

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Advances in Gateway Products and Processes for
LVC Simulation Environments

Robert Lutz, David Drake, Nathaniel Horner

The Johns Hopkins University
Applied Physics Laboratory

Laurel, MD
Robert.Lutz@jhuapl.edu, David.Drake@jhuapl.edu, Nathaniel.Horner@jhuapl.edu

Michael O’Connor Kurt Lessmann Dannie Cutts

Trideum Corporation Trideum Corporation AEgis Technologies
Huntsville, AL Huntsville, AL Huntsville, AL

Moconnor@trideum.com Klessman@trideum.com Dcutts@aegistg.com

ABSTRACT

Integration of Live, Virtual, and Constructive (LVC) Modeling and Simulation (M&S) assets within a single,
unified distributed simulation environment is commonplace today as a means to address the diverse needs of the
training and test communities. Such environments frequently transcend the use of a single simulation architecture or
Simulation Data Exchange Model (SDEM), as the organizations that participate in distributed LVC events generally
want to employ the local standards and conventions with which they are most familiar. Different protocols and data
formats are reconciled in modern development approaches through the use of gateways. Gateways provide a variety
of translation and other services in LVC events, enabling operation across dissimilar architectures.

Despite the many success stories associated with gateway use in LVC events, there are several well-documented
issues with gateways. Most of these are related to a general lack of supporting products to allow users to discover
the gateway capabilities they need, along with a corresponding lack of products and standards for gateway
configuration. These problems have resulted in a proliferation of dissimilar gateways that provide redundant
capabilities, but which must be managed and maintained separately. The need to address these inherent
inefficiencies has led to Department of Defense (DoD)-sponsored efforts to reduce the costs and to increase the
effectiveness of gateway utilization in user programs.

This paper will describe the products developed under the Live-Virtual-Constructive Architecture Roadmap
Implementation (LVCAR-I) effort to address the core goals in the gateway area. Examples of such products include
Extensible Markup Language (XML)-based formal languages to support gateway selection and configuration, and
specification of standard benchmarks for characterizing the performance of gateways. These products form the
foundation for a suite of automated tools and supporting processes that will strongly facilitate gateway discovery
and configuration in the future.

Distribution Statement A: Approved for Public Release; Distribution Unlimited.

2011 Paper No. 11022 Page 1 of 13

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

ABOUT THE AUTHORS

Robert Lutz is a principal staff scientist at the Johns Hopkins University Applied Physics Laboratory (JHU/APL)
in Laurel, MD. He has over 30 years of experience in the design, implementation, and evaluation of M&S systems
for military customers. Currently, he is leading the LVCAR-I “Systems Engineering (SE) Process” and “Common
Gateways and Bridges” tasks, and serves as the U.S. Navy’s Broad Area Maritime Surveillance (BAMS) Program
M&S lead in the airspace integration area. He also leads several M&S standards initiatives within the Simulation
Interoperability Standards Organization (SISO), including the Object Model Template (OMT) component to the
Institute of Electrical and Electronics Engineers (IEEE) 1516 High Level Architecture (HLA) standard, and the
IEEE 1730 Distributed Simulation Engineering and Execution Process (DSEEP) standard. He also serves as a
regular guest lecturer in The Johns Hopkins University (JHU) Whiting School of Engineering.

David Drake is a member of the Senior Technical Staff in the Global Engagement Department at JHU/APL,
performing research and development in the area of modeling and simulation supporting the U.S. government and
military. Mr. Drake is currently the lead on the LVC “Service-Oriented Architecture” task and supports the
LVCAR-I “Common Gateways and Bridges” task. Mr. Drake has 9 years experience in M&S design, development,
and standards and 23 years as a computer security professional in computer security design, implementation and
evaluation. Mr. Drake is a member of the SISO Standards Activity Committee (SAC) and is the secretary of the
SISO Board of Directors (BoD). Mr. Drake received his bachelor’s degree in Mathematics from SUNY at Buffalo.
He is published in the areas of simulation, service-oriented architecture, grid computing, and security, and has a
patent on the process for enterprise-wide intrusion detection.

Nathaniel Horner is an Associate Professional Staff member in the Aerospace Systems Design Group at JHU/APL,
where he has served as Project Manager and Technical Lead on several modeling, simulation, and analysis (MS&A)
efforts for U.S. Air Force clients. He is also heavily involved in projects using conceptual modeling and systems
engineering methods to improve the efficiency and effectiveness of simulation development and usage. Mr. Horner
holds master’s degrees in Computer Science and Systems Engineering from JHU and the University of Virginia,
respectively, and is a member of the JHU systems engineering faculty.

Michael O’Connor is a Senior Principal Engineer at Trideum Corporation. Mr. O’Connor has more than 20 years
experience in M&S. He has been a key participant in the development of distributed modeling and simulation
standards, including IEEE 1278 and IEEE 1516. He has held many positions in the community, including Chairman
of the SISO Standards Activities Committee and Vice-Chairman of the SISO Executive Committee. Mr. O’Connor
previously led the development of ITT’s Chemical, Biological, Radiological, and Nuclear Simulation Suite, which
supports Distributed Interactive Simulation (DIS), High Level Architecture (HLA), and Test and Training Enabling
Architecture (TENA). He holds a bachelor’s degree in Computer Engineering from Auburn University, and a master
of science in Computer Science from the University of Alabama in Huntsville.

