the sole authoritative source of either
software or data and settings documents. We have a
GOTS (Government Off The Shelf) program
(STARSHIP) that will monitor which machines are
connected to our RTI and will also query specific
files in use on that machine and its information. We
use this as an audit tool which allows either the TCC
or the event “battle master” to check that the
appropriate version of software and Operating
System (OS) is loaded and operating.

Roles in BLCSE:

e Simulation Proponent: Maintains configuration
management of the simulation, including
configuration accounting and archive
responsibilities. Recommends BLCSE
federation version changes to CCB.

e BLCSE Event Director: Selects Event
Federation from Federation, integrates Event
Federation, Recommends Event Federation to
CCB, maintains Configuration Management of
Event Federation through event end.

e CCB: Approves current versions of BLCSE
Federation and Federates. Approves Event
Federation. Under original charter, only the CCB
could approve the construct of the BLCSE
federation toolkit or the structure of a BLCSE
event federation. Current practice is that the
CCB implements DIACAP control over the
ARCIC Simlab and federation, while the event
director executes sole federation authority.

e BLCSE Technical Configuration Controller
(TCC): Maintains configuration accounting and
archive functions for current and previous
BLCSE Federations and Federates. Archives
Event Federations. Maintains Configuration
Management of BLCSE Documents and data
sets. Determines the configurable items for the
BLCSE federation and for each event.

e Sole CM Authority Within an event, only one
designated individual has the authority to permit
a change to any configurable item. While this

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

would normally be the event director, in practice
it is the TCC, with agreement by the event
director, who makes a judgment call as to when
the impact of making a change is worth the
benefit of the change.

Lifecycle versus Event change schedule

As was shown in Figure 1, BLCSE has multiple
simulation federates each of which has both baseline
and event versions. To reduce the amount of “churn”
which would occur, with proponent developers
releasing new minor and major change versions
regularly, plus the rapid changes which are inherent
in a flexible experimentation environment, we
developed a distinction between normal lifecycle
developments and event driven changes. We tailored
the process for implementing these changes based on
various lifecycle and event thresholds for changes.

“Trigger” severity

We are using three different trigger thresholds to
determine when we will change the approved version
of the configurable item. Two of the triggers are
fairly pre-planned (version and calendar), while the
other is event cause specific, which we call our
“patch threshold”

The version threshold can be either external or event
driven. Rather commonly, one of the federates will
have a change delivered by an external proponent
(developer), which require the rest of the federation
to make changes, thus driving an overall version
change to the overall federation. To prevent an
excessive number of changes, we attempt to use
configuration control of the federation overall by not
allowing the newer version to be inserted into the
federation until some other threshold is reached.
With four primary simulation federates, failure to use
restraint in configuration control would cause
federation changes at a monthly or faster rate, which
causes unnecessary confusion for the various users.

By using the calendar threshold -- quarterly in our
original policy -- we thought to reduce the amount of
integration engineering work which would be

2010 Paper No. 10138 Page 5 of 9

required. Experience taught us that even by using a
quarterly calendar threshold; we were spending too
much time moving the federation forward, only to
need to make an additional change because of a
BLCSE event where a newer version, or specific new
functionality, was needed for the event. We therefore
changed the calendar trigger from being quarterly to
being an event calendar, based on the two or three
major distributed events we conducted each year. In
this case, the calendar and the version thresholds
were effectively combined to be triggered by the
calendar start of a new major distributed event, with
the latest version of each of the federates being used
as a starting point for both the event federation and a
configuration control point on the federation baseline.

Our third trigger, the patch threshold, is specific to
the event version of the federation, and works at both
a short calendar interval (driven by the event) or a
severity fix, which is of such a magnitude that the
TCC and event lead are in mutual agreement that the
fix needs to be done “right now.” The patch trigger
tends to be a relatively minor change to one or more
federates in the event, and is reflected as a minor
change in the configuration version number of the
federate and federation.

ISSUES IN THE DISTRIBUTED
ENVIRONMENT

Our community encompasses different Army Battle
Labs, companies, and individuals. Unlike a
traditional ~organization, our developers, test
engineers and federates are distributed across the
United States and overseas. Event integration spans
many weeks leading up to the actual experiment. This
has presented challenges to disseminating data,
baselines, and documents. Not all of the participants
have access to the same corporate or military portals,
or have adequate bandwidth or permissions for
downloading.

