
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 1 of 11

Ensuring Forward Compatibility on Networked Simulations

Chris Kubek Steve Berglie Robert Butterfield
ASTi ASTi ASTi

Herndon, VA Herndon, VA Herndon, VA
Chris.Kubek@asti-usa.com Steve.Berglie@asti-usa.com Robert.Butterfield@asti-usa.com

ABSTRACT

Despite years of advances in networking technologies and standards such as Distributed Interactive
Simulation (DIS) and High Level Architecture (HLA), the industry still faces interoperability challenges.
Over time, legacy simulations can become incompatible with more recently fielded devices. Maintaining
forward compatibility between heterogeneous platforms can become problematic, requiring a significant
investment of engineering and administrative resources when conducting large distributed exercises between
diverse trainers. Maintaining compliance with the latest DIS or HLA standards is one way to plan for
change, but these standards have weaknesses that allow disruption of even the best-planned trainer life
cycles.

This paper proposes an approach to interoperability and composability centered on an open-source protocol
that is, by definition, forward and backward compatible. Because this approach is a cross-platform
solution, it can be implemented as a straightforward modification to existing trainer protocols. The
proposed approach, initially implemented to allow seamless interoperability for record and playback of
communications on distributed exercises, is built from a bottom-up perspective, and directly addresses
weaknesses in existing industry standards. By leveraging newer, open-source technologies, this paper
presents a solution with an immutable wire encoding, and offers a way to achieve flexibility while
maintaining interoperable communication. For a large class of simulations, this approach could
dramatically reduce interoperability issues throughout the product life cycle. A specific use-case is
demonstrated that illustrates how combining the best elements of DIS and HLA benefits compatibility.

ABOUT THE AUTHORS

Chris Kubek has worked as a Project Engineer for ASTi with a specialization in networked
communications and modeling. Experience includes modeling and engineering work on Live-to-Virtual
radio bridges (Radio over IP) and a focus on DIS and HLA communications modeling for audio/voice. He
has provided support for dozens of simulator programs as well as large-scale distributed exercises.

Steve Berglie is a Software Engineer at ASTi with over 13 years of experience building network and
simulation management, testing, and performance analysis tools for both HLA and DIS.

Robert Butterfield is the Chief Technical Officer and a founding member of ASTi. He has over 30 years
of experience in Training & Simulation and has been an active member of the IEEE 1287 Standard for
Distributed Interactive Simulation Committee since 1993.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 2 of 11

Ensuring Forward Compatibility on Networked Simulations

Chris Kubek Steve Berglie Robert Butterfield
ASTi ASTi ASTi

Herndon, VA Herndon, VA Herndon, VA
Chris.Kubek@asti-usa.com Steve.Berglie@asti-usa.com Robert.Butterfield@asti-usa.com

INTRODUCTION

A number of communication standards have been
accepted within the Modeling and Simulation (M&S)
community including Distributed Interactive
Simulation (DIS), Testing and Training Enabling
Architecture (TENA), Tactical Environment Network
(TEN), and High Level Architecture (HLA). This paper
presents a solution to reducing the level of effort for
software developers and integrators of networked
simulations. The solution is not proprietary in nature,
and simply an approach for all to consider.

This paper is a story of ASTi’s own struggle to create
products that easily work with multiple standards but
are also maintainable. The paper discusses earlier
flawed attempts at mitigating many issues and the
lessons learned along the way. The solution—an open-
source, wire-level specification—is presented. The
challenges and solutions are not limited to radio
simulation, but are applicable to distributed systems
across Modeling and Simulation.

The paper is written from the perspective of an engineer
who has been faced with the real-life issues of
integrating various standards and protocols.

THE PROBLEM OF MULTIPLE STANDARDS
AND EXISTING SOLUTIONS

As simulations are engineered to support the latest
capabilities and standards, they also become part of the
distributed training environment. Simulators old and
new are trying to train together but may lack a
common interface layer. Some trainers are made to use
DIS, some TENA, some TEN, others HLA. Even if a
standard is agreed upon, there still may be a conflict
between different versions of the same standard.

Over time, standards grow and change. To highlight
this fluidity, a new DIS revision is currently under
ballot, and last year IEEE updated the HLA standard to
HLA Evolved. This does not mean that the author is
arguing against updating or creating newer standards
(in fact, quite the opposite). Rather, it is meant to
show that network capabilities are always evolving,
and should always be evolving. What may be the latest

and greatest today is only current for a limited time,
and simulations must have a plan in place to
accommodate future technologies.

Several approaches have been adopted to maintain
compatibility with evolving standards and simulations
including gateways and contractual enforcement.

