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ABSTRACT 

 

Given the limited time available for training and increased emphasis on self-directed learning in the military, it is 

essential to develop methods to improve training effectiveness with minimal impact to instructor resources. Training 

practitioners have attempted to achieve this through the incorporation of automated systems such as Intelligent 

Tutoring Systems to augment instructor time by emulating human tutors.  However, these systems have yet to reach 

training effectiveness levels that rival those of human tutors. A review of the literature indicates a significant share of 

the performance gap between computer-based tutoring and human tutors lies in the ability of the humans to be aware 

of and responsive to the learner’s cognitive/affective states. Even so, human tutors have only limited perception of 

the trainee’s cognitive/affect states.  When instantiated in a training system, perceptive abilities may allow computer-

based tutors to go beyond the abilities of human instructors.  It is thus imperative that the trainee model within these 

systems incorporate both the trainee’s performance as well as a diagnosis of their affective and cognitive state.  

 

This paper presents a theoretical framework for the creation of a trainee model that incorporates affective and 

cognitive state of trainees based on inputs from low-cost, non-intrusive sensors.  This framework has theoretical 

foundations in learning science and physiological measurement and could drastically increase the diagnostic 

capability of current intelligent training systems.  Implementation of this framework could transform adaptive 

training based on cognitive/affective states from a cost prohibitive endeavor to a goal well within reach.  It is 

hypothesized that a trainee model based on lower cost sensors will account for a significant portion of the variance 

measured by benchmark sensors/systems that prove expensive or invasive.   
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INTRODUCTION 

 

Military organizations within the North Atlantic Treaty 

Organization (NATO) are emphasizing the need for 

alternative training solutions to current practices that 

allow for more self-directed learning and reduce the 

strain on instructor and training support resources 

(NATO RTO, 2009). Practitioners have attempted to 

achieve this through the incorporation of automated 

computer-based systems such as Intelligent Tutoring 

Systems (ITS) that aim to personalize instruction based 

on performance, competency, and the individual needs 

of the learner (Self, 1999). In essence, they have 

attempted to emulate the strategies utilized by expert 

human tutors in the hopes of attaining similar 

effectiveness as one-to-one tutoring (e.g., Bloom’s 

(1984) “2 Sigma Problem”). ITSs are computer-based 

instructional environments that apply artificial 

intelligence (AI) technologies (tools and methods) to 

deliver personalized training experiences geared to 

maximize instructional effectiveness. The aim of an 

ITS is to deliver individualized or tailored feedback 

and/or content manipulations (e.g., changes in flow or 

challenge level) based on current and predicted trainee 

performance, cognition (e.g, readiness to learn) and 

affect (e.g, confusion, boredom). Through the 

application of automated diagnosis ITSs allow the 

instructor to be augmented/replaced with adaptive  

interventions based on models of user, expert and 

instructor performance.  This facilitates the optimal 

selection of instructional strategies, and the delivery of 

timely, focused feedback and future content 

manipulations with the aim of improving knowledge 

and skill acquisition.    

 

ITSs have proven to be an effective and reliable tool 

for improving learning (e.g., VanLehn et al., 2005; 

Stottler, Harmon, and Michalak, 2001; Sherry, Feary, 

Polson, and Palmer, 2000) in well-defined domains 

(e.g., algebra and physics). However, they have yet to 

reliably reach training effectiveness levels that rival 

those of human instructors. This, in part, is due to ITSs’ 

inability to monitor and assess a trainee’s cognitive and 

affective state in real-time. A majority of current 

systems apply performance-based models to assess 

trainee progression and adapt content based on 

deviations between trainee interactions and an expert 

model of task performance. It is believed that a 

significant portion of the performance gap between 

current ITSs and human tutors lies in the capability of 

humans to be aware and responsive to learners’ 

affective states (c.f., Sarrafzadeh, Alexander, 

Dadgostar, Fan and Bigdel, 2006). By perceiving the 

influencing factors of cognition and affect on learning, 

an intelligent training system can truly adapt to the 

changing needs of the learner.  

 

The importance of real-time state assessment is clear, 

but instantiating such practices into an ITS is 

challenging. At its core, human affective state detection 

is a classification problem and requires collection of 

data unique to the individual learner (Li and Ji, 2005). 

