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ABSTRACT

As computer-based instruction evolves to support more adaptive training, it is becoming increasingly more evident
that such programs be designed around an individual trainee's characteristics, rather than focusing just on task
performance. In other words, a trainee’s state (e.g. how they learn, their affect and motivation) is an important factor
in performance and retention. To optimize individual performance in computer-based training Intelligent Tutoring
System (ITS) technologies (tools and methods) are combining artificial intelligence (Al) knowledge representations
and programming techniques with the intent to deliver instructional content and support tailored to the individual
(Conati & Manske, 2009). From a holistic perspective, such tools and methods personalize training by considering
an individual’s historical data, real-time behavior, and cognitive measures to predicting comprehension levels and
affective states (i.e. frustration, boredom, excitement). This historical and real-time interpretation of the trainee is
used for concurrent adaptation of pedagogical and feedback strategies within training content.

Several ITS studies within academic settings report significant learning gains among students receiving adaptive I1TS
support when compared to students in a traditional schoolhouse environment (Koedinger, Anderson, Hadley &
Mark, 1997; Kulik & Kulik, 1991). However, the majority of those systems supported domains with well-defined
problems that require well-defined solutions (i.e. physics, algebra). With recent trends in virtual scenario-based
training in the defense and medical communities, there has been a major push to simulate more ill-defined tasks that
require critical decision-making and swift problem-solving. Primary issues associated with ill-defined scenario
training are the lack of a suitable design framework, and determining an appropriate level of support/direction
through pedagogy and feedback. This paper will compare ITS pedagogical design considerations between well-
defined and ill-defined tasks, identify the variables of interest that have the greatest impact on performance and skill
acquisition, and present a high-level design architecture.
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INTRODUCTION

Pedagogy and instructional design are fundamental
components to successful training implementation. This
is true more than ever with the incorporation of
computer-based training platforms that promotes and
mediates self-directed learning. Pedagogy focuses on
adaptive instruction that individualizes training
experiences to the needs of a particular learner. Based
on knowledge, competency, and state, training is
tailored to meet skill level and feedback/interventions
are incorporated as tutoring mechanisms to aid in
restoring or maintaining a positive learning state. Such
methods are being pursued by the military and medical
communities to instantiate alternative solutions to
expensive and resource straining live exercises. To gain
the full benefits of such techniques, design
considerations need to incorporate qualities of
instructor  characteristics that provide real-time
performance assessment and feedback. Intelligent
Tutoring Systems (ITS) are one such approach that use
Artificial Intelligence (Al) knowledge representations
with machine learning techniques for the purpose of
producing concurrent performance and state (cognition
and affect) diagnoses on the individual and team level
(Conati & Manske, 2009). However, an issue with this
approach is knowing when and how to adapt training
content when an individual is classified in a negative
“readiness to learn” state. This paper aims to identify
the current state of pedagogy and feedback research in
the ITS community and to identify the strategies that
have shown significant improvements over traditional
instruction or computer-based systems that lack
adaptive faculties.

Much of the research conducted to answer this question
involves studying the tactics performed by human
tutors. Tutors are found to be most effective because
humans are able to adapt and individualize instruction
based on the particular needs of a trainee (Lane &
Johnson, 2008). This involves an active balance of
participation by the trainee with guidance facilitated by
the tutor. The driving factors for determining guidance
are based on competency exhibited through
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performance and dynamic state variables (e.g.,
engagement, frustration, boredom, confusion, etc.) that
fluctuate during interaction. The objective is to have a
trainee perform as much of a task as possible while a
tutor provides constructive feedback aimed to minimize
frustration and confusion (Merrill, Reiser, Ranney, &
Trafton, 1992).

Though there has been empirical evidence of improved
performance among ITSs when compared to traditional
classroom instruction (Wisher, Macpherson, Abramson,
Thorton & Dees, 2001; Corbett, Koedinger &
Anderson, 1997), the results still do not meet or exceed
the effectiveness of human tutors. This is due in part to
a human’s ability to read and interpret cues linked with
affective states associated to cognitive performance.
For selection of the most advantageous pedagogical
strategies, the system must know how the interacting
trainee is feeling cognitively and emotionally to adapt
content that matches their current state. To produce
computer-based platforms that exhibit the same benefits
seen in one-to-one human instruction (Bloom, 1984),
the system must be able to make state determinations as
well as or better than that of a person. A large amount
of experimentation has been conducted incorporating
sensor technology that monitors both behavioral and
physiological markers believed to be correlated with
cognitive and affective states to make this a realization
(D’Mello, Taylor, & Graesser, 2007; Berka et al, 2007;
McQuiggan, Lee, & Lester, 2007; Ahlstrom &
Friedman-Bern, 2006). From a holistic perspective,
such tools and methods personalize training by
considering an individual’s historical data, real-time
behavior, and cognitive measures to predicting
comprehension levels and affective states. This
historical and real-time interpretation of the trainee is
used for synchronized adaptation of pedagogical and
feedback strategies within training content to maintain
appropriate challenge and to curb boredom.

