Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Modeling Trainee Affective and Cognitive State Using Low Cost Sensors

Meredith Carroll, Christina Kokini, Roberto Champney Robert Sottilare, Benjamin Goldberg
Design Interactive, Inc., Oviedo, FL U.S. Army Research Laboratory
meredith, christina, roberto@designinteractive.net Human Research and Engineering Directorate
Orlando, FL
Sven Fuchs robert.sottilare,
Fraunhofer FKIE, Wachtberg, Germany benjamin.s.goldberg@us.army.mil

sven.fuchs@fkie.fraunhofer.de

ABSTRACT

Given the limited time available for training and increased emphasis on self-directed learning in the military, it is
essential to develop methods to improve training effectiveness with minimal impact to instructor resources. Training
practitioners have attempted to achieve this through the incorporation of automated systems such as Intelligent
Tutoring Systems to augment instructor time by emulating human tutors. However, these systems have yet to reach
training effectiveness levels that rival those of human tutors. A review of the literature indicates a significant share of
the performance gap between computer-based tutoring and human tutors lies in the ability of the humans to be aware
of and responsive to the learner’s cognitive/affective states. Even so, human tutors have only limited perception of
the trainee’s cognitive/affect states. When instantiated in a training system, perceptive abilities may allow computer-
based tutors to go beyond the abilities of human instructors. It is thus imperative that the trainee model within these
systems incorporate both the trainee’s performance as well as a diagnosis of their affective and cognitive state.

This paper presents a theoretical framework for the creation of a trainee model that incorporates affective and
cognitive state of trainees based on inputs from low-cost, non-intrusive sensors. This framework has theoretical
foundations in learning science and physiological measurement and could drastically increase the diagnostic
capability of current intelligent training systems. Implementation of this framework could transform adaptive
training based on cognitive/affective states from a cost prohibitive endeavor to a goal well within reach. It is
hypothesized that a trainee model based on lower cost sensors will account for a significant portion of the variance
measured by benchmark sensors/systems that prove expensive or invasive.

ABOUT THE AUTHORS

Meredith B. Carroll, PhD is a Senior Research Associate at Design Interactive, Inc. and has been involved in
design, development and evaluation of performance assessment tools and virtual training tools for the Office of
Naval Research, the Air Force Research Laboratory, and the Army’s Research, Development and Engineering
Command. Her work focuses primarily on individual and team performance assessment, including physiological and
behavioral measurement, performance diagnosis and training remediation through feedback and training adaptation.
She has also performed extensive work conducting task analyses, designing virtual training environments and
performance assessment tools and conducting training effectiveness evaluations. Her research has focused on
human/team performance and training in complex systems in aviation and military domains, with focuses on
perceptual skills and decision making. She received her B.S. in Aerospace Engineering from the University of
Virginia, her M.S. in Aviation Science from Florida Institute of Technology and her Ph.D. in Applied Experimental
and Human Factors Psychology from the University of Central Florida.

Christina Kokini is a Research Associate at Design Interactive, and has been involved in design, development and
evaluation of virtual training tools for the Office of Naval Research, and the Army’s Research, Development and
Engineering Command. Her work focuses on training system design, development, and usability, including designing
functionality into products to support user requirements, as well as conducting usability and training effectiveness
evaluations. She holds a Master’s degree from Penn State University in Industrial Engineering with a Human Factors
Option, where her research focused on the direct effect of contextual characteristics on the perceived usability of a

2011 Paper No. 11215 Page 1 of 12



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

product. She also has a Bachelor’s degree from Purdue University in Industrial Engineering. Prior to working at
Design Interactive, she had a variety of experience in human factors, product design, manufacturing, and logistics,
working for companies such as IBM, GE, Caterpillar, and SA Technologies.

Roberto Champney, PhD is a Senior Research Associate at Design Interactive, Inc. and is currently supporting
training system design and evaluation for the office of Naval Research’s Human Performance, Training and
Education (HPT&E) Program. His work focuses on Task Analysis, design and evaluation of Training Environments
and Interactive Systems, Human Performance Assessments and Training Management tools and conduction of
training effectiveness evaluations. His research has focused on human performance and training in military domains,
design and assessment of interactive systems, usability and user experience involving human emotions. Roberto
holds an M.S. in Human Engineering and Ergonomics, and a Ph.D. in Industrial Engineering from the University of
Central Florida.