Kurt Lessmann is a Vice President at Trideum Corporation, specializing in providing solutions and services in the
area of test and evaluation, M&S, systems analysis, and information technology. Mr. Lessmann has over 15 years
experience in supporting LVC integration activities for large-scale Joint Distributed Test activities. Mr. Lessmann
also supports the test community by providing Object Model design, software and range system design and
integration, and application of M&S techniques. He currently supports the TENA project and the Joint Mission
Environment Test Capability (JMETC) Program Office as a senior Event Lead. Mr. Lessmann holds a bachelor’s
degree in Aerospace Engineering from Auburn University.

Dannie Cutts is a Senior Computer Scientist with AEgis Technologies Group Inc., supporting the United States
Joint Forces Command (USJFCOM) Joint Advanced Training Technologies Laboratory (JATTL) in Suffolk, VA.
He has over 20 years experience in M&S for NASA and DoD and has been involved with the HLA since 1995,
serving on the Interface Specification and Time Management Working Groups. He has provided HLA Training and
Cadre support for the Defense Modeling and Simulation Office (DMSO), and currently serves on the IEEE Drafting
Group for the HLA IEEE 1516 standard. Mr. Cutts is a Certified Modeling and Simulation Professional (CMSP). At
USJFCOM he is involved in efforts to improve interoperability between LVC assets for Joint Training.

2011 Paper No. 11022 Page 2 of 13

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11022 Page 3 of 13

Advances in Gateway Products and Processes for
LVC Simulation Environments

Robert Lutz, David Drake, Nathaniel Horner

The Johns Hopkins University
Applied Physics Laboratory

Laurel, MD
Robert.Lutz@jhuapl.edu, David.Drake@jhuapl.edu, Nathaniel.Horner@jhuapl.edu

Michael O’Connor Kurt Lessmann Dannie Cutts

Trideum Corporation Trideum Corporation AEgis Technologies
Huntsville, AL Huntsville, AL Huntsville, AL

Moconnor@trideum.com Klessman@trideum.com Dcutts@aegistg.com

BACKGROUND

Simulation is a critical enabler of many different
functions in modern acquisition programs. While
individual standalone models and simulations are the
tool of choice for many systems engineering (SE)
activities, the use of distributed simulation has
increased sharply in recent years. Distributed
simulation leverages high-speed networks and
supporting simulation services to link together multiple
existing modeling and simulation (M&S) assets into a
single unified simulation environment. Test and
Evaluation (T&E) and training are generally
considered to be the most frequent users of this
technique, as combinations of live, virtual and
constructive M&S assets (including hardware-in-the-
loop) are frequently required to support program
requirements.

Several different simulation architectures are currently
in active use within the U.S. Department of Defense
(DoD), including its coalition partners. Examples of
such architectures include Institute of Electrical and
Electronics Engineers, Inc. (IEEE) 1278.1-1995
Distributed Interactive Simulation (DIS), the Test and
Training Enabling Architecture (TENA), and the IEEE
1516 High Level Architecture (HLA). While all of
these architectures provide services that support
runtime interoperability among disparate simulation
systems and supporting utilities (e.g., viewers,
loggers), each individual architecture has been
optimized for a particular class of user. For instance,
DIS has been designed for real-time applications at a
platform level of representation, while TENA is mainly
focused on interfacing range assets, command and
control (C2) systems, and simulations in support of
T&E applications. Users of these architectures have

coalesced over the years into established user
communities, where tools and standard practices for
developing and employing distributed simulation
environments using the architecture are commonplace.

In some situations, sponsor requirements may
necessitate the selection of simulations whose external
interfaces align with different simulation architectures.
This is known as a multi-architecture simulation
environment. There are many examples of such
environments within the DoD, especially in areas that
require broad participation across disparate user
communities (e.g., joint training and experimentation).
When more than one simulation architecture must be
used in the same environment, interoperability
problems are compounded by the architectural
differences. For instance, middleware
incompatibilities, dissimilar metamodels for data
exchange, and differences in the nature of the services
that are provided by the architectures must all be
reconciled for such environments to operate properly.
This not only raises additional technical risk but, in
addition, the additional resource consumption
necessary to adjudicate these architectural differences
affects cost and schedule risk1.

Because of perceived increases in the number of multi-
architecture simulation events anticipated in the future,
along with the associated increase in costs, DoD
sponsored an initiative to examine the differences
among the major simulation architectures from a
technical, business, and standards perspective, and to
develop a time-phased set of actions to improve
interoperability within multi-architecture simulation
environments in the future. This initiative is called the
Live-Virtual-Constructive Architecture Roadmap
(LVCAR). The development of the Roadmap began in

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

the spring of 2007 and continued for approximately
sixteen months. The result of this activity was a final
report and supporting documentation that collectively
totaled over a thousand pages2.

One of the key recommendations from the LVCAR
Final Report focused on improvements to gateway and
bridge capabilities. The term “bridge” in this context
refers to intelligent translators that link together
enclaves of simulations that use the same underlying
simulation architecture, such as a bridge between two
separate simulation environments that both use HLA.
A “gateway” is also an intelligent translator, but it is
designed to link simulation enclaves that use dissimilar
architectures, such as a gateway between simulations
that use TENA as its external interface on one side of
the translator and DIS on the other. Since LVCAR
continues to focus on multi-architecture
interoperability, LVCAR recommendations mainly
emphasized improvements to gateways rather than
bridges. Note that one of the key functions of a
gateway is to adjudicate the differences in the format,
syntax, and content of the data that is exchanged at
runtime among cooperating simulations. Known as an
“object model” in some communities, this data
representation is referred to more generically as a
Simulation Data Exchange Model (SDEM).

