Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Real Time Image Generation for Underwater Simulation

Milton T. S. Sakude, Edgar T. Yano Pedro S. C. R. Salles
Instituto Tecnologico de Aeronautica— ITA Alpha Channel
S&o Jose dos Campos, SP, Brazil Sao Paulo, SP, Brazil
sakude@ita.br, yano@ita.br pethrusx@gmail.com
ABSTRACT

Although graphics cards provide realistic real-time image generation for air-land scenarios, as built-in hardware,
they are not appropriate for rendering underwater scenarios, which require special techniques to properly render the
effects of liquid environment, loss of illumination and visibility, blur effects, spotlights, debris, caustics, and
bubbles.

This paper presents some techniques for implementing real time underwater image generation that emulate loss of
illumination and loss of visibility, spot light effects, and blur effects. The implementation is part of the development
of an underwater visual simulation engine. OpenGL and OpenGL Shading Language (GLSL) are used in order to
take advantage of GPU acceleration. The developed techniques use GLSL Shaders to perform the appropriate
calculations, such as the computation of loss of visibility due to depth and distance. Spotlight Tyndall effects are
emulated using an accumulated texture rendering technique. Loss of neatness (blur effect) is achieved seamlessly
via a technique that blends the blurred image with the rendered image according to viewer-object distance.

Results show that the techniques presented here provide suitable image generation for underwater scenarios in real
time by programming the GPU through GLSL.

ABOUT THE AUTHORS

Milton T. S. Sakude is an Assistant Professor at Instituto Tecnologico de Aeronautica-ITA. He received his
Master’s degree in Computer Science and Bachelor’s degree in Mechanical Engineering from ITA. Research
interests are in Computer Graphics, Simulation and Computer Security.

Edgar T. Yano is an Associate Professor at Instituto Tecnologico de Aeronautica-ITA. He received his Doctorate
degree in Computer Engineering from ITA, his Master’s degree in Computer Science from INPE, and Bachelor’s
degree in Mechanical Engineering from ITA. Research interests are in Software and Computer Security.

Pedro S. C. R. Salles is a Computer engineer at Alpha Channel. He has a Bachelor’s degree in Computer

Engineering from Instituto Tecnologico de Aeronautica. Research interests are in Computer Graphics, games and
simulation.

2011 Paper No. 11290 Page 1 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Real Time Image Generation for Underwater Simulation

Milton T. S. Sakude, Edgar T. Yano
Instituto Tecnologico de Aeronautica— ITA
Sao Jose dos Campos, SP, Brazil
sakude@ita.br, yano@ita.br

INTRODUCTION

Although visual simulation technology has been
employed extensively for military applications and
games inland and air environments, little has been
done forunderwater simulation applications.
Visual simulation technology generates real-time
realistic images due to the implementation of Computer
Graphics techniques through graphics cards. This
technology has been spreading rapidly due to the low
price of graphics cards used widely for gaming on
personal computers.

Visual simulation technologyis not provided
by graphics cards only. Another key part is the visual
simulation engine thatruns on top of the graphics
card and provides means to build simulation and to
show visual effects. The simulation application,
which establishes the entity behaviors and provides
the user interface, runs on top of the simulation
engine.

Since visual simulation technology has been developed
mainly for land and air environments, it needs to be
adapted through appropriate technology to
generate underwater rendering. Such development is
feasible now because graphics card can be
programmed by using GLSL (OpenGL Shading
Language) (Kessenish at al., 2010) or CUDA language
(NVIDIA, 2010). This makes it possible to generate
images in real time with different rendering from
those hard coded in the graphics card.

Some work has been published in underwater image
generation, for generating caustic and light ray
(godrays) rendering mostly non real time (lwasaki at
al., 2002). Papadopoulos and Papaiannou
(Papadopoulos and Papaiannou, 2009) developed a
technique for generating caustics and godrays in real
time, based on photon launching and image
composition for blending shadow and filtering.
Although these techniques generate realistic images,
they spend significant amount of CPU processing
power, so that they may compromise the processing of

2011 Paper No. 11290 Page 2 of 9

Pedro S. C. R. Salles
Alpha Channel
Sao Paulo, SP, Brazil

pethrusx@gmail.com

simulation behaviors and corresponding responses
given by the visual.