Sven Fuchs is a researcher in the Human-Systems Engineering group at the Fraunhofer Institute for Communication,
Information Processing and Ergonomics (FKIE) in Wachtberg, Gerrmany, where he currently develops methods and
tools for optimizing communication processes on naval platforms. Prior to joining FKIE, he was a Senior Research
Associate at Design Interactive, Inc. where his research focused on multimodal design science and development of
dynamic adaptation frameworks and adaptation strategies to optimize operator performance, training effectiveness,
and efficiency. He was involved with several SBIR efforts related to Augmented Cognition and adaptive training and
also served as a project lead of interface and usability design efforts for a variety of industry clients. Sven co-
invented three  patent-pending  approaches related to  human-systems interaction in  military
environments. Previously, Sven completed an interdisciplinary degree in Computer Science and Media from
Flensburg University of Applied Science in Germany and was a Fulbright scholar at DePaul University, Chicago,
where he earned an M.S. in Human-Computer. Sven also brings 5 years of experience in the creative industries
where he worked in marketing, multimedia production and advertising.

Robert A. Sottilare, Ph.D. is the Associate Director for Science & Technology within the U.S. Army Research
Laboratory - Human Research & Engineering Directorate (ARL-HRED). Dr. Sottilare has over 25 years of
experience as both a U.S. Army and Navy training & simulation researcher, engineer and program manager. He leads
STTC's international program and participates in training technology panels within both The Technical Cooperation
Program (TTCP) and NATO. He has a patent for a high resolution, head mounted projection display (U.S. Patent
7,525,735) and his recent publications have appeared in the Journal for Defense Modeling and Simulation, the
NATO Human Factors and Medicine Panel's workshop on Human Dimensions in Embedded Virtual Simulation and
the Intelligent Tutoring Systems Conference. Dr. Sottilare is a graduate of the Advanced Program Managers Course
at the Defense Systems Management College at Ft. Belvoir, Virginia and his doctorate in modeling & simulation is
from the University of Central Florida. The focus of his current research program is in machine learning, trainee
modeling and the application of artificial intelligence tools and methods to adaptive training environments.

Benjamin Goldberg is a member of the Learning in Intelligent Tutoring Environments (LITE) Lab at the U.S. Army
Research Laboratory’s (ARL) Simulation and Training Technology Center (STTC) in Orlando, FL. He has been
conducting research in the Modeling and Simulation community for the past 3 years with a focus on adaptive
learning and how to leverage Artificial Intelligence tools and methods for adaptive computer-based instruction. Mr.
Goldberg is a Ph.D. student at the University of Central Florida and holds an M.S. in Modeling & Simulation. Prior
to employment with ARL, he held a Graduate Research Assistant position for two years in the Applied Cognition and
Training in Immersive Virtual Environments (ACTIVE) Lab at the Institute for Simulation and Training. Recent
publications include a proceedings paper in the 2010 International Conference on Applied Human Factors and
Ergonomics and a poster paper presented at the 2010 Spring Simulation Multiconference.