Gateways

An extensive amount of work has gone into gateways
and other forms of middleware. Gateways help translate
from one standard to another, allowing simulations to
communicate by bridging the common interface layer.
Gateways have proven to be flexible and maintainable
but also have drawbacks.

Gateways can add latency to the network, and may
have their own interpretation of the models being
shared. The extra layer of complexity can be difficult to
debug and integrate (Dingel, 2002). Distributed events
using gateways may also need to cater to the lowest
common level of fidelity. Advanced features gained by
newer standards are either thrown out or ignored. The
result can be a complicated “system of systems” where
multiple components are hampered by a disjointed
architecture.

Contractual Enforcement

Another solution to maintain compatibility is to
impose a contractual requirement that enforces
backward compatibility. A contract may stipulate that a
new application must support old and new standards,
and these requirements are based on need. Older
applications must then be updated to support the same
technological paradigm. Code changes and technology
refreshes are implemented for simulators that were
previously DIS-specific to now also use HLA.

HLA combats some of the issues of backward
compatibility by a reliance on being “link compatible”.
This means that changing HLA software should be a
relatively painless affair, since the software that uses
HLA should remain untouched. This lowers the
engineering cost of moving to a new Run Time
Infrastructure (RTI), the middleware that runs HLA on
a device.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 3 of 11

But overall, there is a high cost to the enforcement of
backwards compatibility. The technical challenges are
often more complex than simply mapping data from
one standard to another. Developers must also deal
with many protocol-specific features such as evolving
timestamps or better location algorithms.

What is the impact of these technical challenges? How
do developers best deal with a variety of standards in
the M&S community? Simulations are developed to
be agnostic of the communication protocol that they
are using.

For example, those who design the Object Model for a
weapon system do not rely on DIS-specific
enumerations or formats, but instead design for what is
important to that system. Talented engineers are able to
abstract the communication interface layer and write
software that is Domain Specific. A successful
application becomes one that is flexible enough to
manage multiple standards while minimizing the
impact to their domain and to the distributed
environment.

Efforts have already been made to help make more
simulations protocol-independent but still focused on
being network centric. There are several tool sets that
generate software classes suited to the Distributed
Environment, while maintaining the accuracy of
specific Object Models. The tools help simulation
developers create models that do not contain protocol-
specific information, allowing easier integration with
more complex standards (Metevier, 2010).

While progress has been made in helping developers to
create domain-specific models, there is a gap in the
ability to connect those models to the interface layer.

An Early Failure: ASTiNet

ASTi’s solution to the problem of multiple standards
was to create our own in-house protocol for radios. The
communication mechanism was designed from the
ground up and specially tuned for the ASTi radio
environment. The protocol was proprietary, sparsely
documented, and artfully named ASTiNet (or ASN for
short).

The design goals were sound:
• Flexibility – Adding a new field should be

easy, and the protocol should be extensible.
ASTi is always adding new features and
modeling more sophisticated radios. Breaking
working software versions with newer
concepts or features should be a rare
exception, not the norm.

• Focus on radio simulation, not standards –
This sounds like a simple idea. The company
is based upon simulated radios, and that
Object Model should be a core value. In other
words, ASTi radios should think about radios
first, DIS or HLA second. However, prior to
ASN, the company’s products were already
adding DIS-specific notations and paradigms.

• Support the latest technology – Important
networking concepts like IPv6, peer-to-peer,
and Zero-Conf were added. ASN was going to
be the future and needed to be in position to
take the company there.

ASN was successful in meeting these design goals.
The product was built to support multiple standards on
the same computer. Small, flexible software
components bridged ASN onto a DIS network and a
number of different HLA federations. Bridging from
ASN to an HLA FOM did not impact the radio
software, and newer networking concepts did not
disrupt the functional radio simulation.

The software achieved an important concept in design
called encapsulation. The radio environment was
protected from other parts of the code base by being
completely isolated. Essentially, ASTi had pushed
standards like DIS or HLA out to the very edge of the
software. The developers and networking experts who
worked on the bridging software could do so without
changing the simulated radios.

Unfortunately, ASN had two problems. The first
problem was that it was proprietary. Despite our best
intentions, a proprietary protocol was frowned upon by
much of the customer base. The protocol had the feel
of something that was trying to replace existing
standards. Explaining ASN to a customer was a
delicate exercise, and often led to confusion or rumors.
There was a perceived lack of interoperability, simply
because ASN was unknown to the rest of the M&S
community.

The second problem, in hindsight, was dreadfully
predictable: code maintenance. The documentation (that
which existed) for an entire in-house communications
protocol was weak, especially given that this was
intended to lead the company into the future. Though
the concepts behind ASN were simple, the
implementation was not. A single web page on the
development network comprised the entirety of ASN’s
documentation.