LVCAR implementation (LVCAR-I) began in 2009.
Early efforts focused on the characterization of the state
of the gateway marketplace3 and on evaluating potential
strategies for addressing deficiencies and problems
identified by gateway users4. These “challenges”, and an
associated set of gateway requirements, are discussed in
the next two sections. The strategy that addresses these
challenges focuses on the development of new products
that improve how users select, configure, and employ
existing gateways. This approach has the advantage of
facilitating user productivity gains in the short-term at
relatively low cost, while lowering the costs associated
with migrating to more advanced gateway solutions in
the future. A description of these products is provided
later in this paper.

GATEWAY CHALLENGES

Gateways are a key enabler of multi-architecture
simulation environments. Although there are many
success stories with respect to the use of gateways on
multi-architecture developments, there have also been
some reported problems. Since there is no such thing
as a “common” gateway across (or sometimes, even
within) user communities, managers of some LVC
environments are often unaware of reuse opportunities

for needed gateway capabilities. Thus, from a historical
perspective, many programs have built their own
gateways from scratch based on their immediate needs,
with little or no attention paid to potential reuse. This
has led to an unnecessarily large number of gateways
in the LVC community, many of which are ad hoc,
have little documentation, and have no visibility
outside the projects for which they were designed. This
is, of course, very inefficient from a DoD enterprise
perspective, as much of the same basic functionality
keeps getting developed over and over again, and
maintenance costs are spread over a large set of
redundant capabilities. Also, the continuous
consumption of valuable project resources to design,
develop, and test new gateways increases technical,
schedule, and cost risk to user programs.

Besides the inability of federation managers to
discover potentially useful gateway capabilities, there
are other barriers to achieving higher levels of reuse.
Even if alternative gateways are identified that are
“better” (i.e., more functions, more reliable, easier to
use), the costs associated with transitioning to a new
gateway may be excessively high, and thus may not be
practical from a business model perspective. The
reason for these high costs is that each gateway tends
to have unique mechanisms for defining required
translations and other configuration elements, and thus
the investment in time and resources needed to train
developers to set up and operate the gateway properly
is not something that a federation manager would want
to repeat. This could result in dissatisfied users being
“locked in” to special-purpose proprietary gateways,
resulting in barriers to user communities migrating to
more efficient gateway solutions in the future.

REQUIREMENTS FOR GATEWAY
IMPROVEMENTS

Clearly, the current inefficiencies with respect to
gateway employment in the DoD adversely affect the
time and resources needed to develop and execute
LVC events. With anticipated increases in the number
of multi-architecture LVC events in the future, it is
critical that enhancements to gateway user processes
and products be developed. The following list
describes the core requirements for addressing these
challenges5.

Requirement 1

The user shall have open access to a knowledge base of
existing gateway information. The knowledge base
shall have user-friendly features for users to browse

2011 Paper No. 11022 Page 4 of 13

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

across the set of gateways offered by government or
commercial providers.

Rationale
One of the main reasons that so many program managers
elect to build new gateways rather than reuse existing
ones is because there is no means (other than web
surfing or referrals) to determine what existing gateways
are available for reuse. Creating an easily accessible and
well-maintained knowledge base of reusable gateways
with associated Point Of Contact (POC) information
would provide the visibility needed for users to make
more informed “buy versus rent” decisions.

Requirement 2

The user shall have a mechanism to assess candidate
gateways based on the performance characteristics of
those gateways.

Rationale
In many LVC environments (particularly in the testing
community), latency is a major concern. Even modest
amounts of system latency may be intolerable for
hardware-in-the-loop applications. When gateways are a
part of the overall architecture for the LVC environment,
gateway performance becomes a major concern.
However, performance data is not provided in most
gateway descriptions, and available data is not provided
using any standard metrics or formats. A standard
representation of gateway performance characteristics
will allow side-by-side comparisons of gateway
performance, allowing for better decisions by gateway
users.

Requirement 3

The user shall have a user-friendly mechanism to
describe their application-specific gateway requirements
according to a standard listing of gateway capabilities.

Rationale
Once a user has insight into the range of reuse
opportunities, there needs to be a way for users to
describe what gateway capabilities are needed to support
their immediate application. In the absence of any
standard method for describing gateway requirements,
users are forced to develop their own. This can easily
result in gaps in the specified requirements, which may
not be discovered until considerable resources have
already been spent trying to get the gateway to work
properly. Also, if users have no template for describing
their gateway requirements, the resulting requirements
may be mismatched with the way providers describe
their gateway capabilities. An easy-to-use mechanism
(potentially automated) that provides a standard template

for users to describe gateway requirements would save
time and allow direct comparisons to capabilities offered
by gateway developers.

Requirement 4

The user shall have an efficient means to compare
application requirements to gateway capabilities.

Rationale
Once a user has described their gateway requirements,
there needs to be a way to map these requirements to
the capabilities offered by gateway developers. This
can be done by hand, but it may be quite tedious if the
number of gateway candidates is large. Also, if there is
no standard template for describing gateway
capabilities in addition to gateway requirements,
automated mappings of requirements to capabilities
will be largely infeasible. Since the goal is to define an
efficient means to support comparisons, there is an
additional implied requirement for a standard template
for developers to describe the capabilities that they can
offer to potential users. The existence of these two
templates provide the formalism needed to automate
the “requirements to capabilities” matching process.
Note that for machines to be able to process the data
captured through these templates, the data must be
described according to a machine-readable language.

Requirement 5

The user shall have an efficient, repeatable mechanism
to determine what gateways best meet the application
requirements.