2011 Paper No. 11215 Page 2 of 12



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

Modeling Trainee Affective and Cognitive State Using Low-Cost Sensors

Meredith Carroll, Christina Kokini, Roberto Champney

Design Interactive, Inc., Oviedo, FL

Meredith, Christina, Roberto@designinteractive.net

Sven Fuchs
Fraunhofer FKIE, Wachtberg, Germany

sven.fuchs@fkie.fraunhofer.de

INTRODUCTION

Military organizations within the North Atlantic Treaty
Organization (NATO) are emphasizing the need for
alternative training solutions to current practices that
allow for more self-directed learning and reduce the
strain on instructor and training support resources
(NATO RTO, 2009). Practitioners have attempted to
achieve this through the incorporation of automated
computer-based systems such as Intelligent Tutoring
Systems (ITS) that aim to personalize instruction based
on performance, competency, and the individual needs
of the learner (Self, 1999). In essence, they have
attempted to emulate the strategies utilized by expert
human tutors in the hopes of attaining similar
effectiveness as one-to-one tutoring (e.g., Bloom’s
(1984) “2 Sigma Problem”). ITSs are computer-based
instructional  environments that apply artificial
intelligence (Al) technologies (tools and methods) to
deliver personalized training experiences geared to
maximize instructional effectiveness. The aim of an
ITS is to deliver individualized or tailored feedback
and/or content manipulations (e.g., changes in flow or
challenge level) based on current and predicted trainee
performance, cognition (e.g, readiness to learn) and
affect (e.g, confusion, boredom). Through the
application of automated diagnosis ITSs allow the
instructor to be augmented/replaced with adaptive
interventions based on models of user, expert and
instructor performance. This facilitates the optimal
selection of instructional strategies, and the delivery of
timely, focused feedback and future content
manipulations with the aim of improving knowledge
and skill acquisition.

ITSs have proven to be an effective and reliable tool
for improving learning (e.g., VanLehn et al., 2005;
Stottler, Harmon, and Michalak, 2001; Sherry, Feary,
Polson, and Palmer, 2000) in well-defined domains
(e.g., algebra and physics). However, they have yet to
reliably reach training effectiveness levels that rival
those of human instructors. This, in part, is due to ITSs’
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inability to monitor and assess a trainee’s cognitive and
affective state in real-time. A majority of current
systems apply performance-based models to assess
trainee progression and adapt content based on
deviations between trainee interactions and an expert
model of task performance. It is believed that a
significant portion of the performance gap between
current ITSs and human tutors lies in the capability of
humans to be aware and responsive to learners’
affective  states (c.f., Sarrafzadeh, Alexander,
Dadgostar, Fan and Bigdel, 2006). By perceiving the
influencing factors of cognition and affect on learning,
an intelligent training system can truly adapt to the
changing needs of the learner.

The importance of real-time state assessment is clear,
but instantiating such practices into an ITS is
challenging. At its core, human affective state detection
is a classification problem and requires collection of
data unique to the individual learner (Li and Ji, 2005).
There are a number of approaches for collecting
affective state data, primarily through physiological and
behavioral markers extracted from a source signal. A
constraint, however, is such sensing techniques are
invasive, they produce noisy unlabeled data, and they
are often very costly to implement on a large scale. For
ITS technology to be exercised as a practical training
alternative it is necessary to first explore the
capabilities of low-cost non-intrusive sensors that can
inform the affective state of the trainee. The goal of this
effort is to develop a framework that integrates low-
cost unobtrusive sensors that can feed the trainee model
with accurately classified affective and cognitive states
that will guide feedback and content manipulations.

STATE OF THE SCIENCE

Training performance is not solely the result of skills
and abilities, but also the result of a trainee’s cognitive
and affective learning state. In fact the best tutors
empower the students to work on the learning
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challenges while the tutor interjects to minimize
frustration and confusion (Merrill et. al., 1992). Void of
an understanding of these factors, an intelligent training
system cannot truly adapt to the changing needs of the
learner, ensuring they are not only physically and
cognitively ready to learn, but also emotionally ready
and are maintained in those states throughout learning.

Affective States and Learning

Literature has established that affective states may
influence learning by both enhancing or hindering
learning and retention (Small, Dodge, and Jiang, 1996;
Burleson and Picard, 2004; Woolf et al., 2009).
Affective states or phenomena are composed of
emotions, attitudes, moods, and affective traits
(Davidson, Scherer, and Goldsmith, 2003). This effort
focused on emotions because they are induced by a
particular event, and tend to be the most short-lived and
the most easily influenced of the affective phenomena,
and hence provide the greatest opportunity for
diagnosis and mitigation. Emotions can be defined as
brief episodes of coordinated changes (brain,
autonomic, and behavioral) to facilitate a reaction to a
significant event. The complex relationship between
emotions and learning can be characterized by the
effect emotions have on the learning process (e.g.,
attention, encoding, recall). For example, boredom
leads to lower retention and less ability to apply
information (Small, Dodge and Jiang, 1996) and is
negatively correlated with learning gains (D'Mello,
Graesser, and Taylor, 2007). On the other hand, joy
leads to significant increases in intellectual gains and
performance (Fredrickson, 1998). Impacts on learning
were found for a variety of emotions including anger
and anxiety (Woolf et al., 2009; Burleson and Picard,
2004), frustration (McQuiggan et al., 2007), shame
(Ingleton, 2000) and surprise (Holland and Gallagher,
2006). Additionally, when the trainee lacks motivation,
it hinders creativity and flexibility in problem solving,
as well as leading to withdrawal from learning (Woolf
et al., 2009). A list of affective states that have been
found to impact learning are summarized in Table 1