Yet, decisions on how to adapt content based on state
assessment follows few standards. With hundreds of
theories on instructional design (see Marzano, 1998;
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Marzono, 2003; Bransford, Brown, & Cocking, 1999),
there are no deemed best practices for adaptive
instruction. This paper will highlight design
considerations based on domain characteristics and will
present a high-level pedagogical architecture. The
architecture is based on empirical evidence from past
studies in the field and theoretical perspectives on
instructional design geared for computer-based
education. Appropriate instructional strategy selection
requires analysis of a number of variables that drive
task mechanics. Establishing a defined framework that
assists in  decomposing task components for
instructional design can improve adaptive capabilities
and reduce time in transitioning systems to training
houses.

Trends of ITS Implementation

ITS research aims to make training environments
adaptable to different learning needs and abilities on an
individual level. Majority of systems control the user
experience through interacting models that correspond
with the elements utilized by a human tutor. This
includes knowledge about the student (Student Model),
instructional strategy selection rules (Pedagogical
Model), knowledge about the domain being trained
(Domain  Model), and knowledge of how to
successfully perform domain tasks (Expert Model)
(Durlach & Ray, 2011). The type of data fed into these
models is dependent on the domain and available
sensing technology designed into the platform.

Current fielded applications in academia using ITS
technologies have shown significant learning gains over
long-established instructional methods, with the best
platforms producing an average increase of 1.0
standard deviation over conventional practices
(Anderson, Corbett, Koedinger, & Pelletier, 1995;
VanLehn, Lynch, Schulze, Shapiro, Taylor, & Treacy,
2005; Koedinger, Anderson, Hadley & Mark, 1997;
Kulik, 2003; Wisher et al, 2001). However, these
successful ITS applications are administered within
well-defined domains (e.g., math, physics, chemistry),
which involve specific procedures for satisfying task
objectives. In this context, performance is easily
assessable based on models of expert performance.
When actions performed delineate from successful
routines, feedback and/or content manipulations
(change of pace and/or difficulty) are administered to
reduce errors and enhance training transfer. One such
example is the Virtual Sand Table, a designed ITS for
field artillery training. The tutor provides replicated
classroom training content with feedback and coaching
provided during a computer-based exercise. Results of
a hands-on performance test following interaction
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signified superior performance by the Virtual Sand
Table treatment group when compared to conventional
training techniques, with an effect size of one standard
deviation (Wisher et al, 2001; Woolf, 2011). Other
approaches for well-formed domains applying Al and
cognitive science for adaptation include production
systems, case-based reasoning, Bayesian networks,
theorem proving, and constraint satisfaction algorithms
(Shaffer & Graesser, 2010).

Because performance alone cannot accurately gauge
overall training effectiveness, new directions are being
taken to enhance the capabilities of ITS components.
Incorporating mechanisms that can track affective
states among individual trainees will improve the
diagnostic capacity of such systems to classify
emotional responses that may hinder learning (i.e.,
boredom, frustration, fatigue). Research efforts are
looking at better ways to collect data on the trainee for
accurate real-time assessment that can be used to tailor
training to match strengths and weaknesses. This
includes indentifying techniques that can passively
gather information while remaining unobtrusive to the
individual. With new data streams being fed into the
learner model, pedagogical decision functions can
leverage this information to understand more about the
current state of the trainee. If such a platform can
diagnose competence/performance, motivation, and
emotional response, intervention selection can facilitate
multiple options outside of feedback driven by
performance.