There are a number of approaches for collecting 

affective state data, primarily through physiological and 

behavioral markers extracted from a source signal. A 

constraint, however, is such sensing techniques are 

invasive, they produce noisy unlabeled data, and they 

are often very costly to implement on a large scale. For 

ITS technology to be exercised as a practical training 

alternative it is necessary to first explore the 

capabilities of low-cost non-intrusive sensors that can 

inform the affective state of the trainee. The goal of this 

effort is to develop a framework that integrates low-

cost unobtrusive sensors that can feed the trainee model 

with accurately classified affective and cognitive states 

that will guide feedback and content manipulations. 

 

 

STATE OF THE SCIENCE 

 

Training performance is not solely the result of skills 

and abilities, but also the result of a trainee’s cognitive 

and affective learning state. In fact the best tutors 

empower the students to work on the learning 
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challenges while the tutor interjects to minimize 

frustration and confusion (Merrill et. al., 1992). Void of 

an understanding of these factors, an intelligent training 

system cannot truly adapt to the changing needs of the 

learner, ensuring they are not only physically and 

cognitively ready to learn, but also emotionally ready 

and are maintained in those states throughout learning.   

 

Affective States and Learning 

 

Literature has established that affective states may 

influence learning by both enhancing or hindering 

learning and retention (Small, Dodge, and Jiang, 1996; 

Burleson and Picard, 2004; Woolf et al., 2009). 

Affective states or phenomena are composed of 

emotions, attitudes, moods, and affective traits 

(Davidson, Scherer, and Goldsmith, 2003).  This effort 

focused on emotions because they are induced by a 

particular event, and tend to be the most short-lived and 

the most easily influenced of the affective phenomena, 

and hence provide the greatest opportunity for 

diagnosis and mitigation. Emotions can be defined as 

brief episodes of coordinated changes (brain, 

autonomic, and behavioral) to facilitate a reaction to a 

significant event. The complex relationship between 

emotions and learning can be characterized by the 

effect emotions have on the learning process (e.g., 

attention, encoding, recall). For example, boredom 

leads to lower retention and less ability to apply 

information (Small, Dodge and Jiang, 1996) and is 

negatively correlated with learning gains (D'Mello, 

Graesser, and Taylor, 2007). On the other hand, joy 

leads to significant increases in intellectual gains and 

performance (Fredrickson, 1998).  Impacts on learning 

were found for a variety of emotions including anger 

and anxiety (Woolf et al., 2009; Burleson and Picard, 

2004), frustration (McQuiggan et al., 2007), shame 

(Ingleton, 2000) and surprise (Holland and Gallagher, 

2006). Additionally, when the trainee lacks motivation, 

it hinders creativity and flexibility in problem solving, 

as well as leading to withdrawal from learning (Woolf 

et al., 2009).   A list of affective states that have been 

found to impact learning are summarized in Table 1  

 

Table 1.  Affective States that Impact Learning 

 

 Anger/ 

              Frustration 

 Boredom 

 Confidence 

 Confusion 

 Fear/ 

              Anxiety 

 

 Joy 

 Motivation 

 Sadness 

 Shame 

 Surprise 

 Wonderment/  

              Awe 

 

In order to provide a more standardized set of affective 

states, non-orthogonal states that are actually different 

intensity levels within the same emotional category 

were consolidated into one emotion.  These 

consolidations included both anger and frustration as 

well as fear and anxiety (Scherer, 2005). 

 

Cognitive States and Learning 

 

It has also been proposed that cognitive state 

monitoring during training may be useful to identify a 

trainee’s readiness to learn (Stevens, Galloway and 

Berka, 2007). Impact of cognitive state on the learning 

process has been demonstrated for a variety of states, 

including engagement, cognitive workload, and 

drowsiness. For example, high engagement reflects 

attentional focus (Dorneich et al., 2004). Alternatively, 

there are a number of prominent states that generally 

negatively impact training performance since they 

reduce attentional resources that facilitate learning and 

retention (e.g.,  drowsiness leads to a drop in attention 

(Small, Dodge and Jiang, 1996; Neri, Dinges, and 

Rosekind, 1997)). Furthermore, mental workload can 

cause delays in information processing or cause users 

to ignore or misinterpret incoming information (Ryu 

and Myung, 2005). Divided attention is associated with 

reductions in memory performance (Craik et al., 1996). 