THE UNDERWATER ENVIRONMENT

The underwater environment is somewhat similar to
the air environment, because both waterand air
are fluids. Turbulence is more presentin the water
than in the air. In both environment, objects with less
density tend to float, and those with heavier density
tend to sink. Streams exist in both environments, but
in water they are more noticeable.

The fog effect, due to the presence of particles in the
environment, which absorb light, also exists in water;
however, the loss of visibility occurs at much smaller
distances than in air. Tiny particle similar to dust and
debris can also be observed under water. Brightness
diminishes with the distance in both mediums, but does
much faster in water. Brightness also diminishes
according to the depth in the underwater environment,
which does not happen in air.

When a ray of light travels in water, a loss of intensity
due to absorption by suspended particles occurs, and
light can be diverted. Considering that a large number
of rays can be diverted in a non-uniform manner, the
result is the loss of sharpness of an object view. In
water this sharpness can be lost easily, depending on
how muddy water is, so that object appears blurred.

The caustic effect is unusual in the air environment,
but it may be common in underwater settings such as
under sun light.

In air, water fallsas rain (drops) oras stream of
water. Air has different behavior in water, where
forms bubbles and rises. While bubbles may form in
air, they are much more present in the water, such as
when a diver breathes underwater.

In water an object moves at much lower speed than
does in air or land. The visual effects of a moving

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

object in water may be quite different from that in air,
such as a diver making turbulences and bubbles.

These similarities and differences must be taking into
account to generate an effective simulation engine for
an underwater scenario. Most of the known techniques
for image generation can be used or adapted to do so.
The challenge is to develop techniques that are not too
CPU expensive.

This paper reports on the initial work done to develop a
simulation engineto support underwater graphics
imagery with features that do not overload the
CPUand use GPU (Graphics Processing Unit)
acceleration. This paper describes some techniques for
implementing real time underwater image generation,
including loss of illumination and loss of visibility,
spot light effects, and blur effects.

UNDERWATER VISUAL TECHNIQUES

The first requirement for making underwater visual
simulation is that Physics must apply. The Fresnel
equation (Foley at al., 1996) must be considered when
passing from air to the water environment. Loss in
brightness must be considered both in depth and
distance. The Navier Stokes equations (Teman,
2001) must be used with more weight because the
behavior described by them is most noticeable in the
water. However one must be aware that overloading
the CPU/GPU with Physics computation may
compromise the real time requirement. Although there
is hope that the techniques for generating images and
visual effects are made entirely on the GPU, they still
consume a reasonable amount of CPU power.

In this paper an underwater visual simulation engine is
described briefly. The first approach adopted in our
research is to develop the appropriate techniques by
using the GLSL for portability, and thereafter migrate
them to GPU processing by using GPU parallel
programming for better performance.

Underwater Engine

The Uw Engine (Underwater Engine) is an API
(Application Programming Interface) prototype
developed to implement the visual simulation
process. The main classes that compose the API are:
Camera, Effect, Element, Model, Scene, Light,
Material, Shader, Input, and Primitives.

Element:
The Element class stores transformations, which can be

2011 Paper No. 11290 Page 3 of 9

translation, rotation, or scale. It also implements a
hierarchy of transformations, where a child element
inherits the transformations of its parent.

Model:

The Model class stores an imported 3D geometry file
in OBJ format, as well as components, such as the
Material and Element class instances.

Light:

The Light class represents the source of light that
illuminates the scene. By default it is a point light. The
class also supports spotlights. Ambient light, sun light
and light parameters such as depth range and
attenuation can be specified.

Scene:

The Scene class builds a complete scene with a list of
models, elements, cameras, and lights. It also
manages the creation of objects by loading and saving
files. The handling of an instance of this class is made
by the virtual class SceneControl.

Camera:

The Camera class represents a camera that captures the
scene. There may have more than one camera, with
possibility of camera switches. It extends the Element
class. It can only be created by the Scene class.

Shader:
The Shader class manages the image generation by
GLSL Shader algorithms. This class creates interfaces
and abstracts the parameters passed for the GLSL
Shader.

