Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

3D Engines for Mobile Platforms

Howard Mall
ECS, Inc.
Orlando, FL
Howard Mall@ecsorl.com

ABSTRACT

3-D, immersive games are no longer just for game machines (like the Xbox 360) or high-end desktop computers
with awesome graphics cards. Mobile devices such as smart phones and tablets have now grown powerful enough
to render realistic 3-D graphics and supply high-fidelity game play on the go. The release of games like “Dungeon
Defenders” on Android and “Epic Citadel” on iOS show the validity of porting an existing game engine (Unreal 3)
to mobile platforms. Unity3D has also seen exceptional growth with their “write once, deploy anywhere” approach
to game development. This paper explores what it takes to port and distribute a 3-D immersive, combat medic
simulation to mobile platforms. We will examine the selection of game engine, explore the decision process for buy
versus make, look at changes in interface from a desktop application to a touch interface, detail changes in the art
pipeline, take you through the process of getting the game deployed on various app stores, and look at possible
alternative delivery venues. We conclude with a post-mortem on the success of the port.

ABOUT THE AUTHORS

Howard Mall is Vice President of Engineering at Engineering and Computer Simulations, Inc. He has spent the
last seven years building various kinds of training systems. He led efforts for the Navy to develop training solutions
deployed on cell phones and hand-held computers. For the Army, he delivered the Tactical Combat Casualty Care
(TC3) Simulation used by combat medics to learn triage and medical decision-making on a virtual battlefield. He
led the development of the Emergency Management Nexus, a next-generation synchronous training platform for the
National Guard Bureau that has become a virtual world platform serving myriad federal agencies. He currently
oversees multiple engineering efforts at ECS.

2011 Paper No. 11382 Page 1 of 8

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

3D Engines for Mobile Platforms

Howard Mall
ECS, Inc.
Orlando, FL
Howard Mall@ecsorl.com

INTRODUCTION

Mobile gaming is getting very popular and there are
now some very high quality 3-D games available for
iPhones and Android devices. This is due to the
increased power available to handheld devices. Recent
iPads, iPhones, iPods and various Android devices all
support pretty decent 3-D graphics rendering. Many
engines are now available for these platforms to
support 3-D games.

This work will explore the issues and efforts in
creating a 3-D serious game for mobile platforms. To
closely examine the limitations imposed by a mobile
platform and to compare and contrast against the
capabilities of a desktop game, an existing simulation
will be ported to one or more mobile platforms.

The Tactical Combat Casualty Care Simulation
(TC3sim) was chosen for its visual and behavioral

1: Hands Free,
= _elrag pafiant

2011 Paper No. 11382 Page 2 of 8

2: Raise Weapon

complexity. This effort began with some
experimentation with a number of game engines
looking at the difficulties of importing TC3sim assets
into their framework. Unity3D was finally selected to
port TC3sim in earnest and proved to be quite effective
in creating an efficient asset pipeline, recreating the
simulation logic of the original TC3sim, and allowing
the developer to easily target both Apple and Google
Android mobile devices.

BACKGROUND

The Tactical Combat Casualty Care Simulation
(TC3sim) is an effective, desktop, first-person serious
game for training US Army Combat Medics
(Sotomayor, 2010). A version has also been created
for the US Marine Corp called the Computer Based
Corpsman Training System (CBCTS). This game was
originally created using Gamebryo rendering combined

ROFCOM D

s Use Medic Bag Pross F1 for Help

Figue 1: CBCTS is a version of TC3sim done for the Marine Corp.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

with a game engine using Lua
scripting for behaviors. (See
Figure 1.) The current version is
replacing Gamebryo with the
open source (and highly capable)
Ogre3D rendering engine.

TC3sim allows the player to
choose among a number of
scenarios playing the role of a
combat medic attached to a fire
team. During the course of an
exercise many of the combat
medic’s teammates can be injured
by gunshots and explosives. The
combat medic must choose how to
react to the situation. They must
triage their patients, assess their
injuries, choose a treatment plan,
and keep from getting injured themselves.

The interface is very familiar to those used to playing
first person shooter games. The player manipulates
their point of view using the mouse. Keyboard keys
are mapped to move the combat medic forward,
backward, and side-to-side. Keyboard keys can also
allow the user to kneel or go prone, raise their weapon,
use their medical bag, go hands free, or toggle between
running and walking.