The real impact was that any development on network
standards or the radio simulation software required
expertise. For a small company, it meant that only one
or two engineers could work on those pieces of our
product.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 4 of 11

These issues became readily apparent when ASTi began
to develop a new Record and Replay tool.

ASN: Example of Forward Compatibility
Challenges

ASTi was developing Record and Replay (R&R)
software for a customer. The intent was to have a
relatively simple tool that features ASTi’s core product
area – radio simulation. The tool would be able to
record network traffic, and allow a user to control how
the audio is played back.

For example, an instructor would be able to select
several radio frequencies from a distributed exercise and
play the audio back over a set of loud speakers.
Features were to include fast forward, bookmarks,
pause and filtering options. Exercises could also be
recorded and stored for data analysis. The goal was a
simple tool that would be low cost and a 75%
solution.

The R&R tool would act like a network logger,
capturing packets and messages. The key to having a
successful (and profitable) product would be the ability
to record across multiple standards. Developing
separate tools for DIS or HLA would have been
prohibitively expensive. This meant that ASN was an
obvious choice to meet the multi-standard requirement,
and would play a prominent part in the solution.

The scope of effort quickly became apparent. ASN was
too complex to simply capture packets, and the
software team creating the R&R tool was unfamiliar
with the ASN code base. The inclusion of IPv6 as well
as a bid-and-declare process made packet capture
difficult without knowing all the specifics of the
protocol.

The team was also concerned about the format of the
tool’s recordings. One requirement was to play back
older exercises for data analysis. Changes to the R&R
tool or in ASN would be detrimental since, during
playback, many of the packets would be misunderstood
or at worst never received. Backward compatibility
could have easily been lost.

The developers were concerned that not only would the
R&R have software bugs, but also that new bugs in
ASN could be created. Without a thorough
understanding of the protocol, the software team was
treading on dangerous ground.

ASTi was not without options, but the scope had
jumped from a small effort to a large one. The tool
would require careful software design and testing, and
the cost was much higher than originally estimated.

The challenge of developing the R&R tool was a
symptom of a bigger issue: software maintenance. If
creating an application to work with ASN was this
difficult, how can the company keep the protocol
running for the next 2 years? What happens in 5 years
when new networking features need to be added? What
happens when there is turnover in the expert
programming staff?

It was clear that ASN in its current form would be a
problem moving forward. The software team needed a
solution that would have more staying power. Simply
using the latest and greatest technologies was not
enough. ASN was easy for the end user and customer,
but not for the software developers who maintained it.
A newer communications protocol would be needed.

Plan B: The Addition of a New Design Goal

ASN was going to be redesigned, and maintainability
was added to the previous goals. This presented new
challenges. How could we reduce complexity without
compromising the feature set? How can ASN messages
be easily read by software in the present and the future?
How can the company use newer technologies without
adversely affecting the code base?

(This may sound like a familiar problem to the reader.
The growth of distributed computing and networking
technology has exploded in the last twenty years and
made forward compatibility a bigger issue than ever
before. When a software program only needs to worry
about itself, code maintenance is smaller problem.
When many devices are all trying to communicate, the
issue is compounded. Modeling and Simulation,
Information Technology, Website Design – all of these
technology sectors deal with the problem every day
(Henning, 2006; Richbourg, 2008).)

The difficulty was determining a method to provide
forward compatibility. How could the company best
design a communications protocol that could use the
best technology available today, but be maintained to
incorporate the best technology of the future? The
answer was to have a consistent message format,
without restricting how the message was sent.

In developing a new communications protocol, the
software team made a distinction between wire format
and transportation method. The wire format is the
actual encoding of data, the precise way the ones and
zeros are set and aligned. The transportation method is
how that data is sent.

For example, a classic communication protocol is
Morse code. The wire format is the “dots and dashes”
used to pass information. The transport method is a

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 5 of 11

flashlight, telegraph, or radio used to send the code, as
well as the speed and tempo of the signal. The
definition of the message format is always the same.
“Dots and dashes” are always strictly defined for each
letter and number; the method of transport can vary.

Relying on a consistent format allowed ASTi to
remove complicated concepts like IPv6, TCP/UDP, or
peer-to-peer from ASN. Those features could all be
constructed with separate pieces of code, placed on top
of the protocol rather than embedded into it. ASTi was
going to focus on the format of the message itself.

THE NUTS AND BOLTS OF
COMMUNICATION PROTOCOLS

The structure and format of data is a key piece of any
software development. There is a large amount of
information and data within the M&S community, and
it follows that there is a range of methods to represent
that data. Typically with every data set there is a
precise way to store, encode, and share the information.

