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ABSTRACT 
 
Although graphics cards provide realistic real-time image generation for air-land scenarios, as built-in hardware, 
they are not appropriate for rendering underwater scenarios, which require special techniques to properly render the 
effects of liquid environment, loss of illumination and visibility, blur effects, spotlights, debris, caustics, and 
bubbles.  
 
This paper presents some techniques for implementing real time underwater image generation that emulate loss of 
illumination and loss of visibility, spot light effects, and blur effects. The implementation is part of the development 
of an underwater visual simulation engine.  OpenGL and OpenGL Shading Language (GLSL) are used in order to 
take advantage of GPU acceleration.  The developed techniques use GLSL Shaders to perform the appropriate 
calculations, such as the computation of loss of visibility due to depth and distance.  Spotlight Tyndall effects are 
emulated using an accumulated texture rendering technique.  Loss of neatness (blur effect) is achieved seamlessly 
via a technique that blends the blurred image with the rendered image according to viewer-object distance.  
 
Results show that the techniques presented here provide suitable image generation for underwater scenarios in real 
time by programming the GPU through GLSL. 
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INTRODUCTION 
 
Although visual simulation technology has been 
employed extensively for military applications and 
games in land and air environments, little has been 
done for underwater simulation applications. 
Visual simulation technology generates real-time 
realistic images due to the implementation of Computer 
Graphics techniques through graphics cards. This 
technology has been spreading rapidly due to the low 
price of graphics cards used widely for gaming  on 
personal computers.       
 
Visual simulation technology is not provided 
by graphics cards only. Another key part is the visual 
simulation engine that runs on top of the graphics 
card and provides means to build simulation and to 
show visual effects. The simulation application, 
which establishes the entity behaviors  and provides 
the user interface, runs on top of the simulation 
engine.  
 
Since visual simulation technology has been developed 
mainly for land and air environments, it needs to be 
adapted through appropriate technology to 
generate underwater rendering. Such development is 
feasible now because graphics card can be 
programmed by using GLSL (OpenGL Shading 
Language) (Kessenish at al., 2010) or CUDA language 
(NVIDIA, 2010). This makes it possible to generate 
images in real time with different rendering from 
those hard coded in the graphics card. 
 
Some work has been published in underwater image 
generation, for generating caustic and light ray 
(godrays) rendering mostly non real time (Iwasaki at 
al., 2002).  Papadopoulos and Papaiannou 
(Papadopoulos and Papaiannou, 2009) developed a 
technique for generating caustics and godrays  in real 
time, based on photon launching and image 
composition for blending shadow and filtering. 
Although these techniques generate realistic images, 
they spend significant amount of CPU processing  
power, so that they may compromise the processing of 

simulation behaviors and corresponding responses 
given by the visual. 
 
 
THE UNDERWATER ENVIRONMENT 
 
The underwater environment is somewhat similar to 
the air environment, because both water and air 
are fluids.  Turbulence is more present in the water 
than in the air.  In both environment, objects with less 
density tend to float, and those with heavier density 
tend to sink.  Streams exist in both environments, but 
in water they are more noticeable.  
 
The fog effect, due to the presence of particles in the 
environment, which absorb light, also exists in  water; 
however, the loss of visibility occurs at much smaller 
distances than in air.  Tiny particle similar to dust and 
debris can also be observed  under water.   Brightness 
diminishes with the distance in both mediums, but does 
much faster in water.  Brightness also diminishes 
according to the depth in the underwater  environment, 
which does not happen in air.  
 
When a ray of light travels in water, a loss of intensity 
due to absorption by suspended particles occurs, and 
light can be diverted. Considering that a large number 
of rays can be diverted in a non-uniform manner, the 
result is the loss of sharpness of an object view. In 
water this sharpness can be lost easily, depending on 
how muddy water is, so that object appears blurred.  
 
The caustic effect is unusual in the air environment, 
but it may be common in underwater settings such as 
under sun light. 
 
In air, water falls as rain (drops) or as stream of 
water. Air has different behavior in water, where 
forms bubbles and rises. While bubbles may form in 
air, they are much more present in the water, such as 
when a diver breathes underwater.  
 
In water an object moves at much lower speed than 
does in air or land. The visual effects of a moving 
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object in water may be quite different from that in air, 
such as a diver making turbulences and bubbles. 
 
These similarities and differences must be taking into 
account to generate an effective simulation engine for 
an underwater scenario. Most of the known techniques 
for image generation can be used or adapted to do so. 
The challenge is to develop techniques that are not too 
CPU expensive. 
 
This paper reports on the initial work done to develop a 
simulation engine to support underwater graphics 
imagery with features that do not overload the 
CPU and use GPU (Graphics Processing Unit) 
acceleration. This paper describes some techniques for 
implementing real time underwater image generation, 
including loss of illumination and loss of visibility, 
spot light effects, and blur effects. 
 