FRAMEWORK FOR DOMAIN DEFINITION

There are a number of variables to consider when
adapting a training experience, with domain explicates
being a major influencing factor. Dependent on the
process and complexity, instructional and pedagogical
design practitioners need to decompose task actions
into basic functional components. This is led by defined
objectives training aims to prepare. The process to
achieve task objectives is based on the structure of
actions required for successful performance, as well as
how well the initial state and goal state are specified
(Goel, 1995). If the structure of actions follow specific
standards and involves the same process in each
instantiation, the task components are considered well-
defined. In the instance where procedures are
ambiguously defined and there are no clear set actions
for meeting goal objectives, the domain of interest is
considered ill-defined. This is further described as
problems that have less specific criteria for determining
when an objective has been satisfied and all
information required for a solution is not supplied
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(Simon, 1973). The domain definition must also take
into account the complexity of the task being
performed. Complexity is comprised of how difficult
(easy/hard) the task is to conduct, the type of
environment it’s performed within, and the extraneous
factors (weather, opposition, visibility, etc.) that may
influence its outcome.

Well-defined domains that score high in complexity
often times require training of skills outside specific
task execution. In the context of military readiness
training, exhibiting performance standards is essential.
However, independent of their military occupational
specialties (MOS), Soldiers are required to demonstrate
higher order thinking skills that exhibit the capability of
adapting  decision-making  tactics in  unstable
environments where situations and conditions rapidly
change (US Army Training and Doctrine Command,
2000). The United States Military Academy’s (USMA)
Center for Enhanced Performance identified the
following elements as critical for performance
improvement among warfighters: metacognitive
awareness, attentional control, goal-setting, stress
management, and visualization (Zinsser, Perkins,
Gervais, & Burbelo, 2004). Zinsser et al (2004) further
state that establishing these competencies empower
individual Soldiers to create efficient thinking habits;
improve attentional resources for enhanced situational
awareness; and provides experience for coping with
physical, emotional, and mental responses during high-
demanding tasks. Though many MOS tasks may follow
well-defined  routines, extraneous factors can
significantly impact the procedure or environment the
task is being performed within. Because of this,
personnel must be able to adapt in real-time to ensure
objectives are reached. Training these competencies
among all Soldiers is vital for an adaptive Force.

Instilling these elements in trainees requires effective
and efficient training paradigms. Providing training that
achieves efficient acquisition of these elements is not
easily administered. Defining performance criteria for
such skills is difficult and is based on specific scenario
interactions. Because of this ill-defined classification,
standards need to be developed that highlight key
strategies and adaptation approaches for design
practitioners to enhance system support features for
maximizing training effectiveness. With a push by the
military for a learner-centered approach to training,
tools and methods that promote self-directed learning
are required (TRADOC, 2011). TRADOC further
identifies the need for pursuing adaptive training and
tutoring technologies and to develop standards for
implementing these capabilities in computer-based
platforms. Yet, a number of issues must be addressed in
ITS design to facilitate development of the critical
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competencies  associated with  desired

outcomes.

training

With a two dimensional approach to domain definition,
instructional strategies can be specified based on the
component characteristics identified within the domain
designation. Through task analysis, procedure and
complexity can be classified and used for formulation
of training objectives. Based on competency and
experience, specific training objectives are tailored on
the individual level to promote efficient progression
from novice to expert. As a trainee progresses through
initial content, training objectives are adapted to
introduce extraneous factors that will influence
execution. Time spent on training, progression tactics
from basic functional training to skill mastery,
repetition and remediation techniques, and technology
aids all play an important role in training
implementation (Zipperer, Klein, Fitzgeral, Kinnison &
Graham, 2003).

DESIGN CONSIDERATIONS DEPENDENT OF
DOMAIN

Considerations for pedagogy and feedback are founded
on empirical evidence from past studies using
computer-based learning environments and classic
learning theory literature. Instructional strategy
selection and feedback implementation are the
variables of interest, with a goal to discern those that
have the highest impact on learning outcomes.
Distinguishing a list of best practices based on domain
definition is premature at this point and requires
rigorous empirical evaluations of the following
findings, testing their validity across multiple domains.
The remainder of the section will review considerations
instructional designers must reflect on when developing
an ITS application. This requires sound design
procedures that takes into account all elements
associated with a given training event and the interface
components used. As mentioned above, learning
objectives are strongly tied to domain definition. Based
on the categorized domain a given training objective
falls within, methods for pedagogical design need to be
identified based on the type of actions being performed.
Following domain definition based on task procedure
and complexity, an instructional designer should follow
a routine process to create the training experience. Five
rudiments have been identified that must be addressed
in adaptive training design:

e  Curriculum: Specifies explicit content for
training. This involves scenario design
through task designation and decomposition.
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e Instructional Strategy: Highlights how content
will be presented, the pace of training, the
types of actions and procedures performed by
the trainee, and scenario difficulty/complexity.