Table 1. Affective States that Impact Learning

e Anger/ e Joy
Frustration e  Motivation

e Boredom e  Sadness

e Confidence e Shame

e  Confusion e  Surprise

e Fear/ e Wonderment/
Anxiety Awe
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In order to provide a more standardized set of affective
states, non-orthogonal states that are actually different
intensity levels within the same emotional category
were consolidated into one emotion. These
consolidations included both anger and frustration as
well as fear and anxiety (Scherer, 2005).

Cognitive States and Learning

It has also been proposed that cognitive state
monitoring during training may be useful to identify a
trainee’s readiness to learn (Stevens, Galloway and
Berka, 2007). Impact of cognitive state on the learning
process has been demonstrated for a variety of states,
including engagement, cognitive workload, and
drowsiness. For example, high engagement reflects
attentional focus (Dorneich et al., 2004). Alternatively,
there are a number of prominent states that generally
negatively impact training performance since they
reduce attentional resources that facilitate learning and
retention (e.g., drowsiness leads to a drop in attention
(Small, Dodge and Jiang, 1996; Neri, Dinges, and
Rosekind, 1997)). Furthermore, mental workload can
cause delays in information processing or cause users
to ignore or misinterpret incoming information (Ryu
and Myung, 2005). Divided attention is associated with
reductions in memory performance (Craik et al., 1996).
Distraction can result in the acquisition of knowledge
that can be applied less flexibly in new situations
(Foerde et al., 2006). The cognitive states that have
been found to impact learning are summarized in Table
2.

Table 2. Cognitive States that Impact Learning

Attention
Distraction
Drowsiness
Engagement
Flow
Workload

Measurement of States that Impact Learning

It is evident that monitoring and adapting training
based on the learner’s performance is simply not
enough. Intelligent training must take into account
learner’s affective and cognitive state to ensure training
content is adapted accordingly. The first step in
achieving this is the measurement of critical affective
and cognitive states. However, the challenge with this
is that these states are not easily measured objectively.
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Traditionally, affective and cognitive states have been
measured subjectively through self-report
questionnaires such as the Emotional State
Questionnaire (ESQ) and the NASA-TLX (to assess
workload). However, such methods interrupt the flow
of task performance, which can impact emotions
themselves (e.g., frustrate a learner who was immersed
in the training scenario). Furthermore, as cognitive
states and emotions are short-lived and easily
influenced, these assessment methods are time
sensitive, meaning that if too much time passes between
the induction of a particular state and the assessment, a
new state may already be experienced. For this reason,
and because people do not always accurately
understand or remember the emotions they have felt,
these methods are not completely reliable. To
overcome these challenges, there is a need to
incorporate non-invasive measures that can rapidly
access these affective and cognitive states.

Measurement of Affective States

Multiple physiological approaches based on numerous
sensors have been identified over recent years that can
be used to rapidly assess components of affect. For
instance, the current state of electroencephalography
(EEG) suggests it is effective in measuring the general
level of arousal of the brain (Gratton et al., 2008). Eye-
tracking can also be used to assess emotional arousal
via pupilometry (Partala and Surakka, 2003). Feature
extractions from speech and facial expression
classifiers have been utilized to assess valence (positive
or negative nature of the emotion) and arousal
components (Woo Kim, Jin, Fuchs, and Fouad, 2010).
Using a web camera to distinguish facial expressions
has also been used to determine specific emotions such
as anger, disgust, fear, joy, and surprise (Woolf et al.,
2009). Electrodermal sensors can be used to measure
galvanic skin response (GSR), which has been linked to
variations in emotion (Critchley, 2002) and emotional
response (Bradley, Moulder, and Lang, 2005),
indicative of emotions such as anxiety, frustration
(Scheirer et al., 2002), and boredom (Merrifield, 2010).
Cardiovascular measures such as heart rate can be used
to determine levels of arousal (Jang et al., 2002;
Hoover and Muth, 2004), and changes in heart rate
have been found to occur during periods of anger, fear,
(Lisetti and Nasoz, 2004), and boredom (Merrifield,
2010). A combination of heart rate and variability have
further proven useful in discriminating emotional states
(Jang et al., 2002) as well as the level of stress induced
by specific aspects of a test environment, such as
aircraft takeoff and landing (Cacioppo, Berntson,
Sheridan, and McClintock, 2000; Kramer, 1991;
Wilson, 1992). Blood pressure is another
cardiovascular measure that has been used to evaluate
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emotional response (Roberts and Weerts, 1982).
Similarly, respiration rate and volume have been used
in the -evaluation of stress (Wientjes, 1992).
Additionally, changes in posture indicative of boredom
(e.g., people tend to lean back when they are bored) can
be measured using a pressure sensors embedded on the
seat and the back of a chair (Woolf et al., 2009;
D’Mello, Chipman and Graesser, 2007).