 
UNDERWATER VISUAL TECHNIQUES 
 
The first requirement for making underwater visual 
simulation is that Physics must apply. The Fresnel 
equation (Foley at al., 1996) must be considered when 
passing from air to the water environment.  Loss in 
brightness must be considered both in depth and 
distance. The Navier Stokes equations (Teman, 
2001) must be used with more weight because the 
behavior described by them is most noticeable in the 
water. However one must be aware that overloading 
the CPU/GPU with Physics computation may 
compromise the real time requirement. Although there 
is hope that the techniques for generating images and 
visual effects are made entirely on the GPU, they still 
consume a reasonable amount of CPU power.  
 
In this paper an underwater visual simulation engine is 
described briefly. The first approach adopted in our 
research is to develop the appropriate techniques by 
using the GLSL for portability, and thereafter migrate 
them to GPU processing by using GPU parallel 
programming for better performance.  
 
Underwater Engine 
 
The Uw Engine (Underwater Engine) is an API 
(Application Programming Interface) prototype 
developed to implement the visual simulation 
process. The main classes that compose the API are: 
Camera, Effect, Element, Model, Scene, Light, 
Material, Shader, Input, and Primitives.  
 
Element:  
The Element class stores transformations, which can be 

translation, rotation, or scale. It also implements a 
hierarchy of transformations, where a child element 
inherits the transformations of its parent. 
  
Model:  
The Model class stores an imported 3D geometry file 
in OBJ format, as well as components, such as the 
Material and Element class instances.  
 
Light:  
The Light class represents the source of light that 
illuminates the scene. By default it is a point light. The 
class also supports spotlights. Ambient light, sun light 
and light parameters such as depth range and 
attenuation can be specified.  
 
Scene:  
The Scene class builds a complete scene with a list of 
models, elements, cameras, and lights. It also 
manages the creation of objects by loading and saving 
files. The handling of an instance of this class is made 
by the virtual class SceneControl.  
 
Camera: 
The Camera class represents a camera that captures the 
scene. There may have more than one camera, with 
possibility of camera switches. It extends the Element 
class. It can only be created by the Scene class.  
 
Shader:  
The Shader class manages the image generation by 
GLSL Shader algorithms. This class creates interfaces 
and abstracts the parameters passed for the GLSL 
Shader. 
 
Material:  
This class applies specified features to a model, and 
stores the basic parameters such as color and 
brightness.  
 
Effect:  
This class specifies a visual effect technique. It is an 
abstract class that must be implemented to create an 
effect that is applied to the underwater scenario.  
 
Input:  
This class manages user input, such as keyboard or 
mouse. 
  
Primitives:  
The Geometry class contains some procedural-ready, 
CSG (Constructive Solid Geometry) such as Cube and 
Sphere. 
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Some of these classes deserve detailed descriptions of 
implementation and techniques, such as Shader 
computation, the fog effect, the depth illumination 
effect, the sharpness loss effect and the Tyndall effect. 
 
Shader Computation 
 
A shader is written in GLSL for the implementation to 
render the scene. Shader computation is composed of 
three steps: Vertex Shader, Geometry Shader, and 
Fragment Shader.  
 
The Vertex Shader step receives the vertex information 
that composes the primitives of the scene as 
input. Algorithms written for this step are applied on 
each of these vertices. Also the transformations of the 
vertices of world coordinates into view coordinates are 
performed, projecting the vertices of a 3D environment 
onto the 2D plane of the screen, with the necessary 
perspective corrections.   The result of this step is 
passed on to the Geometry Shader to continue 
processing. 
 
The Geometry-Shader step is optional.  Connectivity 
information among vertices is also passed, which 
allows for the generation of new primitives and new 
vertices. Some of the most common applications 
include the refinement of geometries and the 
generation of Point Sprites. The result of this step, with 
vertices and primitives transformed, is then passed on 
to the Fragment Shader.  
 
The Fragment-Shader step must contain an algorithm 
that deals with each pixel.  It automatically performs 
the interpolation between the information contained in 
each vertex by the GPU.  The algorithm in this step 
may modify the painting of the pixels. The result of 
this step is saved in the frame buffer. Once filled with 
paintings of all the primitives of the scene, the frame 
buffer is displayed on the screen by using the double 
buffering technique (SwapBuffer). 
 
Illumination Computation 
 
For sun light and light above the water surface, 
Fresnel’s equations are applied to compute the 
refraction on surface water. The specified sunlight,  
ambient light, and point light are computed by 
using the Gouroud model or Phong model  (Foley at 
al., 1996).  
 
Fog Effect  
 
In Computer Graphics fog effect is treated as a 
simplification of the actual physical phenomena.  