Rationale
Once an efficient mechanism for mapping gateway
requirements to gateway capabilities is established,
there needs to be a way to determine, across the range
of possible options, which gateway(s) provides the
“best match” for the users’ applications. If the
matching data is available to the users, the users can
make the required judgments themselves (although it
can take considerable time and energy). However,
implicit to the users’ selections will be their own biases
with respect to the relative weightings applied to each
requirement-capability pairing. These biases will vary
from user to user, and thus whether the optimal
gateway match will really be identified will depend on
who is doing the selecting. An automated approach,
based on a standard set of grading rules properly
socialized with the gateway developer community will
not only reduce the time required to identify the
optimal gateway(s), but it will also be repeatable and
independent of tester bias.

2011 Paper No. 11022 Page 5 of 13

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Requirement 6

The user shall have an efficient mechanism to define
the Simulation Data Exchange Model (SDEM)
mappings necessary to meet interoperability
requirements across the LVC environment.

Rationale
Once the user has selected a gateway for their
application, the mappings among the different
architectures and SDEM representations in the LVC
event must be defined. Currently, this is all done by
hand, and unique mappings must be defined for every
SDEM/architecture combination. This is extremely
resource-intensive, and highly subject to error. A method
is needed to reduce the number of unique mappings that
are required, and to define the mappings according to
some standard template. Adherence to this template
should reduce errors by formalizing the content, format,
and syntax of mapping data, and reducing the number of
unique mapping files should reduce the amount of user
effort required to define the mappings.

Requirement 7

The user shall have a standard mechanism to
communicate all necessary SDEM mappings and other
needed translation services to the gateway in reusable
files.

Rationale
Although a standard mapping template is a useful tool
by itself, a greater degree of efficiency can be achieved
if the process of configuring the gateway to support the
defined mappings can be automated. This implies a
requirement for mapping data to be machine-readable.
Formalizing the format and structure of mapping files
will also facilitate reuse of this data. The need for
automation also implies a requirement for gateways to
be able to ingest the mapping data (either directly or
via an external tool) and translate the data into the
internal formats used by the gateway. This capability
would relieve the user of the need to configure the
gateway by hand, which can be time-consuming and
error-prone.

Requirement 8

The user shall have a standard mechanism to
communicate all necessary gateway configuration data
to the gateway.

Rationale
Most gateways are configured for a specific intended
use through a configuration file. The format and
content of these files vary from gateway to gateway.

Gateways are usually very sensitive to the exact values
defined in the configuration file, and considerable user
training is generally required to be able to set up the
configuration properly. Sometimes, user programs will
invest in user training for their own people, and
sometimes programs will just pay the developer for
gateway support. In both cases, the relatively high
costs of these investments create barriers to migrating
to more advanced gateways that are better aligned with
their needs. A standard format for gateway
configuration files would result in programs having to
train their people in gateway configuration procedures
only once, and thus could easily migrate to other
gateways without the costs of retraining.

Note that many of these requirements refer to the term
“efficient.” Improved efficiency in this context simply
implies the need to reduce the time, cost, and technical
risk associated with the methods used today. Although
the characteristic “efficient” is not directly testable, the
idea is to define both product and procedural
improvements to current gateway methodologies, and
to define an overarching process framework into which
new and emerging technologies can be inserted in the
future to achieve even greater improvements.

SUPPORTING PRODUCTS FOR GATEWAY
SELECTION

The following provides a description of each of the
emerging LVCAR-I products that collectively address
the core requirements that impact gateway selection.

Gateway Capabilities Description

The Gateway Capabilities Description (GCD)6 defines
a standard set of capabilities that a gateway could
potentially provide to user programs. Each capability
has three elements: Capability Definition, Examples,
and Levels of Implementation. The Capability
Definition provides a concise definition of the
capability. The Examples provide context using a real-
world example. The Levels of Implementation indicate
the degree to which the capability is supported. The
number of levels varies based on the capability.
Generally a level of “0” means that the capability is not
implemented, and conversely, a level of “5” generally
means that the capability is fully implemented. A level
of “3” represents a partial implementation. Capabilities
can also be defined as implementations between
defined levels. A partial example drawn from the GCD
is provided in Table 1.

The GCD was designed to address Requirement 3 and
some aspects of Requirement 4. For Requirement 3, it

2011 Paper No. 11022 Page 6 of 13

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11022 Page 7 of 13

provides the formalized listing of gateway capabilities
needed for gateway users to fully capture their gateway
requirements. For Requirement 4, the GCD addresses
the implied requirement for a standard template that
developers can use to describe the gateway capabilities
that they can offer to potential users. The ability to
describe both gateway requirements and gateway
capabilities according to the same common template
establishes the foundation for direct requirements-to-
capabilities mappings.

Gateway Performance Benchmarks

The Gateway Performance Benchmarks (GPB)7
define measurable performance characteristics for
gateways. The GPB is designed so that developers,
testers, and consumers of gateways have a consistent
set of metrics to determine which gateway or gateways
will best suit the needs of the end-user. Table 2 lists the
performance metric elements and means of measuring.

Table 1. Gateway Capability Description (Example)

Functional Capabilities – SDEM Translations
Reference ID Capability

Definition
Examples Levels of Implementation

FC-ST-1 Capability to perform unit
conversion on a single
attribute (SDEM element).

For example, if a gateway can
translate meters to feet, or a
similar direct algorithmic
conversion.

0 = No unit conversion
1 = Single attribute conversion for 5 or fewer defined types
3 = Single attribute conversion for fewer than 15 fixed
types
5 = Conversion between arbitrary units

FC-ST-2 Capability to perform complex
data type conversions from
single to multiple, multiple to
single or different numbers of
multiple attributes. This
includes coordinate systems
with different number of
components.