e Performance  Measures: A challenge
associated with training is defining what is
deemed as successful performance. Variables
must be identified that measure performance
and are congruent with positive training
transfer for the specific outcome of interest.

e Pedagogical Interventions: Determines
feedback and  support  considerations
associated to the learning objectives and
‘readiness to learn’ state. This includes
manipulations of content and feedback
interventions.

e Student Model Data: Highlights specific data
that is needed for cueing interventions.
Decision functions must also be defined that
trigger adaptive interventions (performance
data Vs, cognitive/affective state
determinants). Data fed into model will vary
depending on system functionalities.

Each aforementioned element requires awareness
during the design phase of an ITS application. The
following subsections will review empirical studies of
ITS applications within both well-defined and ill-
defined domains. The review will highlight
instructional and feedback implementation strategies
and their impact on learning outcomes when compared
to control settings. This effort aims to identify
similarities among successful empirically tested
systems and to categorize a domain definition with
sound techniques for administering adaptive training.

Well-Defined Domains

Instructional strategies of existing ITSs are based on
human teaching, informed by learning theories, and are
facilitated by technology (Woolf, 2009). Four strategies
based on human instruction commonly used in ITSs are
apprenticeship training, problem solving, tutorial
dialogue, and collaborative learning (Woolf, 2009).
Tutors that cater to well-defined domains can
incorporate any combination of these strategies. ITSs
that use apprenticeship training contain an expert model
to track student performance, provide advice on
demand, and support multiple avenues to solutions.
Such tutors will scaffold instruction as needed, but will
often stay in the background having the student be
more responsible for their performance. This strategy is
ideal for tasks that are best learned by doing. Sherlock
is an apprenticeship training-based environment that
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simulated the structure/function of a complex electronic
diagnostic board (Lesgold et al., 1992). Although
Sherlock only provided feedback when requested by
the learner, the scores of those who used the
environment increased approximately 35% when
compared to learners who received no feedback
(Corbett, Koedinger, & Anderson, 2007).

Problem-solving is another traditional ITS instructional
strategy that uses error-handling techniques and
production rules to navigate instruction. For example,
the Andes physics tutor uses problem definition,
physics rules, a solution graph, action interpreter, and a
help system to provide procedural, conceptual, and
example guidance (Gertner & VanLehn, 2000). This
tutor has been shown to increase scores by one standard
deviation (Schulze, Shelby, Treacy, Wintersgill,
VanLehn, & Gertner, 2000) and one-third of a letter
grade (Gertner & VanLehn, 2000). Like most problem-
solving tutors for well-defined domains, the Andes
tutor uses model-tracing techniques to monitor the
students’ progress through a problem solution. In
model-tracing, the tutor tries to infer the process by
which a student arrived to a solution and uses that
inference as the basis for remediation. Model-tracing
tutors typically contain expert (production) rules, buggy
rules (for error handling), a model tracer, and a user
interface (Kodagnallur, Weitz, & Rosenthal, 2005).

Although model-tracing tutors have shown to increase
student  performance, their  adaptation and
accountability for individual differences is significantly
limited. Traditional model-tracing tutors do not allow
for new questions or multi-step lines of questioning.
However, second/third generation model-tracing tutors
are created to better personalize instruction. For
example, the Pump Algebra Tutor (PAT) is a problem-
solving tutor that includes a cognitive (psychological)
model to assess the process of cognition behind
successful and near-successful student performance.
PAT also uses knowledge tracing to monitor student’s
learning from problem to problem. This technique
identifies students’ strengths and weaknesses relative to
the cognitive model’s production rules (Koedinger,
Anderson, Hadley, & Mark, 1997). PAT is used within
thousands of schools and has found to improve student
performance on standardized test by 15-25 %
(Koedinger & Corbett, 2006). Ms. Lindquist, another
model-tracing based tutor for algebra, added a ‘tutorial
model’ that provides the capability of asking the learner
questions and promotes reflection on required
knowledge behind the next problem solving step. Ms.
Lindquist allows for the ability of dialog engagement
with the learner (Heffernan, Koedinger, & Razzaq,
2008).
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Well-defined  model-tracing  tutors  previously
mentioned have improved their adaptability to learner
cognition and have been shown to increase student
performance; however, they still do not cater to natural
interactions seen in one-to-one tutoring. Other ITSs,
such as AutoTutor (Graesser, Chipman, Haynes, &
Olney, 2005), incorporate natural language interfaces
that allows spoken dialogue and adaptation. This
promotes collaborative inquiry learning, which has
been shown to increase student performance and other
learner outcomes. AutoTutor, an ITS that teaches
introductory computer literacy, showed an increase in
performance of 0.5 standard deviations in comparison
to learners who received instruction from a text book
(Graesser, Wiemer-Hastings, Wiemer-Hstings, Kreuz,
& Tutoring Research Group, 1999). The system
prompts trainees to provide explanations for ‘How’,
‘Why’, and ‘What-if’ questions. A concern with this
approach is the accuracy of dialogue systems and their
effect on training performance. A study was conducted
with AutoTutor to gauge the effect speech recognition
errors had on learning, with the results conveying a
subtle impact on performance as well as on a
participant’s emotions and attitudes (D’Mello, King,
Stolarski, Chipman & Graesser, 2007).