A reticule sits in the center of the screen. This can be
used to aim their weapon, but more importantly, as the
player places the reticule over objects in the
environment they can right click their mouse to access
a contextual menu (see Figure 2.) In this way, the
player can select parts of a synthetic casualty’s body
and choose tests or treatments (e.g. take pulse, apply
bandage, conduct a blood sweep, etc.) These options
appear as a “pie menu” around the reticule. The user
clicks on one of eight sections to select that option and
perform that action on the synthetic casualty.

The interface to the synthetic casualty is the most
significant part of the TC3sim. Representing it on a
mobile device was a major part of this endeavor and
required creativity and an understanding of what could
be accomplished on a small screen with a touch
interface.

PLATFORMS

Two platforms were selected for this work due to their
popularity and capability: iOS and Android. Two

2011 Paper No. 11382 Page 3 of 8

Figur :he Contextual ““Pie” Menu used in TC3sim and CBCTS -

platforms were selected over one to assure that there
was some contrast against which the work could be
evaluated. In the development of any mobile
application the selection of platform is major factor in
the success of you project (Chludzinski, 2010.)

iOS

iOS is Apple’s operating system for iPhones, iPads,
and iPod Touches. iPhones and iPod Touches are
nearly identical in capability except iPod Touches do
not have phone capability and some other subtle

differences. The iPad is their larger cousin with a 10
inch screen.

You must register as a developer in order to be able to
access their Software Development Kit (SDK) and
their developer program. A normal registration (at the
time of this writing) is $99 USD a year for a normal
license and $299 USD for an enterprise license. The
enterprise license allows you the ability to distribute
applications to designated hardware within an
enterprise without going through Apple’s App Store
approval process. The normal license allows you to
register hardware only for development and to install
your software for testing purposes. Either license
allows you to submit applications to Apple’s App
Store.

Typically, you must also own an Apple made computer
(such as the MacBook Pro) in order to develop for iOS.
(There are other “fringe” options that allow you to
develop on Linux but they can prove very difficult to
implement and maintain.) Xcode is the Integrated
Development Environment (IDE) under Apple’s OS X
through which development for i0OS devices is
conducted. Xcode uses a C-derived language called

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Objective C that is a contemporary of C++. However,
Xcode also supports C++ and C development quite
well allowing for parallel development. Objective-C
projects can compile and use C and C++. There are
also many third party development tools that allow
development in other languages, but they eventually
generate Objective-C and are compiled by Xcode.

For 3-D development, iOS supports OpenGL ES.
OpenGL is a low-level Application Programmer’s
Interface (API) for graphics rendering that has become
a standard across many platforms and graphics cards.
OpenGL ES (Embedded System) is a subset of
OpenGL for smaller footprint hardware such as
cellphones and appliances.

Android

The Android operating system is actively developed by
Google but is also mostly open source. That allows for
mobile phone vendors to create distributions of
Android for their particular hardware without having to
write everything from scratch. In addition to an
operating system, Android includes layers for user
interface and a number of native applications. As it is
open source, there are some developers who create
their own distributions (i.e. cyanogen) for use on “un-
locked” phones.

There are many options for building programs for
Android, but officially, Google supports a Java SDK
and a C/C++ Native Development Kit (NDK) for
coding more complex, CPU-intensive applications.
You can develop on any number of desktop platforms
(Windows, OS X, Linux, etc.) and there are a host of
tools available to the developer. There are now also
many scripting languages supported on Android like
Python and Lua.

Anyone can write Android applications and they can
be installed very simply by loading an application
package file onto the device. You do have to register
as a developer (a one-time fee of $25 USD) if you wish
to distribute applications via Google’s Android
Market. There are also alternatives to Google’s market
available on the internet as well as downloading
application package files directly from developers’
websites.

Android’s commitment to platform diversity is a
strength but also a weakness. Unlike Apple that
controls their hardware; Android developers must
assure their application works on a variety of devices.
However, installing software and testing on hardware
is much simpler with Android than with iOS.

2011 Paper No. 11382 Page 4 of 8

GAME ENGINES

A short list of rendering/game engines was examined
to provide a small survey of capabilities across iOS and
Android. They were selected based on how close their
asset pipelines match the current TC3sim engine and
their capability on iOS, Android, or both.

Irrlicht

Irrlicht is an open source 3D graphics engine written in
C++ that has been ported to Android. It offers direct
import of 3D Studio Max files. 3D Studio Max is the
application in which all TC3sim assets are created.
There were also a number of demos and tutorials for
building a 3D application in Irrlicht to run on Android
(Renzhi, 2011).

It proved not too difficult to build a demonstration
capability into Irrlicht that allowed one to view and
navigate within a 3D scene. Bringing TC3sim assets
into the Irrlicht engine was also not too difficult.