Because computers rely only on ones and zeros,
software uses special methods to represent numbers.
How are negative numbers described? How can very
large numbers be stored efficiently? How are numbers
smaller than one defined? Each method of encoding
numbers has benefits and tradeoffs. It becomes the
responsibility of the software developer to make the
best choice of how to format the data, often working
within existing standards and simulations. The format
of a database can directly impact the compatibility and
usefulness of the data.

The ASTi software group had already experimented
with a variety of message formats, but found a
preference for Protocol Buffers (Protobufs or PBs for
short). Protocol Buffers are an open-source data format
created by Google Inc. and used extensively throughout
Google’s data network.

Protobufs work by first developing a message
definition file (the .proto file). This file defines all of
the data types and default values to be exchanged. In
software, the .proto file is referred to as a schema, and
is similar to the Object Model Template (OMT) files
used in HLA to define a federation. (The analogy is not
perfect; OMT files also include transport method
information.) Once a schema is generated, a Google
toolkit assists the software developer by creating source
code based on the messages and data structures defined.

Protobufs have several advantages1. The software
development team at ASTi uses multiple languages
including C++ and Python. Protocol Buffers are
language neutral and work with both of those
programming languages, as well as Java. Also, because
they are open source, anyone from the software
community can generate plugins for other
programming languages (Pilgrim, 2008). The result is
that the supported language base for PBs is always
growing.

In addition to language neutrality, PBs are platform
neutral. Protobufs can run on Linux or Windows
operating systems. Most data formats are susceptible to
problems dealing with 32-bit versus 64-bit hardware.
One of the primary problems between the two
architectures is that variables with one type of encoding
in a 32-bit can change and double in size on a 64-bit
system. Protocol Buffers are unaffected by this
architecture change.

Protocol Buffers being platform and language neutral is
one of the main reasons the company found them so
appealing. The software group tried to avoid a steep
learning curve, and its simplicity allowed Protobufs to
meet that requirement. Because PBs are open source,
ample documentation is available online including
sample code and tutorials. All of these features fit into
the goal of maintainability.

Software engineers have a term for a program that can
accept future growth, and for software that can be
modified by others without knowledge of the original
code. The term is extensible. When building a new
house it is prudent to include the ducting and vents for
air conditioning, even if A/C is not part of the original
house. In much the same way, software developers
appreciate an architecture that can be extended later
with little impact to the existing code.

Protocol Buffers enable messaging that is extensible.
Data is tagged and must be decoded by a schema on
the opposite end. This allows the messaging to grow
over time without the developer worrying about byte
placement or properly aligning older messages. Older
systems using Protobufs can be updated gradually, and
new data fields can be added over time, with little
impact to the original software.

Extensible is what the original ASN attempted to be,
and the software team had found in Protocol Buffers a
message format that would accomplish the goal.

1 A comparison of other interface description languages
such as CORBA, JSON, XML or ASN could easily be the
topic of another paper. Such an analysis is beyond the
scope this paper, but the reader is encouraged to review
some of the documents found in the References section.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 6 of 11

THE WAY FORWARD

The software team developed a tool to build .proto
files from HLA object model templates. A Protobuf
data-messaging scheme was created to work with the
radio environment. Eventually, the Record & Replay
tool was created to capture and log Protobuf messages
as needed.

The newer design goals were achieved, and the code
base was much simpler as compared to the previous
product which accommodated multiple standards.
Multiple software developers could now work with the
new source code quickly.

But the biggest result of the decision was the discovery
of several new impacts.

While Protocol Buffers play an important role, simply
having a proven, consistent wire format has proven a
huge value to ASTi. By defining the wire format,
software developers could adapt their methods to easily
support new features.

Revised Design Goals

Below is a revised set of design goals, incorporating
the newer goals along with the original objectives:

• Flexibility – Adding a new field should be
easy and the protocol should be extensible.
Breaking devices with newer concepts and
features should be a rare exception, not the
norm. Standards will evolve to meet the
community of practice, and be prepared to
evolve with them.

• Focus on the Object Model, not standards
–The Object Model is the core value.
Standard-specific notations and paradigms
should be avoided.

• Be able to support and encapsulate the latest
technology – Requiring a transportation
method, no matter how current or proven, can
lead to problems downstream. The data may
be sent and received in a multitude of ways,
but those should never prevent the message
from being understood.

• Maintainability – With any set of distributed
systems, at least once device is in the interim.
Maintenance should be expected to occur
incrementally, over time.

These goals are not specific to modeling and
simulation. Any system of distributed computing
platforms can meet these goals by defining a wire
format.