Commonly it is taken that the fog intensity depends 
only on the distance between the observer and the 
observed point. This effect results in loss of light 
visibility and in the transition from the object color 
to the fog color represented by the color of the 
muddy water. 
The relationship between the color variation and 
distance to the observer can be linear or 
exponential. This work implements the linear 
approach. 
 
The algorithm consists of the following steps: 
 
 In the Vertex Shader: 

Compute the distances from each vertex to the 
observer, as z value (from DepthMap) 
Calculate the fog intensity as a function of 
distance and maximum fog distance (fogDist), 
limited between 0 and 1. The linear function is: 

fogDist

|| z
fogIntens   

  
 In the Fragment Shader: 

Calculate the new pixel color as a linear 
interpolation between actual pixel color and fog 
color, with the fogIntens parameter: 
 

),,( fogIntensfogColorcolormixcolor    

 
Where mix is a linear interpolation between 1 and 2 
using parameter 3 as the weight. 
 
Figure 1 shows the effect of blue fog. 
 

 
Figure 1.  Fog effect in blue. 

 
Depth Illumination Effect 
 
Loss of illumination due to depth is similar to fog 
calculation: 
 In the Vertex Shader: 

Compute the distance of the vertex and the water 
surface or light source position. 

 In the Fragment Shader: 
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Compute the loss of light intensity according to 
the distance using linear interpolation (or other 
specified function). At the established threshold 
(light range) the intensity is null. 
Correct the fogColor by blending with  black color 
according to depth distance. 
Blend the color with underwater color (blue). 
Compute the color intensity according to the 
Gouroud (or the Phong) model. 

 
Figure 2 shows the difference between an outside-
water rendering and an underwater rendering. Figure 3 
illustrates the underwater depth rendering effects. 

 

  
      (a)     (b) 

Figure 2. (a) Outside water rendering and (b) 
underwater rendering. 

 

 
Figure 3. Underwater depth rendering. 

 
Loss of Sharpness Effect 
 
The Blur effect varies with distance from the viewed 
object to the observer, so that the farther the object is 
the more blurred it appears. 
Generally, a blurred image is obtained by applying a 
filter, such as a Gaussian filter, to each pixel of the 
original image. The direct application of the filter fails   
because it is a discrete technique, which means that a 
seamless variation is hard to obtain.  Yet, the size of 
the filter depends on the observer’s distance from the 
object.    
The solution to this problem is to blend a blurred 
image and the original image weighted by the object-
observer distance, as proposed in (Rigues, Tatarchuck, 
Isidore, 2004). 
 
The Blur Algorithm can be divided in four steps:  

 Render the scene  
The first step is the normal rendering of the scene 
by using the Shader algorithms.  
Save the frame-buffer in Frame Buffer Objet 
(FBO).   
Save the z-buffer to compute distance between the 
observer and objects (DepthMap). 

 
 Down sample the frame buffer 

Creates a new FBO, with half the resolution in X 
and Y, that is ¼ of the full resolution. To do this, 
the FBO from the previous step is simply copied 
with ¼ of the resolution. The purpose of this step 
is to optimize the algorithm: performing the 
interpolation of pixels in a quarter of the resolution 
is four times faster without an apparent loss of 
quality in the result. 

 
 Apply Gaussian filters to the downsampled FBO. 

In this step the Gaussian filter is applied along the 
axis X and along the axis Y. The Gaussian filter is 
a method that calculates the weighted average of 
pixels around the pixel in question with the 
weights following a Gaussian curve. In this 
implementation it is used Gaussian filter of size 7 
for calculating the color average. It is applied in X 
and Y direction using OpenGL operation. 

  
 Composition 

This step blends the original frame buffer and the 
blurred one with the alpha value calculated as a 
function of object-observer distance saved in the 
DepthMap. This is performed by applying the 
following formulas: 

 
),max,(min zDistDistmixalpha   

)( fullColorblurColoralphafullColornewColor 
 
fullColor and blurColor are pixel color from 
original frame buffer and blurred frame buffer 
respectively. 

 
In Figure 4 an example of original image and blurred 
image can be seen. Figure 5 shows the effects of 
composition of original image and blurred image by 
applying the distance weight blending. 

 
Figure 4. Original image and blurred image. 
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Figure 5.  Composition of blurred image with original image by using distance weight blending 

 
Tyndall Effect 
 
The Tyndall effect is the name given to the scattering 
of a beam of light in a medium containing suspended 
particle, in this case water. In practice, the result in 
water is a greater brightness around a light point or in 
the case of a spotlight, the presence of greater 
brightness in the middle of the cone.  
 
A way to obtain this effect is to use Physics to model 
it; however, the computational cost is prohibitive for a 
real-time application.  
 