The greatest difficulty with Irrlicht on Android was
implementing the advanced control logic and game
logic. In Android, user activity is handled in the Java
layer and communicated to the C/C++ code through
something called the Java Native Interface (JNI). This
affected the performance of the application.
Programming and debugging for Android (using
Irrlicht) was proving quite difficult.

Also, during our exploration there was no native iOS
port. The Proton SDK (Robinson, 2010) has since
come to light but is not addressed in this paper.

Ogre3D

The current generation of TC3sim will use Ogre3D and
our internal art department has a lot of experience with
Ogre3D. Ogre3D, like Irrlicht, is an open source 3D
engine written in C/C++ (although it has many
alternate language bindings including .NET). It is
considered the more mature open source offering with
a large community, a significant amount of
documentation, a number of features and special
effects, and cross-platform capability (Benei, 2011). It
has also been used as the basis for some commercial
game titles.

It has been ported to iOS and it was not too difficult to
get the Ogre3D demonstrations working on an iPad.
Ogre3D and the iOS port were both built using Xcode.
An application was then written and compiled as an

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

iOS application. Using iTunes the application could be
installed on a registered development device (in this
case an iPad.)

Art assets were exported from 3D Studio Max using
OgreMax. OgreMax is a plugin to 3D Studio Max that
exports models, textures, materials, and animations
into file formats native to Ogre3D.

TC3sim materials had to be slightly altered to account
for the lack of multi-pass shader capability in OpenGL
ES. However, for the most part, the art pipeline was
the same as that for desktop TC3sim. These material
changes could also be made after delivery of the asset
by the art department using a simple script.

TC3sim assets in Ogre3D ported to iOS looked
fantastic. The special effects and graphics capabilities
required by TC3sim worked in i0S. However,
installation of the program on the iPad with Apple’s
process is tedious at best. Ogre3D also proved to
require a large memory footprint. Also, while there is
some work in porting Ogre3D to Android (Jacmoe,
2010) it does not look like it is well supported or
recently updated.

Unity3D

Unity3D has grown into a very capable game engine
and authoring environment. You utilize a graphical
user interface to import content and to write your
game. All behaviors, triggers, game flow, etc. is
scripted within the Unity3D authoring environment.
Once you are done creating your game, you select your
deployment target (Windows, Web Player, Mac OS X,
Android, iOS, etc.) and it produces an executable and
packages the assets for your game. Mac OS X and iOS
targets require that you build on Apple hardware.

One of Unity3D’s most popular and publicized
features is its Web Player (Fenandez, 2009). This is a
plugin that allows a Unity3D game to be played in a
web browser. This operates similarly to the ubiquitous
Flash plug-in. It has similar performance to a native
application but downloads and stores its content within
the browser’s “sandbox” cache.

The base version is free to use for independent game
developers. Otherwise, there is a reasonable per-seat
license with additional licensing for mobile build
targets for iOS and Android. It is well-supported by
the company and it comes with some very good
samples and tutorials. Many games for both Android
and iOS have been created using Unity3D.

2011 Paper No. 11382 Page 5 of 8

It natively imports 3D Studio Max files which fits the
TC3sim asset pipeline. Many of the shaders and
materials originally created for use in Ogre3D
imported very easily into Unity3D making it a nearly
painless process. One can also specify post processing
rules for assets to change things like texture resolutions
for different platforms.

There is a graphical user interface (GUI) toolset that
allows 2D buttons and menus to be easily specified and
tied to actions within the system. Multi-touch is also
supported within Unity3D for platforms that facilitate
it. The iPhone standard package includes code to set
up a touch-screen, multi-touch joystick.

Android phones support multi-touch differently
depending on the hardware. Some phones do not
support it at all, while some support only two touches
(i.e. pinching). However, the iPhone tutorials available
from Unity3D can be (for the most part) used on
Android phones and many of the handheld APIs in
Unity3D have been unified with iOS for cross-platform
projects. You may need to set up conditionals though
for compiling different code for different platforms
when necessary.

Buy vs. Make

Irrlicht and Ogre3D were clearly in the “make”
category of the engines evaluated. Both are open
source and free, but both are rendering engines and not
game engines. The game logic of TC3sim would need
to be recreated for these platforms. Both also seemed
to be well established on only one platform: Irrlicht for
Android and Ogre3D for iOS. Unity3D became the
clear winner in the evaluation due to its maturity and
low cost.