WIRE FORMAT VERSUS API – 5 IMPACTS

The remainder of this paper discusses the impacts of
using Protocol Buffers to generate a wire format (this
is also referred to as having a wire specification). The
concepts are contrasted to a system that uses
middleware and an API (Application Programming
Interface), and the authors have attempted to identify
both positive and negative impacts.

A full understanding of what constitutes an API is not
necessary for this discussion. For the context of
distributed M&S, the important point is that an API
gives developers access to a piece of software, and that
software gives access to the network. A wire
specification simply gives access directly to the
network. It is the difference between delivering a letter
via the Post Office and hand carrying the envelope to
its destination.

While the debate over wire format vs. API is not new
to M&S, the use of newer technology for message
exchange is. The application of a flexible data message
allows for growth without heavy restriction of what can
and cannot be sent. The sections that follow feature a
comparison of DIS, HLA, ASN, and using PBs as a
wire format.

Having a wire format should not be thought of as a
magic bullet to distributed simulations or a cure-all to
the problems inherent in integrating devices. As with
any simulation, the advantages and disadvantages
should be weighed appropriately.

Impact 1: Robust Interoperability

There are two important concepts – initial
interoperability and interoperability over time. In other
words, allowing simulations to easily connect and the
ability to keep those simulations compatible can
produce a robust interoperability.

Having a wire specification creates an on-the-wire
determinism. Participants can join an ongoing exercise
with nearly 100% reliability and little ambiguity.
Rather than having visibility only through piece of
software, a wire spec enables integrators to debug the
network itself.

As an analogy, imagine an automobile with a
mechanical problem. A skilled mechanic could perhaps
determine the problem based on symptoms such as
how the car drives, the responsiveness of the engine, or
the noises that the vehicle makes. But the best way to
determine the problem is to look under the hood and
examine the internals of the car itself. This is
especially true when the person diagnosing the problem
lacks complete expertise of the system. Full visibility

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 7 of 11

aids in the discovery of problems, and does not require
complete knowledge of how the automobile is put
together.

Visibility into the network gives opportunity for all
players to rapidly diagnose problems, and provides for
the creation of a toolset that can help with integration.
The effect of a wire specification in DIS led to the
production of a wide variety of visibility tools, and in
some cases integrators have the option of multiple
competing vendors. The end result is more options and
more tools to help solve problems quickly.

Once integrated, the evolution of simulations over time
starts to affect compatibility. With a defined API,
participants can become burdened by changes to
middleware versions or implementations. With HLA,
the RTI can be purchased from a number of different
vendors but those vendors are not able to interoperate.
Similarly, different versions from the same vendor may
or may not be compatible.

This problem of middleware compatibility is a
symptom of any distributed system that uses a defined
API versus a wire specification2. The multiple vendors
adhere to a software interface, but not the ones and
zeros that are transmitted onto the network. Any
method of data exchange and any wire format can be
used by each provider.

The biggest impact that results from middleware
compatibility is that all players must agree on both the
version and vendor of the software. If a federation
wants to gain the advantages of a new middleware
version, all federates must be updated. The network
must be updated across the board so all players can
agree. This can become a difficult problem for devices
that have already been approved for training.

The extensible nature of Protocol Buffers allows
simulations to be upgraded gradually, and adding data
fields to a simulation is simple. Unlike changes to
middleware, where most devices on the network must
be updated in order to achieve interoperability,
simulations can update or add data without impacting
the wire format. This is especially useful for the world
of simulation where the configuration management of a
trainer is tightly controlled.

2 TENA provides a rare exception to this by relying on a
single distributor for the middleware, rather than having
competing organizations each create their own
implementation. The result is fewer issues with
interoperability, but also no other choices. The merits and
tradeoffs of this option tend to be more philosophical in
nature, based on the value the reader places on
marketplace competition.

Another analogy to help understand the differences
between an API and a wire specification is that of a
number of offices attempting to collaborate on a
document. A defined API implies that everyone must
be using the exact same version of Microsoft Word. If
one group needs only to read the document without
providing any edits, they still must agree on the
version in order to work together. However, a defined
wire format would mean that all participants could use
any word processing application they chose, on any
platform they chose, as long as there is a basic
agreement on the ones and zeros of the document itself.

Defining a wire format is not a perfect ending; it will
always be possible to break interoperability. Additional
capabilities will continue to require software changes.
Take a simple example of the timestamp. In order for
the timestamp to be useful, all players in an exercise
must agree on the meaning and format. Imagine if a
federation changes to a new timing mechanism, one
with a higher resolution that accommodates for
network jitter. In this case, it is not just the meaning
of the timestamp that would be changing but also the
very format of the timestamp itself.