Distraction can result in the acquisition of knowledge 

that can be applied less flexibly in new situations 

(Foerde et al., 2006). The cognitive states that have 

been found to impact learning are summarized in Table 

2.   

 

Table 2.  Cognitive States that Impact Learning 

 

 Attention 

 Distraction 

 Drowsiness 

 Engagement 

 Flow 

 Workload 

 

 

Measurement of States that Impact Learning 

 

It is evident that monitoring and adapting training 

based on the learner’s performance is simply not 

enough.  Intelligent training must take into account 

learner’s affective and cognitive state to ensure training 

content is adapted accordingly.  The first step in 

achieving this is the measurement of critical affective 

and cognitive states.  However, the challenge with this 

is that these states are not easily measured objectively.  
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Traditionally, affective and cognitive states have been 

measured subjectively through self-report 

questionnaires such as the Emotional State 

Questionnaire (ESQ) and the NASA-TLX (to assess 

workload).  However, such methods interrupt the flow 

of task performance, which can impact emotions 

themselves (e.g., frustrate a learner who was immersed 

in the training scenario). Furthermore, as cognitive 

states and emotions are short-lived and easily 

influenced, these assessment methods are time 

sensitive, meaning that if too much time passes between 

the induction of a particular state and the assessment, a 

new state may already be experienced. For this reason, 

and because people do not always accurately 

understand or remember the emotions they have felt, 

these methods are not completely reliable. To 

overcome these challenges, there is a need to 

incorporate non-invasive measures that can rapidly 

access these affective and cognitive states. 

 

Measurement of Affective States 

Multiple physiological approaches based on numerous 

sensors have been identified over recent years that can 

be used to rapidly assess components of affect. For 

instance, the current state of electroencephalography 

(EEG) suggests it is effective in measuring the general 

level of arousal of the brain (Gratton et al., 2008). Eye-

tracking can also be used to assess emotional arousal 

via pupilometry (Partala and Surakka, 2003).  Feature 

extractions from speech and facial expression 

classifiers have been utilized to assess valence (positive 

or negative nature of the emotion) and arousal 

components (Woo Kim, Jin, Fuchs, and Fouad, 2010). 

Using a web camera to distinguish facial expressions 

has also been used to determine specific emotions such 

as anger, disgust, fear, joy, and surprise (Woolf et al., 

2009). Electrodermal sensors can be used to measure 

galvanic skin response (GSR), which has been linked to 

variations in emotion (Critchley, 2002) and emotional 

response (Bradley, Moulder, and Lang, 2005), 

indicative of emotions such as anxiety, frustration 

(Scheirer et al., 2002), and boredom (Merrifield, 2010). 

Cardiovascular measures such as heart rate can be used 

to determine levels of arousal (Jang et al., 2002; 

Hoover and Muth, 2004), and changes in heart rate 

have been found to occur during periods of anger, fear, 

(Lisetti and Nasoz, 2004), and boredom (Merrifield, 

2010). A combination of heart rate and variability have 

further proven useful in discriminating emotional states 

(Jang et al., 2002) as well as the level of stress induced 

by specific aspects of a test environment, such as 

aircraft takeoff and landing (Cacioppo, Berntson, 

Sheridan, and McClintock, 2000; Kramer, 1991; 

Wilson, 1992). Blood pressure is another 

cardiovascular measure that has been used to evaluate 

emotional response (Roberts and Weerts, 1982). 

Similarly, respiration rate and volume have been used 

in the evaluation of stress (Wientjes, 1992). 

Additionally, changes in posture indicative of boredom 

(e.g., people tend to lean back when they are bored) can 

be measured using a pressure sensors embedded on the 

seat and the back of a chair (Woolf et al., 2009; 

D’Mello, Chipman and Graesser, 2007). 