For example, if a gateway can
translate between coordinate
systems with different number of
components, such as Euler
angles (3 elements) to
quaternions (4 elements), or
articulated parts verses single
frame reference.

0 = No multiple attribute conversion
1 = Multiple attribute conversion for 5 or fewer fixed types
3 = Multiple attribute conversion for fewer than 15 fixed
types
5 = Arbitrary multiple attribute coordination conversion

Table 2. Gateway Performance Metrics

Performance Metric

Element
Definition Possible Means of Measure

Resource Utilization

Loading levels for system resources:

● Memory Percent of available megabytes or number of pages input and output

● Central Processing Unit (CPU) Percentage used for both average and maximum, and number of
instructions per second required

● Disk Percentage used, and number of access operations required

● Input/Output (I/O) Number of operations for both input and output

● Database Number of database accesses per second

● Network Percentage of bandwidth used

Speed/Response Time/Latency Time required to process inputs Input/output response time and queue lengths (#messages/tasks
i i)

Throughput System processing capability Processing rate for messages, data streams, or packets

Scalability Ability for multiple system components
to process data flow efficiently

Multiple system tested using parameterized filtering

Endurance/Robustness/Stability System component reliability and Mean time between failures

Performance-Related Accuracy Minimizing output errors that are due to
performance characteristics

Percentage of correct output data

The GPB also defines a structured set of use cases that
collectively define a range of “typical” application
types (e.g., large virtual training event, small faster-
than-real-time constructive event, or hardware-in-the-
loop event) to which the benchmarks can be applied.
These use cases are based on a defined set of scenario
and operational parameters. Scenario parameters
describe characteristics of the simulation, while

operational parameters describe the operating
environment for the simulation hardware and software.

The GPB was designed to address Requirement 2, with
some indirect benefits that partially address
Requirement 4. Using the GPB, users will now have a
way to assess gateways not only in terms of what
capabilities they provide, but also in terms of how well

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

they perform in defined contexts. The GPB will also be
incorporated into the common language for describing
gateway capabilities (see next product). Note that, in
the longer term, gateway developers will have the
details of the performance metrics that are sought-after
by end-users, which will in turn drive the priority of
improvements of future gateways and their upgrades.

Gateway Description Language

The Gateway Description Language (GDL)8 provides a
mechanism to document user gateway requirements
and capabilities of gateways provided by the
developer. The GDL is based on the GCD and the
GPB. The purpose of GDL is to communicate user
needs and developer capabilities to support the
selection of gateways. GDL is implemented in
Extensible Markup Language (XML) to be both human
and machine-readable. GDL can be used in two ways;
to specify user requirements for gateway capabilities,
and to specify the capabilities offered by gateway
products.

GDL has three major components: Description,
Capabilities, and Performance. The Description
identifies the creator of the GDL file and the purpose for
which it was developed. Each GDL file has exactly one
Description. A gateway user would create a GDL file to
document the requirements for a specific distributed
simulation application. This includes the name of the
user (generally an organization) and the name of the
simulation environment. A gateway developer-generated
GDL file includes the name of the gateway and version
information.

The next component of GDL is the Capability. A GDL
file has one or more Capabilities. A gateway user-
generated GDL file would capture the required
capabilities for the gateway in a particular event. A
gateway developer-generated GDL file would identify
the implemented capabilities for a particular gateway.
Each Capability entry has four components: Capability
Identifier, Capability Description, Implementation
Level, and Priority Level.

The final component of GDL is Performance. A GDL
file has zero or more entries for Performance. Each
Performance entry is associated with a use case. This
component includes a use case identifier and the values of
the performance metrics. The performance metrics for a
user-created GDL represent the user’s desired
performance for each parameter. In a developer-created
GDL, these values result from executing the GPBs.

GDL was designed to address Requirements 4 and 5.
GDL provides a common machine-readable format for

describing both user gateway requirements and
gateway capabilities, as defined by developer
organizations. Although matching requirements to
capabilities can be done by hand (since GDL is also
human-readable), the common format greatly
facilitates the automation of this process. This
automation extends to the determination of “best
matches,” as standard rule sets can be developed,
socialized with gateway developers, and applied to
help identify those gateways that most closely align
with defined user requirements. Thus, GDL is critical
to automating the process of gateway selection, and
automation is the key to achieving the desired
efficiency gains.

SUPPORTING PRODUCTS FOR GATEWAY
CONFIGURATION

The following provides a description of each of the
emerging LVCAR-I products that collectively address
the core requirements that impact gateway configuration.

SDEM Mapping Language

The SDEM Mapping Language (SML)9 provides a
formal XML schema for defining required translations
between SDEMs. This schema is independent of any
specific gateway implementation. The SML format
allows the elements of one SDEM to be mapped to
elements in another SDEM, including any additional
required transformations. While some gateways have a
method for describing translations between SDEMs,
none are complete or formally defined as a community
standard. SML fills that gap by providing a means for
SDEM mapping files to be reusable from application to
application.

Choosing XML as the basis for SML addresses three
major objectives of the mapping language: human-
readable, machine-readable, and existing tool support.
One of the key benefits of using SML to create an
SDEM mapping file is that it provides formal
documentation at the detail level for the translations
between SDEMs. This formal definition of the required
translations allows for all of the participants to review
and agree to the translations. Once they are agreed to,
the mapping file becomes a “contract” between the
event leadership and the gateway provider. Because
SML is also machine-readable, the gateway provider
may choose to have their gateway directly use SML as
a means to configure the translations. Using SML
allows users to take advantage of existing tools for
creating, viewing, importing, and parsing XML files.