Without updating, the resulting network would have
problems communicating. There are ways to mitigate
the impact to older devices, but changing code on
those systems would be unavoidable. Altering the
schema or .proto file would not be enough. Everything
using the older timestamp would be out of date.

Similarly, when using Protocol Buffers, removing a
message is not simple. A deprecation mechanism is
currently not included. The Protobuf specification
allows fields that are ‘deprecated’ but in the existing
implementation, this is ignored. The documentation
suggests that future implementations may output a
warning if applications attempt to use the data
message.

Lastly, since Protocol Buffers are open source they are
susceptible to versioning. The implementation may
change over time and newer versions of PBs could be
created with critical features. While it is unlikely that a
new revision will break existing implementations3, the
messages that get sent could look different several
years into the future. There are several examples of data
formats that at one time were heralded for their
simplicity and ease of use. But gradually, more
features were added, and the complexity made the
software difficult to use, and broke interoperability
(Chappell, 1998; Henning, 2006).

3 The authors’ confidence of this unlikelihood comes
from a lack of updates to the existing PB spec, the
presence of Google as a caretaker and prominent user, and
the fact that simplicity was a core design goal from the
beginning.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 8 of 11

Impact 2: Abstraction of Data Encoding

Each standard within M&S defines its own method for
encoding data. In architectures such as HLA, each
federation is responsible for how data is encoded. For
example, the Navy Aviation Simulation Master Plan
(NASMP) spends ten pages in the Federation
Agreements Document d iscuss ing “data
representation.” A single attribute, such as the
frequency of a radio, can be encoded in a variety of
ways.

With Protocol Buffers, common software problems
that result from encoding format or byte order are
resolved. By using PBs as a core message format,
software architecture is simplified since any developer
can take the defined schema and easily interface with
the simulation.

Before more sophisticated platforms and software
languages existed, data encoding was important.
Computer platforms relied on data being in a certain
byte order. Critical optimizations could be achieved on
the then-limited hardware platforms.

The growth of distributed systems and superior
hardware, however, has shifted the focus of data
encoding. Today’s networks derive less benefit from
having data arrive with the most significant byte first
or last. Instead of small optimizations in processing,
simply getting all players to agree on a format is the
focus of the problem. Many simulation engineers can
tell stories about how a single device with the wrong
byte order caused headaches before finally being
discovered.

While it is a simple concept to get all players to agree
to a data format, in practice each area of flexibility can
lead to mistakes. The more settings that are required,
the easier it is for the talented developer to make an
error. Data encoding in a distributed environment is no
different than the formatting of this paper. Font size,
margin and column length – these decisions do not
determine the impact of this individual paper.
However, the importance of having a consistent format
that matches other technical publications cannot be
overstated.

Impact 3: Network and CPU Optimizations

The third positive impact that was discovered was a
reduction in network bandwidth. Perhaps it is not
surprising that a Google product has been optimized to
minimize network traffic. Protocol Buffers focus on
sending as few bits as necessary over the wire. The
result is a streamlined message, without bloat, that is
ideal for over-the-network transmission.

Additionally, Protobufs are constructed for easy
deserialization. This means that when a PB message is
received, the processing it takes to decode the message
and turn it into useful data is minimized. Protobuf
messages, especially in C++, are optimized to have
low overhead especially when compared to other
message formats.

Impact 4: Loss of Service-Based Infrastructure

A negative impact to using Protocol Buffers and,
conversely, the greatest benefit of a defined API is the
addition of network and simulation services. By using
a specialized piece of software, federates are able to take
advantage of a sophisticated feature set. Essentially, the
defined API allows middleware to do the ‘heavy
lifting’ on the network. These services can provide
optimizations to reduce network bandwidth or provide
enhanced event ordering.

HLA-based services such as Declaration Management,
Time Management, or Data Distribution Management
could be lost as a result of a new wire specification.
Implementing these services over the network, but with
a constrained messaging format is a major undertaking.
Likely, a new RTI would need to be created using
Protocol Buffers as the message format of choice.

These services are not prohibited by a wire-level
specification, but the level of effort required to
implement them on top of an open wire-level spec is
non-trivial. Vendors would still have flexibility in
their implementation, since using Protocol Buffers
truly is only a data encoding and the transport method
is not defined. One criticism of a defined wire format
is that it will restrict a developer’s ability to
implement the network services (Granowetter, 2003;
Woodyard, 2004). Data encoding alone, however, does
little to restrict the algorithms needed for network
services. The larger problem is that a completely new
implementation would need to be created.

Additionally, these services could reduce or eliminate
the benefits discussed earlier. Network bandwidth and
processing costs could increase to higher levels when a
service overhead is added. Sending a simple message
from one computer to another has been optimized for
network bandwidth when using Protocol Buffers. But
when messages and functions increase in complexity,
overhead is created, and more network bandwidth must
be used.