The BLCSE network exists on the DREN (Defense
Research and Engineering Network). Because that
network is classified, and the BLCSE virtual network
is being accredited at a SECRET level, it is
preferable to do all development and data storage on

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

unclassified networks and then transfer the baselines
and data to the BLCSE for the testing. This allows
for future development and reuse of files on
unclassified computers. No single tool allows for
version control, file storage, or download capability
and bridging the air gap between the unclassified and
classified networks. We use many different network
tools to accomplish collaboration within our
community. Some of them are the Army Knowledge
Online (AKO), a SharePoint site maintained on the
BLCSE secure network, an ftp server operating on a
commercial network, and when there are severe
bandwidth limitations or firewall issues and short
timelines we will send DVDs via next day delivery to
a few sites. For all of these networks, we use
designated on-line CM tools and internal control
processes to ensure only authorized users access
software, and only correct versions are reachable for
download.

BLCSE PROCESS

Depending on the event requirements, the initial
baseline is chosen either from a prior event, or a new
PM OneSAF released version. Once that decision is
made, the source software is put into our version
control software, and the change notification process
is required to make changes to that code.

For event integration we have a weekly change
schedule, starting on Monday, and ending on Friday
when a new baseline or patch would be published for
the community, along with a list of what has changed
or any features, updates made. This process includes
a Wednesday cutoff of new maodification changes,
stand-alone software testing, and then distributed
software testing as a federate before code lock and
version release posting.

During integration testing, if a problem is found, the
user identifying the issue is required to fill out a
Problem Tracking Report (PTR). This is submitted to
the local federate battlemaster, who then notifies the
event battlemaster and the TCC. The event
battlemaster and the TCC review the PTR for

2010 Paper No. 10138 Page 6 of 9

significance, and also for re-creation of the problem,
and if further analysis is required. The TCC will
either accept or reject the PTR as significant for the
event (it may be separately referred to the simulation
proponent, but not worked as an issue for that event).
If it is accepted, then battlemasters are informed that
a change to the baseline is being worked and the
programmers review the PTR and decide the best
course of action to perform and implement the
change. If the PTR is rejected by the TCC then the
issue is adjudicated between the local battlemaster
and the TCC or the community during the daily
hotwashes or other meetings.

The test engineers have until Wednesday to test and
document any issues that will require baseline
changes for the next week. Anything found after
Wednesday cut off time, is shelved for the next
week’s release unless it is of such a critical nature it
will impact the next week’s schedule. The
programmers test each of their changes locally, but
some issues require distributed testing. For those
cases, a separate (side) Run-Time Infrastructure
(RTI) is set up just to test in a distributed manner, so
as to not affect the ongoing integration testing with
the Federation. Once all testing is successful, the
changes are packaged and processed for release to the
community on Friday.

Depending on the nature of the software changes
(non-parametric data changes), at the termination of
the event, all the PTRs, change files, and code are
submitted back to simulation proponent for
incorporation in future simulation baseline releases if
it passes their CCB process.

Software CM Tools

When we began, our requirements for a tool were
fairly simple — we only needed version control. That
fit our needs when the programmers would deliver
the test baselines via a DVD or .tar file. After a
market survey, which considered cost as a
determining variable, we found that the Serena’s
Polytron Version Control System Version Manager
(PVCS VM) worked very well within our operational
environment and enabled us to manage the changes.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Experience demonstrated that we needed
accountability, repeatability, and fault traceability at
a much faster speed as we worked in distributed
teams across the nation. We did another market
survey and selected an upgrade to Serena which was
affordable and still met our minimum requirements.
It was not our first choice on a pure technical basis,
there were better tools available, but we were
constrained by explicit budget restrictions.

BLCSE is currently transitioning from Serena’s
PVCS VM product to its full featured Software
Configuration Management (SCM) product,
Dimensions CM. At present we are still using the
PVCS VM product, and will retain that tool as a basic
version management tool for users. Dimensions CM
will be our primary production configuration
management tool for development engineers. While
having a single, all-purpose CM tool which supports
both production configuration management plus user
version release (configuration control) and detailed
archive functionality is desirable; using multiple
management tools, by one vendor or by multiple,
may be the most cost effective solution. The authors
are not advocating community acceptance of Serena
products, but are describing the attributes which
determined it’s suitability in our environment. CM
teams need to examine the tool requirements of their
particular environment in a market survey and
determine which tool best suits their needs.

In considering the requirement for configuration
control tools, our experience has shown two critical
technical considerations in selecting the right tool,
separate from the best value consideration. The first
is the degree to which multiple users will be
accessing the controlled baseline and making changes
to that baseline. The configuration authority has to
balance between giving multiple users simultaneous
access to the baseline, although not the same block of
code, and ensuring that changed code blocks are
checked back in with appropriate testing and
notifications. The authority to control actual baseline
changes (new baseline version) while allowing
innovative software development to a “test” baseline

2010 Paper No. 10138 Page 7 of 9

is also critical.

The second technical consideration is the ability to
document not only the actual code change but the
rationale and backup materials for later re-integration
of those changes into a proponent baseline, so that
the work and knowledge of making event changes
can be appropriately handed off to the proponent
owner of the simulation. This functionality needs to
be fairly simple and quick for the code developers,
who are under time pressure to make event changes
very quickly; and yet rigorous enough to meet the
demands of deliberate configuration control boards
managing a proponent baseline.