Measurement of Cognitive States

Physiological sensors have also been used to measure
cognitive state. Changes in posture, measured using
chair pressure sensors are indicative of levels of
engagement in that people tend to lean forward in their
seats when they are engaged (Mota and Picard, 2003)
or when they are experiencing the state of flow, a state
of highly focused engagement where skill level matches
challenge level of a task (D’Mello, Chipman, and
Graesser, 2007). EEG can be used to assess a person’s
level of attention and engagement, including cognitive
processes such as information-gathering, visual
scanning, and sustained attention and EEG engagement
indices are associated with increasing demands for
visual processing and allocation of attention to both
auditory and haptic stimuli (Berka et al., 2007).
Furthermore, EEG Gamma-Band Response (GBR) is
modulated by attention (Tiitinen et al., 1993). EEG
workload indices have shown increases with working
memory load and with increasing difficulty level of
mental arithmetic and other problem-solving tasks
(Berka et al., 2007). Eye-tracking can also be used to
assess cognitive workload via blink rates (e.g., Scerbo
et al., 2001), pupil amplitude variation (Ahlstrom and
Friedman-Bern, 2006), pupil dilation (Pomplun and
Sunkara, 2003), and saccade peak velocity (Di Stasi et
al., 2010), attention via number of fixations on each
area of interest (Hyona, Radach, and Deubel, 2003),
and drowsiness via blink rate and blink duration (Ryu
and Myung, 2005) and saccade peak velocity (Di Stasi
et al., 2010). Electrodermal sensors measure GSR,
which has been linked to variations in engagement
(Mandryk, 2005). Similarly, cardiovascular measures
such as heart rate can be used to determine levels of
engagement (Jang et al., 2002; Hoover and Muth,
2004).

These findings provide a foundation for identifying
non-intrusive measures that could be used to rapidly
assess trainee affective and cognitive state to inform a
trainee model.



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

THEORETICAL FRAMEWORK

This effort aimed to identify low-cost, non-intrusive
physiological sensors to measure affective and
cognitive state in order to inform the trainee model.
Although an ideal trainee model would account for all
positive and negative affective and cognitive states,
there were several constraints which bound this efforts
problem space. First, in order to achieve the greatest
benefit, those states that have been shown to have the
most significant impact on learning were targeted.
Second, in order for the state to be mitigated resulting
in enhanced learning, it must be measurable, and hence
only states that had validated measures were included.
Third, in order to meet our objective of low-cost, non-
intrusive measurement, the state must be measureable
via sensors that meet these criteria. As such, in
defining the theoretical framework, first the affective
and cognitive states that provided the greatest
opportunity for enhancing learning were identified,
followed by determinations of the types of
physiological data indicative of these states and
availability of low-cost, non-intrusive sensors to collect
this data.

Target Affective States

Five affective states were identified from the eleven
states in Table 1 as providing significant opportunity
for enhancing learning, including 1) anger/frustration,
2) fear/anxiety, 3) boredom, 4) motivation, and 5)
confusion (e.g., Woolf et al., 2009; Burleson and
Picard, 2004; Craig et al., 2004). There was significant
support for inclusion of these five states and additional
supporting data is summarized below.