 

Measurement of Cognitive States 

Physiological sensors have also been used to measure 

cognitive state. Changes in posture, measured using 

chair pressure sensors are indicative of levels of 

engagement in that people tend to lean forward in their 

seats when they are engaged (Mota and Picard, 2003) 

or when they are experiencing the state of flow, a state 

of highly focused engagement where skill level matches 

challenge level of a task (D’Mello, Chipman, and 

Graesser, 2007). EEG can be used to assess a person’s 

level of attention and engagement, including cognitive 

processes such as information-gathering, visual 

scanning, and sustained attention and EEG engagement 

indices are associated with increasing demands for 

visual processing and allocation of attention to both 

auditory and haptic stimuli (Berka et al., 2007). 

Furthermore, EEG Gamma-Band Response (GBR) is 

modulated by attention (Tiitinen et al., 1993). EEG 

workload indices have shown increases with working 

memory load and with increasing difficulty level of 

mental arithmetic and other problem-solving tasks 

(Berka et al., 2007). Eye-tracking can also be used to 

assess cognitive workload via blink rates (e.g., Scerbo 

et al., 2001), pupil amplitude variation (Ahlstrom and 

Friedman-Bern, 2006), pupil dilation (Pomplun and 

Sunkara, 2003), and saccade peak velocity (Di Stasi et 

al., 2010), attention via number of fixations on each 

area of interest (Hyona, Radach, and Deubel, 2003), 

and drowsiness via blink rate and blink duration (Ryu 

and Myung, 2005) and saccade peak velocity (Di Stasi 

et al., 2010). Electrodermal sensors measure GSR, 

which has been linked to variations in engagement 

(Mandryk, 2005). Similarly, cardiovascular measures 

such as heart rate can be used to determine levels of 

engagement (Jang et al., 2002; Hoover and Muth, 

2004). 

 

These findings provide a foundation for identifying 

non-intrusive measures that could be used to rapidly 

assess trainee affective and cognitive state to inform a 

trainee model.   
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THEORETICAL FRAMEWORK 

 

This effort aimed to identify low-cost, non-intrusive 

physiological sensors to measure affective and 

cognitive state in order to inform the trainee model.  

Although an ideal trainee model would account for all 

positive and negative affective and cognitive states, 

there were several constraints which bound this efforts 

problem space.  First, in order to achieve the greatest 

benefit, those states that have been shown to have the 

most significant impact on learning were targeted.  

Second, in order for the state to be mitigated resulting 

in enhanced learning, it must be measurable, and hence 

only states that had validated measures were included.  

Third, in order to meet our objective of low-cost, non-

intrusive measurement, the state must be measureable 

via sensors that meet these criteria.  As such, in 

defining the theoretical framework, first the affective 

and cognitive states that provided the greatest 

opportunity for enhancing learning were identified, 

followed by determinations of the types of 

physiological data indicative of these states and 

availability of low-cost, non-intrusive sensors to collect 

this data. 

 

Target Affective States 

 

Five affective states were identified from the eleven 

states in Table 1 as providing significant opportunity 

for enhancing learning, including 1) anger/frustration, 

2) fear/anxiety, 3) boredom, 4) motivation, and 5) 

confusion (e.g., Woolf et al., 2009; Burleson and 

Picard, 2004; Craig et al., 2004). There was significant 

support for inclusion of these five states and additional 

supporting data is summarized below.   

 

McQuiggan, Lee, and Lester (2007) found that anxiety 

and frustration divert attention from the task at hand, 

impeding learning. Furthermore, students who are 

anxious or angry do not learn as well because they do 

not take in information efficiently (Woolf et al., 2009; 

Burleson and Picard, 2004). Alternatively, motivation 

is positively correlated with learning. If student 

motivation is sustained throughout periods of 

disengagement, students can persevere through 

frustration to a greater extent (Woolf et al., 2009; 

Burleson and Picard, 2004). Similarly, confusion was 

found to be significantly positively correlated with 

learning gains (r=0.33, p<0.05; Craig et al., 2004). In 

fact, Craig et al. (2004) found an effect size on learning 

of 0.64, observed when confusion was present versus 

absent, suggesting that some level of confusion is 

critical for optimal learning. D'Mello, Taylor, and 

Graesser (2007) found that when learners are confused, 

they are less likely to become disengaged and transition 

into boredom, which is significantly negatively 

correlated with learning (r=-0.39, p<0.05; Craig et al., 

2004). Boredom leads to lower retention and less 

ability to apply information (Small, Dodge, and Jiang, 

1996). 