Material:
This class applies specified features to a model, and
stores the basic parameters such as color and
brightness.

Effect:

This class specifies a visual effect technique. It is an
abstract class that must be implemented to create an
effect that is applied to the underwater scenario.

Input:
This class manages user input, such as keyboard or
mouse.

Primitives:

The Geometry class contains some procedural-ready,
CSG (Constructive Solid Geometry) such as Cube and
Sphere.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Some of these classes deserve detailed descriptions of
implementation and techniques, such as Shader
computation, the fog effect, the depth illumination
effect, the sharpness loss effect and the Tyndall effect.

Shader Computation

A shader is written in GLSL for the implementation to
render the scene. Shader computation is composed of
three steps: Vertex Shader, Geometry Shader, and
Fragment Shader.

The Vertex Shader step receives the vertex information
that composes the primitives of the scene as
input. Algorithms written for this step are applied on
each of these vertices. Also the transformations of the
vertices of world coordinates into view coordinates are
performed, projecting the vertices of a 3D environment
onto the 2D plane of the screen, with the necessary
perspective corrections. The result of this step is
passed on to the Geometry Shader to continue
processing.

The Geometry-Shader step is optional. Connectivity
information among vertices is also passed, which
allows for the generation of new primitives and new
vertices. Some of the most common applications
include the refinement of geometries and the
generation of Point Sprites. The result of this step, with
vertices and primitives transformed, is then passed on
to the Fragment Shader.

The Fragment-Shader step must contain an algorithm
that deals with each pixel. It automatically performs
the interpolation between the information contained in
each vertex by the GPU. The algorithm in this step
may modify the painting of the pixels. The result of
this step is saved in the frame buffer. Once filled with
paintings of all the primitives of the scene, the frame
buffer is displayed on the screen by using the double
buffering technique (SwapBuffer).

IHlumination Computation

Forsun light andlight above the water surface,
Fresnel’s equationsare appliedto compute the
refraction on surface water. The specified sunlight,
ambient light,and point lightare computed by
using the Gouroud model or Phong model (Foley at
al., 1996).

Fog Effect
In Computer Graphics fog effect is treated as a

simplification of the actual physical phenomena.

2011 Paper No. 11290 Page 4 of 9

Commonly it is taken that the fog intensity depends
only on the distance between the observer and the
observed point. This effect results inloss of light
visibility and in the transition from the object color
tothe fog colorrepresented by the colorof the
muddy water.

The relationship between the color variation and
distance to the observer can be linear or
exponential. This work implements the linear
approach.

The algorithm consists of the following steps:

e Inthe Vertex Shader:
Compute the distances from each vertex to the
observer, as z value (from DepthMap)
Calculate the fog intensity as a function of
distance and maximum fog distance (fogDist),
limited between 0 and 1. The linear function is:
fogintens = L
fogDist
e Inthe Fragment Shader:
Calculate the new pixel color as a linear
interpolation between actual pixel color and fog
color, with the foglintens parameter:

color = mix(color, fogColor, foglntens)

Where mix is a linear interpolation between 1 and 2
using parameter 3 as the weight.

Figure 1 shows the effect of blue fog.

Figure 1. Fog effect in blue.

Depth lllumination Effect

Loss of illumination due to depth is similar to fog
calculation:
e Inthe Vertex Shader:
Compute the distance of the vertex and the water
surface or light source position.
e Inthe Fragment Shader:

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Compute the loss of light intensity according to
the distance using linear interpolation (or other
specified function). At the established threshold
(light range) the intensity is null.

Correct the fogColor by blending with black color
according to depth distance.

Blend the color with underwater color (blue).
Compute the color intensity according to the
Gouroud (or the Phong) model.

Figure 2 shows the difference between an outside-
water rendering and an underwater rendering. Figure 3
illustrates the underwater depth rendering effects.

b ala
(a) (b)

Figure 2. (a) Outside water rendering and (b)
underwater rendering.

Figure 3. Underwater depth rendering.

Loss of Sharpness Effect

The Blur effect varies with distance from the viewed
object to the observer, so that the farther the object is
the more blurred it appears.