McQuiggan, Lee, and Lester (2007) found that anxiety
and frustration divert attention from the task at hand,
impeding learning. Furthermore, students who are
anxious or angry do not learn as well because they do
not take in information efficiently (Woolf et al., 2009;
Burleson and Picard, 2004). Alternatively, motivation
is positively correlated with learning. If student
motivation is sustained throughout periods of
disengagement, students can persevere through
frustration to a greater extent (Woolf et al., 2009;
Burleson and Picard, 2004). Similarly, confusion was
found to be significantly positively correlated with
learning gains (r=0.33, p<0.05; Craig et al., 2004). In
fact, Craig et al. (2004) found an effect size on learning
of 0.64, observed when confusion was present versus
absent, suggesting that some level of confusion is
critical for optimal learning. D'Mello, Taylor, and
Graesser (2007) found that when learners are confused,
they are less likely to become disengaged and transition

2011 Paper No. 11215 Page 6 of 12

into boredom, which is significantly negatively
correlated with learning (r=-0.39, p<0.05; Craig et al.,
2004). Boredom leads to lower retention and less
ability to apply information (Small, Dodge, and Jiang,
1996).

However, in determining the types of physiological
data indicative of these states, only three of these states
have shown correlation with data from physiological
sensors. For example, Lisetti and Nasoz (2004) found
that heart rate values for a fearful participant increased,
whereas heart rates decreased when the participant was
angry. Heart rate has also been shown to be correlated
with boredom (Merrifield, 2010). According to Woolf
et al. (2009), facial expressions can be used to detect
fear and anger. Additionally, posture has been used to
detect frustration (Kapoor et al., 2007) and boredom
(D’Mello, Chipman and Graesser, 2007). Given this,
three target affective states were identified from the
eleven states in Table 1 for inclusion in the trainee
model: Anger/Frustration, Fear/Anxiety and Boredom.
These states and their impact on learning are
summarized in Table 3. It should be noted that some
states were excluded due to lack of validated methods
to induce the state, and hence inability to validate
measurement effectiveness.

Table 3. High Priority Affective States

Affective

State Description
Negative, high arousal emotion that
occurs when an event or the actions
Anger/

of self or other prevent one from
achieving a goal (Ortony, Clore, and
Collins, 1988)

Frustration

Negative, high arousal emotion that
Fear/ occurs at the prospect of a negative

Anxiety event with consequences to oneself

(Ortony, Clore, and Collins, 1988)

Negative, low-arousal emotion that
occurs when a situation is construed

Boredom | 'he monotonous or dull (Merrifield,

2010)

Based on correlations with physiological data found in
the literature, it is hypothesized that anger/frustration
can be assessed by five sensors, including a heart rate
monitor and skin conductance sensor (Lisetti and
Nasoz, 2004), pressure mouse and chair pressure
sensors (Kapoor et al., 2007), and web camera (Woolf
et al., 2009. Fear/anxiety is correlated with data from
three sensors: a heart rate monitor (Lisetti and Nasoz,
2004), skin conductance sensor (Schierer et al., 2002),
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and web camera (Woolf et al., 2009). It is hypothesized
that boredom can be assessed by four sensors, including
a heart rate monitor and skin conductance sensor
(Merrifield, 2010), and chair and mouse pressure
sensors (Woolf et al., 2009). Low-cost (i.e., less than
$500), non-intrusive (i.e., do not touch the body or sit
comfortably on the body, and do not impede task
performance) versions of sensors which could assess
these states were identified. Because posture is
correlated with both anger/frustration (Kapoor et al.,
2007) and boredom (D’Mello, Chipman and Graesser,
2007), it was hypothesized that a motion detector that
sits in front of the computer screen and detects when an
object moves closer or further away may also be
correlated with these affective states. Preliminary
testing confirmed this hypothesis. Those sensors that
provided the greatest opportunities for capturing all
target states were selected, including the motion
detector. The selected sensors, the states measurable
by these sensors and approximate cost are summarized
in Table 4.