 

However, in determining the types of physiological 

data indicative of these states, only three of these states 

have shown correlation with data from physiological 

sensors. For example, Lisetti and Nasoz (2004) found 

that heart rate values for a fearful participant increased, 

whereas heart rates decreased when the participant was 

angry. Heart rate has also been shown to be correlated 

with boredom (Merrifield, 2010). According to Woolf 

et al. (2009), facial expressions can be used to detect 

fear and anger. Additionally, posture has been used to 

detect frustration (Kapoor et al., 2007) and boredom 

(D’Mello, Chipman and Graesser, 2007). Given this, 

three target affective states were identified from the 

eleven states in Table 1 for inclusion in the trainee 

model: Anger/Frustration, Fear/Anxiety and Boredom.  

These states and their impact on learning are 

summarized in Table 3. It should be noted that some 

states were excluded due to lack of validated methods 

to induce the state, and hence inability to validate 

measurement effectiveness. 

 

Table 3.  High Priority Affective States 

  

Affective 

State 
Description 

Anger/ 

Frustration 

Negative, high arousal emotion that 

occurs when an event or the actions 

of self or other prevent one from 

achieving a goal (Ortony, Clore, and 

Collins, 1988) 

Fear/ 

Anxiety 

Negative, high arousal emotion that 

occurs at the prospect of a negative 

event with consequences to oneself 

(Ortony, Clore, and Collins, 1988) 

Boredom 

Negative, low-arousal emotion that 

occurs when a situation is construed 

to be monotonous or dull (Merrifield, 

2010) 

 

Based on correlations with physiological data found in 

the literature, it is hypothesized that anger/frustration 

can be assessed by five sensors, including a heart rate 

monitor and skin conductance sensor (Lisetti and 

Nasoz, 2004), pressure mouse and chair pressure 

sensors (Kapoor et al., 2007), and web camera (Woolf 

et al., 2009. Fear/anxiety is correlated with data from 

three sensors: a heart rate monitor (Lisetti and Nasoz, 

2004),  skin conductance sensor (Schierer et al., 2002), 
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and web camera (Woolf et al., 2009). It is hypothesized 

that boredom can be assessed by four sensors, including 

a heart rate monitor and skin conductance sensor 

(Merrifield, 2010), and chair and mouse pressure 

sensors (Woolf et al., 2009). Low-cost (i.e., less than 

$500), non-intrusive (i.e., do not touch the body or sit 

comfortably on the body, and do not impede task 

performance) versions of sensors which could assess 

these states were identified. Because posture is 

correlated with both anger/frustration (Kapoor et al., 

2007) and boredom (D’Mello, Chipman and Graesser, 

2007), it was hypothesized that a motion detector that 

sits in front of the computer screen and detects when an 

object moves closer or further away may also be 

correlated with these affective states. Preliminary 

testing confirmed this hypothesis. Those sensors that 

provided the greatest opportunities for capturing all 

target states were selected, including the motion 

detector.  The selected sensors, the states measurable 

by these sensors and approximate cost are summarized 

in Table 4. 

 

Table 4. Sensors Used to Measure Affective States 

 

States Sensor Cost 

Anger/ Frustration, 

Boredom 

Motion 

Detector 
~$100 

Anger/ Frustration, 

Fear/ Anxiety, 

Boredom 

Heart Rate 

Monitor 
~$100 

Anger/ Frustration, 

Boredom 

Chair Pressure 

Sensors 
~$200 

 

 

Target Cognitive States  

 

Three cognitive states were identified from the six 

states in Table 2 as providing significant opportunity 

for enhancing learning, including 1) attention, 2) 

engagement and 3) workload.  There was significant 

support for inclusion of these three states and additional 

supporting data is summarized below.  Divided 

attention is associated with large reductions in memory 

performance and small increases in reaction time 

during encoding and larger increases in reaction time 

during recall (Craik et al., 1996). Furthermore, lower 

retention and less learning result when attention is 

diverted from the task at hand (McQuiggan, Lee, and 

Lester, 2007; Small, Dodge, and Jiang, 1996). 