Impact 5: Lower Barrier for Entry to the Network

Twenty years ago using software to create network
traffic was not simple. It required many levels of
expertise, and Operating Systems were still in the
stages of relative infancy. Creating a UDP packet and

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 9 of 11

transmitting data on the network was hard work.
Common software models and routines were not
available to the everyday developer, and networking
was a sophisticated concept (Henning, 2006).

At ASTi, the products sold in the 1990s had an
Ethernet driver that was developed in-house. Running
DIS meant needing absolute control over the software
that placed packets on the network and any
compromises to that control were unacceptable. In the
present day, developing network applications can be
trivial. Novice software developers can generate reliable
code that transmits data to and from the network with
ease.

Superior hardware and sophisticated operating systems
have lowered the cost of entering the network.
Conducting traffic for distributed applications is now
easier than ever.

The final impact of a wire-level format is the
advantages that a simpler solution provides. Large
programs and simulations will continue to have the
resources to work across multiple standards and
become inter-connected. Especially since the resources
and engineering effort available to those simulations
can accommodate a certain level of complexity. But the
simplification of a wire-level format allows developers
on other programs or simulations to enter the field of
play.

As the M&S community continues to grow, the
community is getting smaller. Think rapid
development, rapid distribution, rapid training. If end
users are training on mobile devices like tablets and
smart phones with applications developed by another
solider, the community cannot afford too high an entry
cost.

Serious games, developed by software teams with roots
outside of M&S are increasingly popular. Gaming has
been established as another piece of the training
portfolio, especially suited to exercises where
integration time and budget must be kept to a
minimum (Atherton, 2009). If serious games are being
developed to run on computers at home or abroad, the
expertise required for entry should be kept to a
minimum.

To date, game developers have been slow to adopt the
networking standards within M&S (Thorpe, 2010).
While a variety of reasons can be attributed, one of the
main issues is the level of effort for integration into a
distributed network. Many games already deal with
massive multiplayer environments, but adding in
defense-specific requirements begins to build a higher
and higher barrier.

The level of effort associated with joining a distributed
federation is seen as a barrier that is too high to climb,
especially for gaming companies that already have a
proven revenue stream from the commercial world. By
having a wire-level specification, it allows software
developers to create their own applications and place
them on the network.

Rather than creating barriers to entry, having a wire-
level specification creates accessibility and long-term
usability to new or smaller simulations. Any platform
that supports the exchange of messages can be
accessible. This is critical to success of distributed
training.

A Comparison Of Network Architectures

The table here depicts many of the tradeoffs between
the different architectures that this paper has discussed.
Overall, the use of Protocol Buffers attempts to strike a
balance between DIS and HLA by being easy to use
but still allowing for flexibility in the data transmitted
over the network. (The PB column of the table
references ASTi’s internal implementation of Protocol
Buffers rather than an actual standard or architecture.
Though the comparison is apt, any use within the
community is likely to look quite different.)

Table 1. Network Architecture Comparison

DIS HLA ASN PB
Simplicity Very

Good
Weak Good Good

CPU/Memory
Efficiency

Good Average
(Varies)

Avg. Good

Extensibility /
Flexibility

Weak Very
Good

Avg. Very
Good

Compatibility
/ Visibility

Good Weak Weak Good

Network
Services

Weak Very
Good

Avg. N/A

ASN, also referenced in the table, is included as an
example of how a well-planned architecture can become
problematic, even for the organization that created it.
The original goals of flexibility and compatibility were
eventually hampered by both technology and a lack of
documentation. Because the architecture was not open,
the weak interoperability of ASN had become a major
detriment.

DIS achieves many of the goals depicted, but also
lacks a critical need – the ability to extend and grow
the data on the network. Requiring a new version of
DIS every time a new field needs to be added is a
burden that many federations cannot cope with. Some
simulations have even taken to using a generic

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 10 of 11

Comment PDU to send massive amounts of data since
no other option exists within the standard.

By design HLA is able to accommodate newer data
fields with ease, but does not allow for visibility of the
network. The architecture allows fully-extensible
networks to grow by adding items to the Federation
Object Model yet can suffer from its own complexity.
The following image encapsulates the core differences
between HLA and the use of Protocol Buffers as a
defined wire format.

Figure 1. API Defined Network vs. PB Wire Format

In the case of HLA, developers use the API calls
provided by the RTI, and must link and compile code
against it. In the case of Protocol Buffers, an open-
source toolkit assists the software developer with
building code.