Table 4. Sensors Used to Measure Affective States

States Sensor Cost
Anger/ Frustration, Motion ~$100
Boredom Detector
Anger/ Frustration,
Fear/ Anxiety, Heart Rate ~$100
Monitor
Boredom
Anger/ Frustration, Chair Pressure
~$200
Boredom Sensors

Target Cognitive States

Three cognitive states were identified from the six
states in Table 2 as providing significant opportunity
for enhancing learning, including 1) attention, 2)
engagement and 3) workload. There was significant
support for inclusion of these three states and additional
supporting data is summarized below. Divided
attention is associated with large reductions in memory
performance and small increases in reaction time
during encoding and larger increases in reaction time
during recall (Craik et al., 1996). Furthermore, lower
retention and less learning result when attention is
diverted from the task at hand (McQuiggan, Lee, and
Lester, 2007; Small, Dodge, and Jiang, 1996).
Disengagement is negatively correlated with learning
(Woolf, Burelson, and Arroyo, 2007) and performance
gains (Johns and Woolf, 2006). High workload has
been found to be detrimental to performance
improvements  (Gonzalez, 2005). Additionally,
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Mykityshyn, Fisk, and Rogers (2002) found that when
older people were taught how to use a blood glucose
meter using either a manual or a video, and then given a
knowledge test immediately after and a retention test 2
weeks later, the manual group performed worse on the
both tests, and reported higher subjective workload
ratings than the video group.

Further, all three of these states have shown correlation
with data from physiological sensors. Changes in
human gamma-frequency oscillations are associated
with changes in attention (Jensen, Kaiser, and Lachaux,
2007; Tiitinen et al., 1993). Attention can also be
directly measured through the number of fixations on
areas of interest (Hyona, Radach, and Deubel, 2003).
Berka et al. (2007) created an EEG engagement index
that reflects processes that involve information-
gathering, visual scanning, and sustained attention and
is associated with increasing demands for visual
processing and allocation of attention to both auditory
and haptic stimuli. There is also evidence that supports
correlation between postures and level of engagement
(Mota and Picard, 2003). Jensen et al. (2002) found
that oscillations in the alpha band increase with
increased mental workload. There is also a strong
correlation between pupil amplitude variation and the
amount of cognitive resources used to perform a task
(Ahlstrom and Friedman-Bern, 2006). Furthermore, in
visual performance tasks, saccade peak velocity varies
with the subject’s state of mental workload (Di Stasi et
al., 2010). Given this, three target cognitive states were
identified from the six states in Table 2 for inclusion in
the trainee model: Attention, Engagement and
Workload. These states are summarized in Table 5.

Table 5. High Priority Cognitive States

Cognitive L
State Description
. Sustained attention, vigilance (Sarter
Attention etal., 2001
Level of cognitive processes related
Engagement | to information gathering and sensory
processing (Berka et al., 2007)
mental workload, level of cognitive
Workload | processes related to central executive
function (Berka et al., 2007)

Attention can be assessed by two sensors, EEG
(Tiitinen et al.,, 1993) and an eye-tracker (Hyona,
Radach, and Deubel, 2003). Engagement can be
assessed by EEG (Berka et al., 2007), and potentially
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chair pressure sensors, based on the correlation
between engagement and posture (Mota and Picard,
2003). Workload can also be assessed by EEG (Berka
et al., 2007) and an eye-tracker (Di Stasi et al., 2010)
Low-cost (i.e., less than $500), non-intrusive (i.e., do
not touch the body or sit comfortably on the body, and
do not impede task performance) versions of sensors
that could assess these states were identified. Those
sensors that provided the greatest opportunities for
capturing all target states were selected. The selected
sensors, the states measurable by these sensors and
approximate cost are summarized in Table 6. The low-
cost eye-tracker is not an off-the-shelf model; the cost
is estimated based on the cost of components such as a
camera and IR lights.