2011 Paper No. 11022 Page 8 of 13

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

SML is composed of a series of ElementMaps. The
ElementMap has three components: FromElementName,
ToElementName, and Transformation. The
FromElementName component is the name of the data
construct to be translated. The ToElementName
component is the name of the data construct to be
translated to. The Transformation component defines the
steps to convert the data from one SDEM to the other.

SML was primarily intended to address Requirement 7.
Developers of multi-architecture distributed simulation
environments perform the mapping process by creating
a defined set of mapping files which define the
persistent and transient objects to be shared among the
event participants. Capturing this data in SML allows
the event participants to review and verify all required
translations, independent of the gateways selected. The
formality of the SML specification also makes it
possible to verify the completeness and consistency of
the translations. Although SML is useful as a
standalone language, most users are expected to take
advantage of the fact that SML is XML-based, and
apply the many tools that are available to view and
manipulate XML files. SML also streamlines the
gateway configuration process by providing a
machine-readable format that can be ingested by
gateways. This can save considerable time and effort
compared to the manual process of converting raw
mapping data to the internal formats used by the
selected gateway.

ANDEM

Although gateway mapping procedures benefit greatly
from the use of SML, the process of producing
mappings across all the different architectures and
SDEMs being used in a distributed simulation event is
still a very labor-intensive, manual process. This process
is illustrated in Figure 1, which depicts a mapping
between architectures and data exchange models in a
notional event/exercise. Each exercise participant in this
example has to create mappings to and from every other
architecture/SDEM in the exercise, in this case resulting
in twelve unique mappings.

Figure 1. Current Mapping Procedures

Figure 2 illustrates how a common Architecture Neutral
Format (ANF) can reduce the time and effort required for
SDEM mapping. In this situation, the number of unique
mappings is decreased from twelve to eight. An
additional benefit is that the likelihood of inconsistencies
across the mappings is significantly reduced due to the
smaller set of mappings to consider.

Figure 2. ANF-Based Mapping Procedures

A product called the Architecture Neutral Data
Exchange Model (ANDEM), developed under Joint
Training Integration and Evaluation Center (JTIEC)
sponsorship on a separate project, defines the desired
ANF10. The use of ANDEM directly addresses
Requirement 6, as the event/exercise-wide SDEM
represented in ANDEM would define the contract for
data exchange to which all participants would map their
local SDEM representations.

In addition to using ANDEM as a way to reduce the time
and effort required to formulate the necessary mappings,
ANDEM is also useful during gateway configuration. As
mapping files are produced, even greater efficiencies can
be achieved if the mappings can be input to the gateway
in an automated fashion. However, if the mapping files
are based on translation of architecture-specific SDEMs
to ANDEM, this requires the selected gateway to
properly translate the ANDEM representation to its
internal database format. Although this translation can be
performed by front-end tools external to the gateway, it
may also be possible for gateways to adopt the ANDEM
format for internal storage, which would allow them to
ingest SDEM mapping files directly in ANDEM format.
In either case, use of ANDEM should facilitate the
process of capturing all of the necessary mapping
information in the chosen gateway.

Gateway Configuration Language

The Gateway Configuration Language (GCL)9 is
designed to capture common gateway configuration
data in a single implementation-independent format

2011 Paper No. 11022 Page 9 of 13

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11022 Page 10 of 13

that is both human and machine-readable. Therefore,
like the other gateway languages, GCL is based on
XML. This implementation allows the user to directly
review the file, and allows gateways and other tools to
directly read it. GCL also provides documentation on
the use of a gateway for a specific purpose. Some of
the fields may not be needed by the gateway
implementations, but can be included for
documentation reasons.

GCL is composed of three main components: General
Data, Architecture/SDEM Interface Description, and
Filters. The General Data section contains data related
to the overall gateway execution and information about
the use of the gateway, such as the name of the gateway
and the event to which it is to be applied. The
Architecture/SDEM Interface Description defines a
separate record for each architecture/SDEM combination
or “side.” All gateways have at least two sides, and some
gateways may have more. The side record defines the
architecture-specific parameters used by the gateway to
connect to the architecture. For instance, Federation
Execution Details (FED) file names and Runtime
Infrastructure (RTI) Initialization Data file names would
be included for HLA elements, while emEndpoints and
listenEndpoints would be included for TENA elements.
The side record also contains information about the
selected SDEM (name and version) and the name of the
SML file used to map the side’s architecture/SDEM to
the common representation used by the gateway. The
Filters section is used in circumstances where
gateways are used to provide filtering that is not
supported by the architecture or to create enclaves.
GCL provides an implementation-independent format
for defining filters.

GCL was intended to address Requirement 8. The
human-readable aspect of GCL makes it easier for
LVC developers to review and comment on the
configuration of the gateways prior to the event, as
compared to gateway implementation-specific
configuration files. The use of a common format for
gateway configuration files reduces the time and cost
associated with gateway configuration activities, and
thus facilitates having developers choose the gateways
that best meet application needs rather being restricted
to those gateways (with non-standard configuration file
formats) that they already know how to use. In
addition, GCL files are fully reusable, and thus can
reduce the time and costs associated with future LVC
events that employ the same gateways.