111-Defined Domains

To make ITSs effective across a number of domains,
focused feedback and scenario adaptations are required
that assist trainees in knowledge/skill acquisition.
Empirical studies have been conducted looking at
varying pedagogical approaches and to view their effect
on learning outcomes. The issue with providing real-
time feedback is identifying the mechanisms and
decision functions that trigger an intervention, and
designing environments that guide trainees to optimal
interactions without limiting performance. This requires
user models that account for the uncertainty,
dynamicity, and multiple interpretations of how to
execute ill-defined tasks (Lynch, Ashley, Mitrovic,
Dimitrova, Pinkwart, & Aleven, 2010).

Pedagogy within ill-defined domains takes many forms,
each of which applies theoretical underpinnings
believed to maximize training effectiveness. The
underlying issue is definitive feedback often given for
well-structured domains are difficult to provide in an
ill-defined setting (Walker, Ogan, Aleven, & Jones,
2008). Techniques such as model-tracing, expert
systems, and constraint-based reasoning are not optimal
in this context because they lack the specifications to
support tutoring services outside of task performance
(Bratt, 2009). Expert systems have the potential to be
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leveraged for such training, but comparing a trainee’s
solution against an ideal solution does not always
provide an explanation or reasoning of how the result
was constructed (Fournier-Viger, Nkambou, Nguifo, &
Mayers, 2010). Depending on the nature of the task and
the learning objectives training aims to prepare,
specialized instructional delivery and feedback
mechanisms must be designed to facilitate training in
ill-specified problem spaces.

The challenge is defining a solution path that caters to
learning critical elements associated with conducting
ill-defined tasks. Lynch, Ashley, Pinkwart, and Aleven
(2008) proposes solution paths for ill-defined domains
are constructed through: (1) multiple characterizations
of a problem to specify components and constraints that
have been undefined for selection and discrimination
among alternatives, (2) experience for adapting to
second and third order effects given the context of a
specific problem space, and (3) to justify scenario
actions taken with concepts and principles linked to
training curriculum. The intent of this approach is to
develop a trainee’s knowledge and reasoning skills so
to avoid the worst outcomes when choosing an action
response (Bratt, 2009).

Simulated  training  experiences  promote the
constructivist and experiential methodologies of
learning by facilitating a trainee to solve multiple
problems of varying complexity across a number of
situations, allowing for the development of skill
through practice (Bratt, 2009; Raybourn, 2007).
However, this approach requires significant
instructional guidance at times to avoid negative
transfer. To enhance the capabilities of simulation-
based platforms used solely as practice environments,
adaptive intelligent tutors have been added in systems
to aid in instilling the critical aspects of performance, to
ensure trainees avoid practicing mistakes or displaying
misconceptions, and to reduce the role of the instructor
(Thomas & Milligan, 2004). A workshop held at the 9"
International Conference on Intelligent Tutoring
Systems identified the following explicit domains as ill-
defined, which require specialized feedback
considerations: medical diagnosis and treatment,
intercultural relations and negotiations, inquiry
learning, ethical reasoning, robotics operation, and
object-oriented design (Lynch et al, 2008). Each of
these domains requires higher order thinking skills that
enable an individual to perform decision-making,
problem solving and goal-conflict resolution.