Table 6. Sensors Used to Measure Cognitive States

States Sensor Cost
Encagement Chair Pressure ~$200
gag Sensors
Attention, Engagement, _
Workload EEG $200
Attention, Workload Eye-tracker ~$500

Informing the Trainee Model

Incorporation of these target states into the trainee
model increases the granularity of the model diagnoses,
thereby expanding the opportunities for individualizing
training.  Typically, intelligent training systems are
limited to adaptation based on performance. Such
measures are limited in their ability to discriminate
within the “good” or “bad” performance categories. For
example two trainees may both reach a good decision;
however, the amount of effort it took to reach this
decision or the amount of anxiety in doing so might
differ significantly (Klein, 2008). A trainee model that
incorporates assessment of affective and cognitive
states would allow training to be tailored to these
trainees differently to optimize opportunities for
learning. The goal would be to incorporate adaptation
strategies that aim to keep learners in both cognitive
and affective states that are optimal for learning.
Figure 1 illustrates the target range for affective states
to optimize learning opportunities. It is hypothesized
that learning opportunities are optimized when learners
have positive levels of valence and high to moderate
levels of arousal, such as when excited, delighted,
happy, or calm. Figure 2 illustrates the target range for
cognitive states to optimize learning opportunities. It is
hypothesized that learning opportunities are optimized
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when learners are moderately to highly engaged and
under moderate workload.

Anxious

Target
Affective

State -Valence

Frustrated

Discouraged

Bored )
Tired

Arousal

Figure 1. Target Affective States (modified based
on Barrett and Russell (1999))
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Figure 2. Target Cognitive States

When a learner is operating outside of these target
affective and cognitive ranges, mitigation techniques
should be employed in an attempt to optimize learning
state and ensure learning opportunities are not lost.
Table 7 provides a set of example non-optimal
combinations of performance, and affective and
cognitive states that may require mitigation. Also
included are hypothesized diagnoses for what these
combinations of factors mean for learning state.
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Table 7. Notional Diagnosis Examples

Performance | Anger | Fear | Boredom | Workload | Engagement | Attentive | Diagnosis

Learner is not being
Good Low Low | High Low Low Low challenged

Learner is frustrated with
Good High Low | High Low Low Low ease of training

Learner is annoyed with

the task and disengaged
Poor High Low | Low Low Low Low or distracted

Learner is frustrated with
Poor High Low | Low Low High High the task

Learner is overloaded and

feels overwhelmed by the
Poor High High | Low High High High task

Learner is worried about

task  performance or
Poor Low High | Low High High High disturbed by task content

Learner is distracted from
Poor Low High | Low Low Low Low task

Learner is disengaged
Poor Low Low | High Low Low Low from task

Learner is overloaded by
Poor Low Low | Low High High High task

BENEFITS model. Data to facilitate development and validation

The goal of this research was to enhance capabilities
for self-directed learning. The primary benefits of
improving the perception of computer-based tutors
are: training effectiveness, efficiency, flexibility and
accessibility, and decreased training support costs.
Just as with human tutors, providing better, more
focused information to make instructional decisions
will result in more effective decisions. Improvements
to sensing techniques and machine-based classifiers
to assess trainee state and select instructional
strategies will alleviate unproductive time during
training.

Better sensing and classification techniques will also
allow more complex, ill-defined tasks to be trained
using computer-based one-to-one instruction. This
will allow military training organizations to focus
their instructional resources on collective training
where computer-based tutoring techniques remain
immature (Sottilare, 2010).

FUTURE WORK
Future work on this effort will include the

development and validation of machine learning
classifiers of cognitive state to inform the trainee state
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of the classifier will be collected both with laboratory
participants (e.g., undergraduates) and active duty
military participants (i.e., West Point Cadets).

Other potential future work will include development
of strategies for mitigating trainee negative learning
states. Techniques for successfully mitigating such
learning states have been developed for ITS, but they
must be evaluated with numerous students in a variety
of contexts (Woolf et al., 2009) to ensure validity.
Further, the accuracy of the trainee learning state
model could be improved by including the assessment
of additional cognitive and affective states.

The results of this work will be fed into the Army
Research  Laboratory’s  Generalized Intelligent
Framework for Tutoring (GIFT), which is being
developed to assess computer-based tutoring
technology and improve the authoring of ITS.

CONCLUSION

The next generation of training systems must support
self-directed learning that requires little or no
instructor support. However, for these training
systems to remain effective, it is critical that they are
able to recognize and adapt to trainee cognitive and
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affective state, similarly to the way a human
instructor would. By utilizing low-cost, non-intrusive
physiological sensors to assess affective and cognitive
state and analyzing the data in real-time with machine
learning algorithms, this work has the opportunity to
enhance ITS diagnosis and remediation, leading to
more effective and efficient training systems.
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