IMPROVED PROCESSES AND TOOLS FOR
GATEWAY SELECTION/CONFIGURATION

To take full advantage of the new gateway products
described in this paper, improvements to the older
processes used to select and configure gateways are also
necessary. The enhanced gateway selection process
illustrated in Figure 3 begins with the gateway
developers, who describe the capabilities that their
product(s) provide in GDL notation. These GDL
descriptions from various vendors are then put under the
stewardship of an appropriate management organization
(addressing Requirement 1). When requirements for new
LVC events are defined, users access this knowledge
base of gateway capabilities and search for the gateways
that best match their requirements. If several gateways
are found that meet the requirements of the LVC event,
some amount of electronic or face-to-face discussion
between users and developers may be necessary to
down-select to the gateway or gateways that best meet
the customer’s needs.

The enhanced gateway configuration process
illustrated in Figure 3 begins with the development of
the required mappings using SML. Note that fewer
mappings will be required due to the use of ANDEM
as the architecture-neutral format that all SDEM
representations will map to, and that reuse
opportunities for SML files used in prior LVC events
may be available. Once the mappings are defined, the
GCL standard content/format is used to produce the
gateway configuration file needed by the selected
gateway(s). Again, reuse opportunities associated with
existing GCL files should be taken advantage to the
greatest degree possible. Finally, the content of the
GCL file is input to the gateway and tested during the
integration of the full LVC environment, to detect any
anomalies before execution.

Although this process does not depend on the
availability of supporting tools, automation will be
critical to achieving defined efficiency goals for
gateway employment in future LVC events. The tools
that support the efficient application of these new
gateway products are shown in Figure 3 at the points in
the process at which they are most relevant. The first
tool used in this process is the GDL Editor. This is a
tool specifically designed to create GDL files. The tool
interface is interview-based, much like modern tax
software packages. The questions that are posed are
based on the content of the GCD. Developers use this
tool to create GDL files that describe the capabilities
that their gateway can provide. Users employ this tool
to define the gateway capability requirements for their

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

GatewayGateway

Searchable
GDL, GML,
GCL Local
Library

Searchable
GDL, GML,
GCL Remote
Repository
Library

NetworkNetwork

Simulation
Component
Simulation
Component

Simulation
Component
Simulation
Component

Simulation
Component
Simulation
Component

NetworkNetwork

Simulation
Component
Simulation
Component

Simulation
Component
Simulation
Component

Simulation
Component
Simulation
Component

For Each

1. Define/Reuse
Mapping using

Gateway Mapping
Language (GML)

Editor

2. Create/modify
Gateway

Configuration using
GCL Editor &

Configuration Tool

Gateway
Configuration
written in
Gateway

Configuration
Language (GCL)

Gateway
Configuration
written in
Gateway

Configuration
Language (GCL)

Mapping Rules

Filtering
Rules

Filtering
Rules

All Files Stored

GML files for all
required mappings
GML files for all

required mappings

GML EditorGML Editor

GCL EditorGCL Editor

GML TranslatorGML Translator

1. Create metadata files
describing gateway products
and configurations using
Gateway Description

Language (GDL)

Searchable metadata files
describing gateway products
using GDL based on Gateway

Capabilities List

2. Search
database via

tool that allows
selection of
gateway

requirements
via high priority
capabilities

3. Best Matches
from Search

‐ Gateway 1:

‐ Gateway 2:

‐ Gateway 3:
etc.

4. Discussion with
Community of

Interest: Gateway
Developers &

Vendors, and other
Gateway Users

Reevaluate

GDL EditorGDL Editor

GDL EditorGDL Editor

Searchable web
(or equivalent)

interface

Matching ToolMatching Tool

Selecting
Gateway

Configuring
Gateway

Selected
Gateway(s)

Searchable
GDL, SML,
GCL Local
Library

Searchable
GDL, SML,
GCL Remote
Repository
Library

1. Define/Reuse
Mapping using
SDEM Mapping
Language (SML)

Editor SML Editor

S

SML Translator

GML files for all
required mappings
SML files for all

required mappings

Figure 3. Improved Processes and Tools for Gateway Selection and Configuration

application. The output of the tool is a file compliant
with the GDL schema.

Once developer-provided GDL files are made
available, a mechanism is required for users to quickly
and easily view what gateway capabilities are available
for reuse. This knowledge base is implemented as a
repository, with the requisite browsing and searching
capabilities. Users can exploit this centralized “virtual
warehouse” to discover the full breadth of options for
supporting gateways. These browsing/searching
capabilities are “tuned” to support GDL, since users
will typically want to search for gateway capabilities
that are embedded in the archived GDL files.

Although users will be free to browse for gateways
directly via the repository, a Matching Tool is provided
that can read a user-defined gateway requirements file in
GDL, compare these requirements against the capabilities
offered by gateway developers (also expressed in GDL),
and return “best matches.” The determination of best
matches depends on an internal algorithm that determines
the closest match of defined requirements to supporting

gateways. The tool produces a set of best gateway
matches for user consideration. The user can either accept
the tool’s recommendation, choose an alternate gateway
(perhaps based on additional relevant factors per
discussions with gateway owners), or modify their
requirements and restart the matching process. This tool
was explicitly designed to address Requirement 5.

The next two tools are the SML Editor and GCL Editor.
The SML Editor is a tool specifically designed to create
SML files. Users are presented with a front-end template
for capturing the required mappings, which the tool
converts into the SML format. The GCL Editor follows
the same concept, with a user-friendly interface to
translate gateway configuration data into GCL format for
input into the selected gateway(s). Note that for both of
these tools, local and remote repository capabilities may
assist users in identifying reuse opportunities for existing
SML and GCL files, which can then be tailored to the
application at hand via the defined editing tools.

The final tool designed to support the gateway
selection/configuration process is the SML Translator.