Initially we invited the BLCSE community to use our
version control software if they needed that
capability. Most sites have developed their own
internal processes and declined to use it. Since most
of our CM requirements for the events and
community have been met by the use of the
SharePoint portals, AKO, we’ve not expanded the
role of collaborative development beyond our own
internal group. Our intent is that as the community
development grows, we’ll expand our use of our CM
tools to facilitate that effort.

We found that Dimensions CM provided the ability
to audit, manage baselines, capture requirements and
develop in parallel; and merge changes in one tool,
rather than manually hand jamming data and hoping
it all ties together correctly for reporting. We can also
maintain different event baselines at the same time
and provide multiple releases for future events.
Dimensions CM also has plenty of different software
integrated development environments (IDEs) for
programmers so they don’t need to change the way
they program to learn a tool. The design of a global
database repository has increased the transfer speed
across the WAN and the use of metadata and library
caching helps programmers keep their code synched
to the repository. For software version releases, it
also has automated capability for pushing baselines,
and email notices on changes to designated users.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

Dimensions also meets the requirements for
information assurance security. It can authenticate
users with CAC cards, a requirement which we are
transitioning to as part of our DIACAP accreditation.
Its ability to meet compliance requirements and
enforce process management and still provide
complete traceability helps us also meet the stringent
security requirements we now face with DIACAP.

DIACAP CCB/CM requirements

As part of Department of Defense regulations,
DIACAP has significantly impacted the way we
perform configuration management and configuration
control. At the very basic level, DIACAP mandates
that we have a configuration control board overseeing
what is approved to be part of the BLCSE simulation
and tools federation. But beyond this, the need for
accreditation, and for certification of persons having
change authority of the software and
hardware/Operating System (OS) platforms, has had
dramatic impact.

Operating System Impacts

Under DIACAP, the operating systems on our
hardware are regularly checked with DoD provided
information assurance tools. Experience has shown
that, given the inherent, albeit necessary, paranoia of
the Information Assurance (IA) community, each
new release of the scan tools routinely detect a large
number of new vulnerabilities, requiring the
operating system to be “fixed.” The trouble is that
quite often, these OS changes end up affecting the
simulation software, which then also needs to be
changed via a patch, which must be approved either
by the TCC or by the CCB, based on the level of that
change. Since these IA scans come out much more
frequently that do routine or scheduled updates to the
simulation baselines, the CM authority must strike a
difficult balance between meeting all of the 1A forced
OS changes, and keeping the simulation software
working properly on the operating systems.

Change accounting

2010 Paper No. 10138 Page 8 of 9

The other side of DIACAP is that all software is
required to be under full change accounting, as well
as only be changed by persons having authority to do
so. Change accounting, also called production
control, is an inherent part of good configuration
management. Just as the Version Description
Document describes what changes are made in each
new version, the change accounting process identifies
who made the various changes, and also who
approved and authorized the changes. The
requirements for change accounting were part of the
rationale for moving from our basic Version Manager
CM tool into the more advanced Dimensions tool
suite.

SUMMARY

Interoperable simulation events require all
participants to share a common picture of the
environment. Configuration management and
configuration control are the processes by which we
control the rate of change in our configurable items
and ensure all participants are using the same
versions of software and data.

Configuration management and configuration control
can be either very flexible or extremely rigid and
prescribed. The needs of the operating environment
should drive the structure of the processed. The
configuration management authority needs to find the
balance between flexibility and control based on the
needs of his particular environment. The number of
configurable items within a simulation event must
also be found between making all documents
configurable items, and leaving just the software
suite as a single configurable.

The configuration management authority needs an
appropriate tool set to assist in the physical process of
controlling and managing software baselines,
versions and other configurable items. The toolset
should include both basic production control/version
management software as well as archive and version
release/publication tools or functionality. There is no
one “best tool” for all needs, but instead, based on the
operating environment tools are selected that are
appropriate and meet requirements. And the tools

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2010

themselves may need to change as the requirement or
operating environment changes.

The greatest challenge the configuration management
authority will face is to ensure that the processes and
tools serve the needs of the users, which is to enable
the simulation event and the software developers,
rather than become a restrictive straitjacket that
prevents timely software and document updates to
meet event objectives.

ACKNOWLEDGEMENTS

The authors would like to thank Robert (Ben) Abel,
of Expeditionary Technologies, for his editorial
contributions to this paper.

REFERENCES

Haas, Anne Mette Jonassen (2003). Configuration
Management Principles and Practice. Boston:
Addison-Wesley,

2010 Paper No. 10138 Page 9 of 9