Generally, a blurred image is obtained by applying a
filter, such as a Gaussian filter, to each pixel of the
original image. The direct application of the filter fails
because it is a discrete technique, which means that a
seamless variation is hard to obtain. Yet, the size of
the filter depends on the observer’s distance from the
object.

The solution to this problem is to blend a blurred
image and the original image weighted by the object-
observer distance, as proposed in (Rigues, Tatarchuck,
Isidore, 2004).

The Blur Algorithm can be divided in four steps:

2011 Paper No. 11290 Page 5 of 9

e Render the scene
The first step is the normal rendering of the scene
by using the Shader algorithms.
Save the frame-buffer in Frame Buffer Objet
(FBO).
Save the z-buffer to compute distance between the
observer and objects (DepthMap).

o Down sample the frame buffer

Creates a new FBO, with half the resolution in X
and Y, that is ¥ of the full resolution. To do this,
the FBO from the previous step is simply copied
with ¥4 of the resolution. The purpose of this step
is to optimize the algorithm: performing the
interpolation of pixels in a quarter of the resolution
is four times faster without an apparent loss of
quality in the result.

e Apply Gaussian filters to the downsampled FBO.
In this step the Gaussian filter is applied along the
axis X and along the axis Y. The Gaussian filter is
a method that calculates the weighted average of
pixels around the pixel in question with the
weights following a Gaussian curve. In this
implementation it is used Gaussian filter of size 7
for calculating the color average. It is applied in X
and Y direction using OpenGL operation.

e Composition
This step blends the original frame buffer and the
blurred one with the alpha value calculated as a
function of object-observer distance saved in the
DepthMap. This is performed by applying the
following formulas:

alpha = mix(min Dist, max Dist, z)

newColor = fullColor + alpha * (blurColor — fullColor)

fullColor and blurColor are pixel color from
original frame buffer and blurred frame buffer
respectively.

In Figure 4 an example of original image and blurred
image can be seen. Figure 5 shows the effects of
composition of original image and blurred image by
applying the distance weight blending.

Figure 4. Original image and blurred image.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Figure 5. Composition of blurred image with original image by using distance weight blending

Tyndall Effect

The Tyndall effect is the name given to the scattering
of a beam of light in a medium containing suspended
particle, in this case water. In practice, the result in
water is a greater brightness around a light point or in
the case of a spotlight, the presence of greater
brightness in the middle of the cone.

A way to obtain this effect is to use Physics to model
it; however, the computational cost is prohibitive for a
real-time application.

A simplified and efficient method of using OpenGL
Point Sprites was chosen to model this effect. The end
result is quite adequate as it may cover the most
common situations of this effect in the water, such as
the spotlight attached to the observer.

Point Sprite in OpenGL is a textured Quad facing the
observer, positioned so that its center is the vertex set.

Figure 6. Point Sprites Textures.

The idea is to drag the Point Sprites along the spotlight
cone with increasing radius and spacing, and
decreasing opacity. Figures 7 and 8 illustrate the idea
of the approach, where each circle is a Point Sprites.

For every new Point Sprites created, the pixel colors of

2011 Paper No. 11290 Page 6 of 9

the Point Sprites texture are added to the existing
pixels in the scene by using alpha blending.

Figure 7 — Point Sprites of the algorithm

Spacing of the Point Stripes locations may grow with a
quadratic function. The Point Sprites radius increase
according to the defined spacing. There is also the
calculation of attenuation that varies according to the
distance from light source to the Point Sprites, thereby
defining an increasing degree of transparency for Point
Sprites far from the light source.

The algorithm parameters are adjusted empirically, but
they also depend on the distance of the spotlight cone
from the observer. The greater the cone is, the more
Point Sprites must to be drawn.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Since overlapping pixels with transparency are added,
there is an increase in brightness when there are several
overlapping Point Sprites.

The texture of the Point Sprites texture can be changed
for a better representation of the effect, as shown in
Figure 8.

Although the focus of the algorithm is the volume of
particles illuminated in the water, it is necessary to
illuminate the objects contained within the cone of
light. For this purpose Phong illumination model is
used, because it produces smooth shading rendering.