A simplified and efficient method of using OpenGL 
Point Sprites was chosen to model this effect. The end 
result is quite adequate as it may cover the most 
common situations of this effect in the water, such as 
the spotlight attached to the observer.  
Point Sprite in OpenGL is a textured Quad facing the 
observer, positioned so that its center is the vertex set.  
 

 
Figure 6. Point Sprites Textures. 
 
The idea is to drag the Point Sprites along the spotlight 
cone with increasing radius and spacing, and 
decreasing opacity. Figures 7 and 8 illustrate the idea 
of the approach, where each circle is a Point Sprites. 
 
For every new Point Sprites created, the pixel colors of 

the Point Sprites texture are added to the existing 
pixels in the scene by using alpha blending.  

 
Figure 7 - Idea of the algorithm of Tyndall effect 
 

 
 
Figure 7 – Point Sprites of the algorithm  
 
Spacing of the Point Stripes locations may grow with a 
quadratic function. The Point Sprites radius increase 
according to the defined spacing. There is also the 
calculation of attenuation that varies according to the 
distance from light source to the Point Sprites, thereby 
defining an increasing degree of transparency for Point 
Sprites far from the light source. 
 
The algorithm parameters are adjusted empirically, but 
they also depend on the distance of the spotlight cone 
from the observer. The greater the cone is, the more 
Point Sprites must to be drawn. 
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Since overlapping pixels with transparency are added, 
there is an increase in brightness when there are several 
overlapping Point Sprites.  
  
The texture of the Point Sprites texture can be changed 
for a better representation of the effect, as shown in 
Figure 8. 
 
Although the focus of the algorithm is the volume of 
particles illuminated in the water, it is necessary to 
illuminate the objects contained within the cone of 
light. For this purpose Phong illumination model is 
used, because it produces smooth shading rendering.   
 

 
Figure 8. Use of different texture for Point Sprites 

 
Occlusion Improvement 
 
One of the problems of the previous algorithm is that it 
ignores the light occlusion of the object. In order to use 
the Point Sprites idea, an improvement of the algorithm 
was implemented by using the OpenGL Stencil Buffer 
much as it is used to generate shadow (Crow, 1977; 
McGuire at al., 2003). The idea is to discount the 
object shadow portion from the Point Sprites drawing. 
The previous algorithm is used until there is no 
intersection between a sphere representing the Point 
Sprite and an object.  When an intersection occurs, it 
passes to another algorithm that computes a stencil 
shadow mask, as illustrated in Figure 9. The object 
shadow (in black) is projected to the cone base. This 
shadow is stored in the stencil shadow.  
 
 
 
 
  
    
 

Then the Point Sprites are drawn with Stencil Mask.  
Shadow lines information (dashed in Figure 9) is held 
in a data structure for fast shadow calculation by using 
an incremental method in the next step.  
 
Partial blocking the Tyndall Effect can be seen in 
Figure 10. 
 

 
Figure 10. Partial blocking of Tyndall Effect 

 
 
RESULTS 
 
More image results can be seen in Figures 11, 12, 13, 
14 and 15. Figure 11 shows an above water scene. 
Figure 12 shows an underwater scene, where the blue 
color mixing effect can be observed. Figure 13 
illustrates loss of illumination due to depth. Figure 14 
shows loss of sharpness due to distance that occurs 
with the fog effect. Figure 15 shows a scene with 
several spotlights.  
 
Running in a computer powered by Intel Core 2 at 3.2 
GHz and a GeForce GT 240 graphics card with 112 
Cores, the frame rate exceeds 30 Hz, reaching more 
than 60 Hz for a resolution of 800 x 600 pixels. 
 
 
 
 
 
 

 
 
 
 
 
Figure 9. Illustration of Stencil mask generation 
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Figure 11. Above surface scene. 

 
 

  
Figure 12. Near object image.         Figure 13. Loss of illumination due to depth 

 
 

  

 
Figure 14. Far object image 
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Figure 15. Scene with several spot lights 

 
CONCLUSIONS AND FUTURE WORK 
 
Some algorithms were developed for rendering 
underwater images in real time by using GLSL to take 
advantage of GPU acceleration.  They compute fog 
effects, loss of illumination due to distance and depth, 
and blur effects. The blur effect appears seamless 
according to distance, without any flicking effects. 
Spotlight Tyndall effects are generated efficiently by 
using an approximate approach. Results show that the 
techniques presented here provide suitable image 
generation for underwater scenarios in real time by 
programming the GPU through GLSL. 
 
The Underwater Engine framework presented in this 
work was developed for supporting underwater 
simulation. Further development may contemplate 
image generation for dealing with caustics, bubbles, 
particles, flow dynamics and underwater object 
dynamics. 
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