Unity3D’s cost would pay for itself in its ability to do
both iOS and Android development, in its easy ability
to import existing art assets, and in the ease with which
you can write behaviors and game logic within its IDE.
The other engines would require more engineering
effort than the cost of a number of Unity3D seat
licenses. While there would still be a lot of “make” to
be done in Unity3D, buying it has a significant return
on investment in terms of developer efficiency.

INTERFACE CHANGES

TC3sim is a serious game for Windows PC. It is
controlled by a combination of keyboard and mouse. It
also employs a contextual “pie” menu. To run on

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

touch screen devices like the iPhone and Android
mobile phones the interface had to be redesigned to

Figure 3: Unity3D with multi-touch navigation circles

accommodate a smaller screen and lack of mouse and
keyboard.

A common approach to 3D first person games on touch
screen devices is to include controller pads at the lower
left and right corners of the screen in landscape mode.
This emulates common game controllers in ergonomics
and operation whereby a joystick is operated by the
right thumb and a multi-button rocker is operated by
the left.

Unity3D includes an example of how to create this
kind of controller for touch screen devices and this was
leveraged to create the control scheme for the TC3sim
port (see Figure 3.) The circle on the right controls
the viewpoint of the player the same as the mouse in
the desktop version of TC3sim. The circle on the left
controls forward,
backward, left, and right
movement as the ‘W’,
‘S’, ‘A’, ‘D’ keys do in
the desktop version of
TC3sim.

Casualty interaction
required some creativity.
To interact with the
casualty the user would
be required to move into
close proximity to the
casualty and then tap on
the body part with which
they were to interact.
This would bring up an
array of nine buttons

around the center of the screen (similar to the pie menu
from the desktop version). The ninth button at the
bottom is a close button. The
other eight are actions to be
performed on the casualty
relevant to the particular body
part.

The small screen size makes
precise selection difficult. To
ameliorate this problem, the
interface for interacting with
the synthetic casualty
registers the finger lift event
rather then the finger press
event. When the user places
their finger on a body part,
the name of the body part
appears at the top of the
screen (see Figure 4.) This
provides feedback to the user
to assure that their selection and their intended
selection is correct. If not they can drag their finger
over to another body part or to a “blank” space without
activating the menu. The menu will activate only when
the user lifts their finger. The menu buttons work in
the same way.

This approach to the user interface provides for a
similar feel as the desktop version of TC3sim while
taking advantage of the affordances of a touch screen
interface. At the same time, it attenuates the
drawbacks of a small screen. This works well on iPad
as well although it has a large screen. This proves a
good model for touch screen interfaces and is expected
to work on larger Android tablets as well.

ABDOMEN

3 . LAY SUPINE

ABDOmMEN

Figure 4: ““Pie” Menu implemented for touch screens

2011 Paper No. 11382 Page 6 of 8

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

ART PIPELINE CHANGES

While Unity3D makes it very easy to bring in models
from 3D Studio Max and use them for development in
iOS and Android platforms. The biggest issues had to
do with shaders and memory.

Shaders had to be optimized for the particular device
and the particular version of OpenGL ES being
implemented. However, the test devices supported
OpenGL ES 2.x which allows for simple shaders.
Unity3D provides a selection of shaders to get up and
running and they work well, but custom pixel shaders
can be written and incorporated for better looking
scenes and characters. However, because of the
performance restrictions of the hardware, shaders must
be fast and efficient, thus not too complex. Lightmaps
using the integrated Beast system provided for some of
the best visual appeal.

Because of the complexity of the port of TC3sim,
memory was an issue due to the size of some of the
environments and the memory footprint of the
synthetic casualties. Typically the casualty models
contain a significant amount of extra hidden geometry
to allow for the representation of a number of casualty
types. However, for use on mobile platforms the
synthetic casualties had to be pre-optimized to allow
them to run in memory. The injury had to be selected
ahead of time and then exported without all the
extraneous data. Flexibility was traded for
performance. Finally, we kept the synthetic casualties
within a “courtyard” environment that limited the
amount of scene data being rendered in the
environment.

APP STORE DEPLOYMENT

Apple

Apple requires a great deal of control over the
development process and the distribution of
applications for iOS devices. You must register as a
developer on their development portal and develop on
Apple hardware. You must create, download, and
install a special profile in Xcode to allow it to compile
for iOS devices. You must also register all devices you
intend to use for testing and development via their
portal and creating “provisioning profiles” for the
application and the hardware to which it is to be
installed. This can be a very tedious process simply to
develop the software.