Five tutorial strategies commonly used for development
of higher order thinking skills are question prompts,
clarification, hints, examples, and redirection (Alvarez-
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Xochihua, Bettati, & Cifuentes, 2010). Each strategy is
intended to support problem-solving situations and
promote metacognitive awareness. An ITS designed for
training problem solving with cybersecurity personnel
incorporated a Mixed-Initiative  framework for
providing feedback (Alvarez-Xochihua et al, 2010).
The framework was applied to a case-based
instructional system that allowed execution of problem
solving techniques across a number of distinct
scenarios. The system was designed as a re-active
platform that responds to student requests. Based on
state-determinations generalized from interactions prior
to the help request, the mixed-imitative component of
the ITS decides the format of feedback to deliver from
the five strategies listed above. The system is currently
being empirically evaluated to assess if the mixed-
initiative approach provides relevant feedback.

Another approach to feedback implementation in ill-
defined domains is providing adaptive guidance during
scenario interaction and during an after-action review
(AAR) for the purpose of promoting reflection. This
approach was implemented in ELECT BiLat, a game-
based trainer used for teaching and practicing cultural
awareness and negotiating skills (Lane, Core, Gomboc,
Karnavat, & Rosenberg, 2007). The environment is
designed around interactive narrative between the
trainee and artificial agents that respond to the
exchanges taken by the system user. Feedback is
determined by an expert model. Based on the current
state of a scenario, the expert model runs a search
algorithm that identifies all available action selections,
filters out actions not appropriate for meeting
objectives, filters out actions previously performed, and
identifies the action selections congruent with expert
performance (Lane et al, 2007). Based on the trainee
dialogue selection, feedback is generated providing
either a hint, a positive remark for a good action, or
negative feedback with a short explanation (Lane,
Hays, Core, Gomboc, Forbell, Auerbach, & Rosenberg,
2008). Study results comparing effectiveness of
feedback implementation in comparison to no coaching
showed 89% participants who received real-time
guidance completed the scenario successfully while
only 59% who received no feedback met training
objectives (Lane et al, 2008).

Natural dialogue-based tutoring is an additional method
for providing real-time feedback in an ITS environment
geared for ill-defined domains. The EER-Tutor was
designed to instruct individuals on database design by
utilizing a hands on practice environment that
incorporates dialogue interaction with a computer-
based tutor (Weerasinghe, Mitrovic & Martin, 2009).
Tutor interventions are applied when an error is present
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and is facilitated by tutorial dialogues. An independent
dialogue was designed for each identified error type
and feedback was implemented by a rule-based
reasoning system. Interventions were designed to
facilitate remediation, aid in completing session runs, to
assist with technical problems, and for helping with the
interface components (Weerasinghe et al, 2009).
Feedback is also designed to be adaptive based on a
learner’s current domain knowledge and reasoning
skills. The model proposed for this tutor was evaluated
by five acting judges to rate the appropriateness of
feedback selection and timing. Conclusions from this
study supported the models ability for error-
remediation in ill-defined tasks and indicated that
trainees acquired domain concepts in the natural
dialogue sessions.

Because of the uncertainty in performing ill-defined
tasks, knowing the appropriate pedagogy to enact is
difficult to determine. As can be seen in this paper, the
ITS research community is taking multiple avenues to
facilitate adaptive instruction across well- and ill-
defined domains. Building standards and guidelines for
pedagogical intervention selection based on defined
training objectives can enhance systems to be
interoperable across a number of domains and aid in
reducing time on instructional design. This requires a
modular architecture that incorporates all ITS
components for the purpose of guiding feedback
selection.

ITS PEDAGOGY ARCHITECTURE BASED ON
DOMAIN CONSIDERATIONS

The Generalized Intelligent Framework for Tutoring
(GIFT) modular architecture (see Figure 1) introduces
the components of sensor, trainee, pedagogical,
learning management system (LMS), and domain
modules. This is a new approach where all interacting
components outside of the domain module will be
domain-independent. This generalized framework can
be applied as a testbed for evaluating adaptive tutoring
approaches across multiple domains (e.g, ITS concepts,
models, and instructional strategies). It provides the
capability for a reconfigurable tutor allowing
comparison studies of varying pedagogical models.
This will allow for the identification of techniques that
have the greatest impact on learning and for validating
these determinations across various domains.