Figure 8. Use of different texture for Point Sprites

Occlusion Improvement

One of the problems of the previous algorithm is that it
ignores the light occlusion of the object. In order to use
the Point Sprites idea, an improvement of the algorithm
was implemented by using the OpenGL Stencil Buffer
much as it is used to generate shadow (Crow, 1977;
McGuire at al., 2003). The idea is to discount the
object shadow portion from the Point Sprites drawing.
The previous algorithm is used until there is no
intersection between a sphere representing the Point
Sprite and an object. When an intersection occurs, it
passes to another algorithm that computes a stencil
shadow mask, as illustrated in Figure 9. The object
shadow (in black) is projected to the cone base. This
shadow is stored in the stencil shadow.

Figure 9. lllustration of Stencil mask generation

2011 Paper No. 11290 Page 7 of 9

Then the Point Sprites are drawn with Stencil Mask.
Shadow lines information (dashed in Figure 9) is held
in a data structure for fast shadow calculation by using
an incremental method in the next step.

Partial blocking the Tyndall Effect can be seen in
Figure 10.

Figure 10. Partial blocking of Tyndall Effect

RESULTS

More image results can be seen in Figures 11, 12, 13,
14 and 15. Figure 11 shows an above water scene.
Figure 12 shows an underwater scene, where the blue
color mixing effect can be observed. Figure 13
illustrates loss of illumination due to depth. Figure 14
shows loss of sharpness due to distance that occurs
with the fog effect. Figure 15 shows a scene with
several spotlights.

Running in a computer powered by Intel Core 2 at 3.2
GHz and a GeForce GT 240 graphics card with 112
Cores, the frame rate exceeds 30 Hz, reaching more
than 60 Hz for a resolution of 800 x 600 pixels.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Figure 11. Above surface scene.

Figure 12. Near object image. Figure 13. Loss of illumination due to depth

Figure 14. Far object image

2011 Paper No. 11290 Page 8 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Figure 15. Scene with several spot lights

CONCLUSIONS AND FUTURE WORK

Some algorithms were developed for rendering
underwater images in real time by using GLSL to take
advantage of GPU acceleration. They compute fog
effects, loss of illumination due to distance and depth,
and blur effects. The blur effect appears seamless
according to distance, without any flicking effects.
Spotlight Tyndall effects are generated efficiently by
using an approximate approach. Results show that the
techniques presented here provide suitable image
generation for underwater scenarios in real time by
programming the GPU through GLSL.

The Underwater Engine framework presented in this
work was developed for supporting underwater
simulation. Further development may contemplate
image generation for dealing with caustics, bubbles,
particles, flow dynamics and underwater object
dynamics.

REFERENCES
Crow, F. C (1977) "Shadow Algorithms for Computer
Graphics”, Computer Graphics (SIGGRAPH '77
Proceedings), vol. 11, no. 2, pp. 242-248.
Foley, J. D, van Dam, A, Feiner, S. K. and Highes, J. F.

(1996). Computer Graphics. Principles and
Practice. Addison-Wesley, Reading. 4th ed.

2011 Paper No. 11290 Page 9 of 9

Iwasaki K., Dobashi, Y and Nishita, T. (2002). An
Efficient Method for Rendering Underwater Optical
Effects Using Graphics Hardware. Computer
Graphics Forum. Vol. 21, No.4, pp. 1-11.

Kessenish, J. Baldwin, D, Rost, R. (2010). OpenGL
Shading Language, version 4.10. Retrieved
November, 2010, from
http://www.opengl.org/documentation/glsl/

McGuire, M., Hughes, J.F., Egan, K.T, Kilgard, M.J.
and Everitt, C. (2003) Fast, Practical and Robust
Shadows. Retrieved November, 2010 from

http://graphics.cs.brown.edu/games/FastShadows/index.
html

NVIDIA, (2010) CUDA Programming Guide. Retrieved
November, 2010 from
http://developer.nvidia.com/category/zone/cuda-
zone

Riguer, G., Tatarchuk, N.; Isidoro, J. (2004) Real-Time
Depth of Field Simulation. In ENGEL, Wolfgangm
ShaderX2: Shader Programming Tips & Tricks with
DirectX9, pp. 529-556.

Temam, R. (2001), Navier-Stokes Equations, Theory
and Numerical Analysis, AMS Chelsea, pp. 107-
112.