2011 Paper No. 11382 Page 7 of 8

Submitting an application to the App Store requires
that you sign up for iTunes Connect. This is the portal
for uploading your applications and managing
contracts, taxing, banking, and sales information. In
addition to submitting the binary you must include a
set of metadata about the application that includes
ratings, keywords, and screenshots. All applications
are reviewed by Apple and they require you to comply
with Apple’s content guidelines and that the
application has been thoroughly tested on iOS devices.
This review process can take hours to a couple of
weeks. Your application will “go live” without notice
S0 be prepared.

Google

Publishing to the Android Market requires you to
register using a Google account and agree to their
terms of service. After that you can upload and update
your application as much as you like, as long as certain
requirements are met:

1. signed with a cryptographic private key,

2. Android version defined in a manifest, and

3. anicon and label must be identified.

The process is very straightforward and there is no
approval process, although there is an after the fact
reporting process for potentially offensive material.

Other Publishing Options

Android applications can be installed easily outside of
the Android Market. They can be installed via a
website or the phone’s Secure Digital (SD) card. One
must simply activate the capability within an Android
phone’s Settings menu.

Installing applications on iOS devices outside of the
App Store requires an Enterprise Developer License
from Apple. This license allows for the distribution of
in-house applications within an organization of over
five hundred employees. Or, if your distribution is to
less than one hundred devices you have the option to
distribute your applications ad hoc under your
developer license.

Another option is to “jailbreak” your iOS device. This
involves removing Apple imposed limitations on the
operating system by gaining administrator rights
through some clever hacks. This, however, voids the
warranty and (in rare cases) can make the hardware
unusable (“bricking it” in the parlance.)

CONCLUSION

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Porting TC3sim to the mobile platform turned out to be
easier than expected for a number of reasons.

Mobile hardware capabilities are increasing every year.
The prevalence of OpenGL ES 2.x on many recent
platforms such as iOS devices and Android 2.2 devices
brings graphics capabilities closer to those on the
desktop. It also made the asset pipeline not too far
from the desktop version in terms of shader selection.

The selection of Unity3D as the development platform
proved to be a good one. Its development environment
and various integrated tools made porting game logic,
physiology simulations, and interactivity very easy.
The per-seat cost is quickly made up in increased
developer effectiveness.

Interface design was key to success and it helped that
the original game did not rely on a significant number
of key presses. The contextual menu is intuitive,
provides for easy discovery of interactivity, and was
easily translated to a touch screen device. It is a good
exemplar of interface design for mobile devices.

FUTURE WORK

The port of TC3sim to iOS and Android could be
further enhanced by providing multi-player,
networking capability. Unity3D has networking
support and it would be good to explore these
capabilities with regard to mobile platforms.

The ability to deliver more expansive environments is
an area to explore as well. Are there ways of
constructing the environments in such a way to account
for the performance limitations of mobile devices?

The visual quality of the system could also benefit
from shader and lighting enhancements. This work
was able to provide some good visual quality; but there
are, most likely, techniques yet to be developed that
could create great visual depth without sacrificing
performance. There are still “tricks” in the system to
be discovered!

2011 Paper No. 11382 Page 8 of 8

REFERENCES

Benei, V. (2011). Reviews for OGRE (O-O Graphics
Rendering Engine). Retrieved from
http://sourceforge.net/projects/ogre/reviews/

Chludzinski, J. and Mall, H. (2010). Challenges to
Putting the Real-time Web on Mobile Platforms.
Proceedings of the International Interservice
Training Simulation and Education Conference.
2010.

Fernandez, J. (2009). Software Informer Review of
Unity Web Player. Retrieved from http://unity-web-
player.software.informer.com/.

Jacmoe and Spacegaier (2010). Ogre Android.
Retrieved from http://www.ogre3d.org/tikiwiki/
Ogre+Android&structure=Development.

Renzhi (2011). Programming 3D games on Android
with Irrlicht and Bullet (Part 1). Retrieved from
http://renzhi.ca/2011/05/19/programming-3d-games-
on-android-with-irrlicht-and-bullet-part-1/.

Robinson, Seth A. (2010). Proton SDK - component
based C++ framework for iOS, Android. Retrieved
from http://irrlicht.sourceforge.net/forum
Iviewtopic.php?t=40371&sid=f54c5d8bed3b309c39
22db62b016d7h9.

Sotomayor, T. (2010). Teaching tactical combat
casualty care using the TC3 sim game-based
simulation: a study to measure training effectiveness.
Studies in Health Information and Bioinformatics
2010;154:176-9.