The pedagogical module will be comprised of
generalized pedagogy and feedback interventions based
on performance and individual traits. A domain module



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Processed SensorData
Raw SensorData |- Sensor Module
Processed SensorData, Trai s
Performance Assessment, |- Trainee Module ranee tate,
LMS Data Predicted Next
Trainee State Service Oriented
Architecture
(Communications
Framework)
Trainee State, N Pedagogical | Performance Assessment Request,
Performance Assessment Module Feedback Request,
Scenario Change Request
Learning Instructional
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Figure 1: Generalized Intelligent Framework for Tutoring (GIFT)

in GIFT is informed by the pedagogical module and
processes feedback requests/scenario changes by
adjusting scenario elements or user interface
components. It allows for the pass-through of domain
independent interventions, and allows the domain to
respond to specific hint requests. A domain module can
assess feedback either through a priori knowledge of
the correct answer, having the ability to calculate the
correct answer, or through comparison of a built-in
expert model, with selection depending on how well-
defined a domain is. The architecture supports a hybrid
model approach to feedback selection and requires
production rules that dictate activation. Through system
use the production rules will be iteratively updated
based on the data fed into the student and domain
models. Variables of performance, competency, affect,
and cognition will all be determinants of implementing
a training intervention. The architecture will allow for
grouping of feedback/manipulation strategies with a
triggering variable and supports empirical evaluations
to test their effect on training outcomes.

The primary outputs of pedagogical strategy decisions
are whether to make an intervention, the recommended
type of intervention, and the next instructional content
to be presented. While the instructional content
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decisions are processed out of view of the user,
interventions have a sizable effect. Interventions take
one of two forms: Domain-specific feedback such as
“aim higher” or domain-independent feedback such as
an emotional or a metacognitive prompt. Decisions to
change instructional content also come in different
forms. Content decisions can modify task demand,
modify task complexity, or change the types of content
presented. A well-designed domain-specific component
must address these things.

In order for pedagogy and feedback to be successful,
the architecture requires a domain module that supports
the types of feedback requested. While the vast
majority of the components of an ITS may be made
domain independent, there must always be a specific
component of the architecture to deal with the problems
that the instructor desires to teach. The fundamental
problems of domain dependent components are how to
assess student actions, how to respond to instructional
changes, how to respond to requests for immediate
feedback, and an interface which supports learning
(Sottilare, Holden, Goldberg, & Brawner, In Review).
The architecture designed must have built-in support
for these types of instructional activities.
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In a GIFT prototype system for the well-defined
domain of addition, this module is being constructed in
the following manner. Student action assessment is
based on whether or not each digit in a multi-digit
number is computed correctly. Feedback generation is
handled either through a pass-through emotional
prompt or buggy mistake prompt. Complexity is
handled by adding or subtracting digits to the numbers
to be added, while task demand is changed by allowing
less time for the problem to be solved. The user
interface is a simple screen with the ability to input
added numbers. This is a proof-of-concept system that
shows the ease of use of inputting a given domain into a
more generalized architecture.

CONCLUSIONS AND FUTURE WORK

While we intuitively know that it is better to have more
information when we are making decisions to tailor
instructional feedback and content to individual trainee
needs, the influence of specific trainee attributes on
instructional decisions can be debated. Additional
experimentation is needed to quantify the impact of
trainee attributes. For example, the importance of
personality attributes like openness to performance
might differ by task type (e.g., ill or well-defined tasks;
individual or collective tasks).

Additionally, implementing sound pedagogy in
computer-based training will require accurate state
classifications that will determine timing and type.
Research is needed to evaluate the influence of macro
and micro variables in classifying trainee cognition and
affect. Macro variables are generally known at training
exercise start and include trainee states like affect (e.g.,
personality), domain competence, learning preferences
and demographic data (e.g., gender, training history).

Micro variables include real-time behavioral and
physiological attributes.  Behavioral data may be
captured by recording interactions within the training
simulation (e.g., mouse movement or control selection)
or through sensor methods (e.g., motion capture).
Physiological attributes (e.g., interbeat heartrates,
brainwaves) are generally captured via sensor methods.
It will be critical to build validated models of trainee
cognitive and affective states using behavioral and
physiological measures, but to make the use of these
models practical for military training, it will be
essential to develop sensor methods that are: low-cost,
unobtrusive and portable. Empirical evaluations,
validating classification models, and feedback
approaches across domains is required for developing
standards of feedback implementation in adaptive
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training. This will enable congruent approaches across
domains in terms of pedagogical approaches based on
domain definition and state assessment.
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