Additionally, one of the advantages of DIS and its own
published wire specification was that engineers could
create tools to help with debugging or managing the
network. As discussed earlier, simulation developers
could either build their own toolset or purchase third-
party tools to help with integration. Having a
troubleshooting tool is not expressly prohibited by
other standards or architectures that use middleware,
but the connection to the network is obscured. In most
cases, the same vendor that provides the middleware
must also supply the toolkit.

CONCLUSION

Simply put, engineering distributed systems is
difficult. Simulation developers face a variety of
challenges on every federation ranging from semantic
disagreements to differences in the databases
themselves. Multiple networking standards within the
M&S community add to the complication. This paper
has attempted to show one solution that can reduce the

complexity of interoperability. By simplifying a
portion of the networking problem, integrators can
spend more time focusing on the other issues.

ASTi’s own journey with the issues of multiple
standards led to creating an in-house protocol that was
burdened by the very complexity the company was
trying to reduce. Code maintenance was hampered by a
robust set of networking features that ended up being a
distraction rather than a benefit.

The solution—to use Protocol Buffers as a defined
wire format—was an enormous benefit to the company.
Defining an extensible, open wire format achieves
balance between current standards by allowing
flexibility within the messages that are sent over the
network. Similar to how HLA federations define an
Object Model for the entire network, the solution
presented allows developers to generate the messaging
for each and every federation and not require an update
to the standard in order to add a new data field.

There were other benefits, including the abstraction of
data encoding and a reduction of networking
bandwidth. The solution allows developers to spend
less time worrying about byte order, variable types or
the alignment of bits. Simply use the data structures
provided by the Protocol Buffers and go on to address
other networking problems.

Rather than focusing on network services (e.g. Data
Distribution Management or Time Management), a
wire format favors simplicity in implementation over
sophisticated features provided by services. Services are
not prohibited, but the effort to place them on top of
the network wire format is significant.

Finally, systems using Protocol Buffers as a wire
format can maintain forward and backward
compatibility much more easily, hopefully in a way
that allows various simulations to connect and start
training quicker. By lowering the barrier to entry on
the network, training can be conducted with less
integration effort, less engineering, and less cost.

It is not intended to be a panacea to all network woes,
but rather to serve as another option. The reader is
encouraged to evaluate the solution as an alternative to
directly embracing current standards and against his or
her own requirements.

Though standardizing a wire format is not a new topic
within the M&S community, this paper has attempted
to show that by using newer technology, flexibility can
still be achieved. Distributed simulations can evolve
according to their own requirements, and networks can
move forward by being accessible, composed, and
dynamic.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11045 Page 11 of 11

REFERENCES

Atherton, E., & Baxter, H. (2009). “Positively Gaming
the System: A VBS2TM Training Case Study.”
Proceedings Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC),
November 2009

Chappell, D. (1998). “The Trouble with CORBA.”
Object News, May 1998, Retrieved 15 June 2011.

Dingle, J., & Garland, D., & Damon, C., (2002).
“Bridging the HLA: Problems and Solutions,” Sixth
IEEE International Worskshop on Distributed
Simulation and Real Time Applications (DS-RT
’02), Forth Worth, Texas, 11-13 October 2002.

Granowetter, L. (2003), “RTI Interoperability Issues –
API Standards, Wire Standards, and RTI Bridges,”
Proceeding of the European Simulation
Interoperability Workshop, 03E-SIW-077, 2003.

Henning, M. (2006). “The Rise and Fall of CORBA,”
ACM Queue (Association for Computing
Machinery), pg. 4 (5), 30 June 2006

Metevier, C., & Gaughan, C., & Gallant, S., &
Truong, K., & Smith, G., “A Path forward to

Protocol Independent Distributed M&S,”
Proceed ings Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC),
November 2010

Pilgrim, M. (2008), “Protocol Buffers: The Early
Reviews Are In,” Dive Into Mark, 12 July 2008,
Retrieved 10 June 2010, Archived by WebCite
http://www.webcitation.org/5zLCBq4Ub

Richbourg, R., & Ceranowicz, A., & Lutz, R (2008),
“My Simulation is from Mars; Yours is from
Venus,” Proceedings Interservice/Indusry Training,
Simulation, and Education Conference (I/ITSEC),
November 2008

Thorpe, J. (2010), “Trends in Modeling, Simulation, &
Gaming: Personal Observations About The Past
Thirty Years and Speculation About the Next Ten,”
Proceedings Interservice/Industry Training
Simulation, and Education Conference (I/ITSEC),
November 2010

Woodyard, J., & Mullally, K. (2004), “Open Run-Time
Infrastructure Protocol Study Group Final Report,”
Proceedings Simulation Interoperability Workshop
Fall 2004, 04F-SIW-018, Fall 2004