2011 Paper No. 11022 Page 11 of 13

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

As discussed previously, significant efficiencies can be
gained by basing all required mappings on the ANDEM
architecture-neutral format rather than specifying all
mappings on a point-to-point basis. It is also very
desirable to have the resulting SML files ingested into
the gateway without significant human intervention, as
SML is fully machine-readable. However, if the
mappings defined in the SML files are based on
ANDEM, the gateway is unlikely to know how to
convert the mappings into the architectures used by the
simulations within that particular LVC event. Thus, a
means to convert from the ANDEM-based mappings
(described in SML) into the architecture-specific
mapping data needed by the gateways is required. One
possible means of doing this conversion would be to
have the supporting gateway(s) use ANDEM internally
as the local database format. However, most gateway
developers are not interested in basing their internal
formats on an external product that they do not control,
and which may be less efficient than existing internal
formats. Thus, this tool was designed to translate from
the ANDEM-based mappings in SML to the internal
mapping formats needed by the supporting gateway.
This tool produces mapping file(s) that can be directly
ingested into the gateway. The gateway uses this file to
self-configure its required mappings in preparation for
the LVC event execution.

NEXT STEPS

The JTIEC-sponsored LVCAR-I effort is scheduled to
be completed in the fall of 2012. This phase of the effort
has produced numerous products, such as language
specifications, tools, and supporting processes. During
FY12, much of the focus will be on community
outreach, in order to identify additional user
requirements for gateway products and to obtain
user/developer feedback on existing products (leading to
product updates). Concepts to be discussed include the
possible establishment of an independent Gateway
Testing Laboratory for verifying claims made by
developers about their gateway products, and the
potential of taking some/all of the gateway language
specifications into formal standardization. It is
anticipated that these discussions will identify the need
for follow-on activities, potentially supported by
different sponsors.

SUMMARY

This paper has described efforts to introduce a new
level of systems engineering rigor to the process of
selecting and configuring gateways in support of the

development and employment of multi-architecture
distributed simulation environments. A wide range of
supporting products have been developed to enable the
activities within this evolved view of process,
including new gateway languages, tools, and
benchmarks. These new products are immediately
available to DoD users, and may become more
generally available to other gateway users in the near
future. It is believed that adoption of these products
will streamline gateway selection/configuration
activities, reduce the technical risk associated with the
employment of gateways in the simulation
environment, and generally allow multi-architecture
distributed simulation environments to be constructed
“better, faster, cheaper” in the future.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Gary Allen of JTIEC
for his sponsorship and overall leadership of the LVCAR-
I effort, and to Dr. James Coolahan of JHU/APL for
providing the program management oversight needed to
successfully execute the LVCAR-I Gateways activity.

REFERENCES

 1. Lutz R., Drake D., “Gateway Concepts for Enhanced
LVC Interoperability”, 2011 Spring Simulation
Interoperability Workshop (SIW), 11S-SIW-024,
April 2011.

 2. Live, Virtual, Constructive Architecture Roadmap
(LVCAR) Final Report, Institute for Defense
Analyses, September 2008.

 3. Live-Virtual-Constructive Architecture Roadmap
Implementation, Common Gateways and Bridges
Characterization Report, JHU/APL NSAD-R-
2010-031, May 2010.

 4. Live-Virtual-Constructive Architecture Roadmap
Implementation, Common Gateways and Bridges
Execution Plan, JHU/APL NSAD-R-2010-049,
June 2010.

 5. Live-Virtual-Constructive Architecture Roadmap
Implementation, Common Gateways and Bridges
Task – Gateways Configuration Model, JHU/APL
NSAD-L-2011-083, April 2011.

 6. Live-Virtual-Constructive Architecture Roadmap
Implementation, Common Gateways and Bridges
Task – Gateways Capabilities Description,
JHU/APL NSAD-R-2010-100, November 2010.

 7. Live-Virtual-Constructive Architecture Roadmap
Implementation, Common Gateways and Bridges
Task – Performance Benchmarks, JHU/APL
NSAD-R-2011-0XX, January 2011.

2011 Paper No. 11022 Page 12 of 13

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11022 Page 13 of 13

 8. Lessmann K., Cutts D., O’Connor M., “LVCAR
Enhancements for Selecting Gateways”, 2011
Spring Simulation Interoperability Workshop
(SIW), 11S-SIW-054, April 2011.

 9. O’Connor M., Cutts D., Lessmann K., “LVCAR
Enhancements for Using Gateways”, 2011 Spring
Simulation Interoperability Workshop (SIW),
11S-SIW-025, April 2011.

10. “ANDEM RDF/XML Schema,” Live-Virtual-
Constructive Architecture Framework (LVCAF)
Report, 2010.

	ABSTRACT
	Distribution Statement A: Approved for Public Release; Distribution Unlimited.
	ABOUT THE AUTHORS
	BACKGROUND
	GATEWAY CHALLENGES
	REQUIREMENTS FOR GATEWAY IMPROVEMENTS
	Requirement 1
	Rationale

	Requirement 2
	Rationale

	Requirement 3
	Rationale

	Requirement 4
	Rationale

	Requirement 5
	Rationale

	Requirement 6
	Rationale

	Requirement 7
	Rationale
	Rationale

	SUPPORTING PRODUCTS FOR GATEWAY SELECTION
	Gateway Capabilities Description
	Gateway Performance Benchmarks
	Gateway Description Language

	SUPPORTING PRODUCTS FOR GATEWAY CONFIGURATION
	SDEM Mapping Language
	ANDEM
	Gateway Configuration Language

	IMPROVED PROCESSES AND TOOLS FOR GATEWAY SELECTION/CONFIGURATION
	NEXT STEPS
	SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