Disengagement is negatively correlated with learning 

(Woolf, Burelson, and Arroyo, 2007) and performance 

gains (Johns and Woolf, 2006). High workload has 

been found to be detrimental to performance 

improvements (Gonzalez, 2005). Additionally, 

Mykityshyn, Fisk, and Rogers (2002) found that when 

older people were taught how to use a blood glucose 

meter using either a manual or a video, and then given a 

knowledge test immediately after and a retention test 2 

weeks later, the manual group performed worse on the 

both tests, and reported higher subjective workload 

ratings than the video group. 

 

Further, all three of these states have shown correlation 

with data from physiological sensors. Changes in 

human gamma-frequency oscillations are associated 

with changes in attention (Jensen, Kaiser, and Lachaux, 

2007; Tiitinen et al., 1993). Attention can also be 

directly measured through the number of fixations on 

areas of interest (Hyona, Radach, and Deubel, 2003). 

Berka et al. (2007) created an EEG engagement index 

that reflects processes that involve information-

gathering, visual scanning, and sustained attention and 

is associated with increasing demands for visual 

processing and allocation of attention to both auditory 

and haptic stimuli. There is also evidence that supports 

correlation between postures and level of engagement 

(Mota and Picard, 2003). Jensen et al. (2002) found 

that oscillations in the alpha band increase with 

increased mental workload. There is also a strong 

correlation between pupil amplitude variation and the 

amount of cognitive resources used to perform a task 

(Ahlstrom and Friedman-Bern, 2006). Furthermore, in 

visual performance tasks, saccade peak velocity varies 

with the subject’s state of mental workload (Di Stasi et 

al., 2010). Given this, three target cognitive states were 

identified from the six states in Table 2 for inclusion in 

the trainee model: Attention, Engagement and 

Workload.  These states are summarized in Table 5.  

 

Table 5.  High Priority Cognitive States 

 

Cognitive 

State 
Description 

Attention 
Sustained attention, vigilance (Sarter 

et al., 2001 

Engagement 

Level of cognitive processes related 

to information gathering and sensory 

processing (Berka et al., 2007) 

Workload 

mental workload, level of cognitive 

processes related to central executive 

function (Berka et al., 2007) 

 

Attention can be assessed by two sensors, EEG 

(Tiitinen et al., 1993) and an eye-tracker (Hyona, 

Radach, and Deubel, 2003). Engagement can be 

assessed by EEG (Berka et al., 2007), and potentially 
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chair pressure sensors, based on the correlation 

between engagement and posture (Mota and Picard, 

2003). Workload can also be assessed by EEG (Berka 

et al., 2007) and an eye-tracker (Di Stasi et al., 2010) 

Low-cost (i.e., less than $500), non-intrusive (i.e., do 

not touch the body or sit comfortably on the body, and 

do not impede task performance) versions of sensors 

that could assess these states were identified. Those 

sensors that provided the greatest opportunities for 

capturing all target states were selected.  The selected 

sensors, the states measurable by these sensors and 

approximate cost are summarized in Table 6. The low-

cost eye-tracker is not an off-the-shelf model; the cost 

is estimated based on the cost of components such as a 

camera and IR lights. 

 

Table 6. Sensors Used to Measure Cognitive States 

 

States Sensor Cost 

Engagement 
Chair Pressure 

Sensors 
~$200 

Attention, Engagement, 

Workload 
EEG ~$200 

Attention, Workload Eye-tracker ~$500 

 

Informing the Trainee Model 

 

Incorporation of these target states into the trainee 

model increases the granularity of the model diagnoses, 

thereby expanding the opportunities for individualizing 

training.  Typically, intelligent training systems are 

limited to adaptation based on performance.  Such 

measures are limited in their ability to discriminate 

within the “good” or “bad” performance categories. For 

example two trainees may both reach a good decision; 

however, the amount of effort it took to reach this 

decision or the amount of anxiety in doing so might 

differ significantly (Klein, 2008). A trainee model that 

incorporates assessment of affective and cognitive 

states would allow training to be tailored to these 

trainees differently to optimize opportunities for 

learning. The goal would be to incorporate adaptation 

strategies that aim to keep learners in both cognitive 

and affective states that are optimal for learning.    

Figure 1 illustrates the target range for affective states 

to optimize learning opportunities.  It is hypothesized 

that learning opportunities are optimized when learners 

have positive levels of valence  and high to moderate 

levels of arousal, such as when excited, delighted, 

happy, or calm. Figure 2 illustrates the target range for 

cognitive states to optimize learning opportunities.  It is 

hypothesized that learning opportunities are optimized 

when learners are moderately to highly engaged and 

under moderate workload. 

 

 

 
 

Figure 1.  Target Affective States (modified based 

on Barrett and Russell (1999)) 

 

 

 
 

  Figure 2.  Target Cognitive States 

 

 

 

When a learner is operating outside of these target 

affective and cognitive ranges, mitigation techniques 

should be employed in an attempt to optimize learning 

state and ensure learning opportunities are not lost.  

Table 7 provides a set of example non-optimal 

combinations of performance, and affective and 

cognitive states that may require mitigation.  Also 

included are hypothesized diagnoses for what these 

combinations of factors mean for learning state. 
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Table 7.  Notional Diagnosis Examples 

 

Performance Anger Fear Boredom Workload Engagement Attentive Diagnosis 

Good Low Low High Low Low Low 

Learner is not being 

challenged 

Good High Low High Low Low Low 

Learner is frustrated with 

ease of training 

Poor High Low Low Low Low Low 

Learner is annoyed with 

the task and disengaged 

or distracted 

Poor High Low Low Low High High 

Learner is frustrated with 

the task 

Poor High High Low High High High 

Learner is overloaded and 

feels overwhelmed by the 

task 

Poor Low High Low High High High 

Learner is worried about 

task performance or 

disturbed by task content 

Poor Low High Low Low Low Low 

Learner is distracted from 

task 

Poor Low  Low High Low Low Low 

Learner is disengaged 

from task 

Poor Low Low Low High High High 

Learner is overloaded by 

task 

 

BENEFITS 

 

The goal of this research was to enhance capabilities 

for self-directed learning.  The primary benefits of 

improving the perception of computer-based tutors 

are: training effectiveness, efficiency, flexibility and 

accessibility, and decreased training support costs.  

Just as with human tutors, providing better, more 

focused information to make instructional decisions 

will result in more effective decisions.  Improvements 

to sensing techniques and machine-based classifiers 

to assess trainee state and select instructional 

strategies will alleviate unproductive time during 

training.      

 

Better sensing and classification techniques will also 

allow more complex, ill-defined tasks to be trained 

using computer-based one-to-one instruction.  This 

will allow military training organizations to focus 

their instructional resources on collective training  

where computer-based tutoring techniques remain 

immature (Sottilare, 2010). 

 

 

FUTURE WORK 

 

Future work on this effort will include the 

development and validation of machine learning 

classifiers of cognitive state to inform the trainee state 

model.  Data to facilitate development and validation 

of the classifier will be collected both with laboratory 

participants (e.g., undergraduates) and active duty 

military participants (i.e., West Point Cadets).   

 

Other potential future work will include development 

of strategies for mitigating trainee negative learning 

states.  Techniques for successfully mitigating such 

learning states have been developed for ITS, but they 

must be evaluated with numerous students in a variety 

of contexts (Woolf et al., 2009) to ensure validity.  

Further, the accuracy of the trainee learning state 

model could be improved by including the assessment 

of additional cognitive and affective states.  

 

The results of this work will be fed into the Army 

Research Laboratory’s Generalized Intelligent 

Framework for Tutoring (GIFT), which is being 

developed to assess computer-based tutoring 

technology and improve the authoring of ITS. 

 

 

CONCLUSION 

 

The next generation of training systems must support 

self-directed learning that requires little or no 

instructor support. However, for these training 

systems to remain effective, it is critical that they are 

able to recognize and adapt to trainee cognitive and 
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affective state, similarly to the way a human 

instructor would. By utilizing low-cost, non-intrusive 

physiological sensors to assess affective and cognitive 

state and analyzing the data in real-time with machine 

learning algorithms, this work has the opportunity to 

enhance ITS diagnosis and remediation, leading to 

more effective and efficient training systems. 
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