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ABSTRACT 
 
In order to achieve an increasingly dynamic and nuanced commander’s intent, warfighters must understand when 
and where to apply their skills most effectively. Current training methods, though very effective at producing skilled 
warfighters, focus primarily on lower level skills and outcome-based performance. However, there is a need to 
assess the warfighter at the level of intent and how the warfighter factors that into their process of skill selection and 
skill execution. Cognitive models appear as a promising solution to understanding warfighter processes and intent. 
Yet, traditional cognitive models designed to replicate human cognitive processes are cumbersome to develop and 
maintain, requiring large amounts of data.  
 
An innovative capability was designed to address these challenges by leveraging advances in training technology 
that increase data availability to  capture warfighter actions and behaviors during training while applying recent 
research findings focused on understanding intent from actions (Baker, Saxe & Tenenbaum 2007). This capability 
integrates a modeling method to infer intent from actions, by employing Markov Decision Processes and Bayesian 
inverse planning.  
 
This paper will describe initial testing and evaluation of this technology with novice remotely-piloted aircraft 
operators and show the model’s ability to infer intent and predict operator actions with a satisfying level of 
reliability. Initially implemented in a basic research setting, this modeling method is currently being transitioned to 
simulation and training environments with gradually increasing level of fidelity, beginning with an operationally-
relevant, game-based training environment. This paper will describe the transition plan and discuss how this 
modeling approach constitutes an example of a new generation of practical, lightweight, and extremely useful 
cognitive models. 
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INTRODUCTION 

 
In order to achieve an increasingly dynamic and 
nuanced commander’s intent, warfighters must 
understand when and where to apply their skills most 
effectively. Consequently, a need to understand how 
the warfighter factors intent into their process of skill 
selection and skill execution has emerged. While 
cognitive models are a promising solution to assess the 
warfighter at the level of intent, they are traditionally 
designed to replicate human cognitive processes, are 
cumbersome to develop and maintain, and require 
large amounts of data.  
 
To address these limiting factors, we have designed an 
innovative capability: the Mixed Initiative Machine for 
Instructed Computing, a modeling method to infer 
intent from actions, by employing Markov Decision 
Processes and Bayesian inverse planning.  
 
This paper will describe initial testing and evaluation 
of this technology with novice remotely-piloted aircraft 
operators and show the model’s ability to infer trainee 
intent and predict trainee actions. Initially implemented 
in a basic research setting, this modeling method is 
currently being transitioned to simulation environments 
with gradually increasing level of fidelity, beginning 
with an operationally-relevant, game-based training 
environment. This paper will describe the results of 
this transition and discuss how  this modeling approach 
constitutes an example of a new generation of 
practical, lightweight, and useful cognitive models. 
 
 

BACKGROUND 
 
Current training methods, though very effective at 
producing skilled warfighters, focus primarily on lower 
level skills and outcome-based performance. However, 
considering the crucial need to satisfy commander’s 
intent, assessing how the warfighter translates intent 
into action has become a necessity: How do 
warfighters process intent? What priorities or goals 

constitute high-order cognitive constraints that drive 
skill selection and execution? Cognitive models are a 
promising solution to understanding warfighter 
processes and intent. Traditional cognitive models such 
as Soar (Laird et al., 1987) or ACT-R (Anderson and 
Lebiere, 1998) have typically been constructed to 
reproduce in details how human cognitive processes 
operate: these architectures generally focus on 
modeling fine-grained human behavior and decision-
making and include low-level characteristics of human 
cognitive processes. Consequently, they are fastidious 
to apply and maintain, and require large amounts of 
data to be useful. 
 
 

MODEL DEVELOPMENT 
 
In order to enable the assessment of warfighter intent 
without entailing cumbersome model development, we 
took a radically different approach and developed a 
low-cost, high-impact cognitive model of intent that 
leverages a framework of Bayesian inference for 
understanding intent from actions (Baker, Saxe & 
Tenenbaum 2009) as well as advances in training 
technology that make it feasible to capture warfighter 
actions and behaviors during training. In contrast with 
existing cognitive architectures, we seek to model 
human high-level goals and priorities by making 
inferences from observed data. In turn, using the 
model's inferences, rather than predict the detailed 
time-course of cognitive processing, our aim is to 
accurately predict the content of future human behavior 
(e.g., whether the operator will choose one possible 
action versus another). 
 
Domain 
 
In order to scope the development of the cognitive 
model, we focused on the domain of multiple-remotely 
piloted aircrafts (RPAs) mission planning and 
execution. We developed a use-case to illustrate how 
this modeling method will be used to support a mission 
planner as they are tasked with the creation of an air 
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tasking order (ATO) for four RPAs in an intelligence, 
surveillance and recognition (ISR) mission. Using a 
resource allocation planning interface (Figure 1), the 
operator develops a plan that specifies what RPA goes 
to what target, in what order, at what speed, and with 
what purpose. The operator is provided with rules of 
engagement (ROEs) and instructions reflective of the 
commander’s intent, i.e., a set of constraints and 
priorities (such as “target X requires a covert 
approach” or “avoid weather as much as possible”), as 
well as objectives to maximize or minimize (such as 
“maximize the number of targets covered” or 
“minimize fuel consumption”). 
 

 
 

Figure 1. Multi-RPA Mission Planning Interface 
 

Model Structure 
 
At the core of the system is a model capable of 
inferring an operator’s mission planning priorities. 
Planning priorities refer to those outcomes that 
operators try to rank and optimize over, during the 
mission planning process. These include, for example, 
“assign all targets to at least one RPA” (coverage 
priority) or “avoid weather zones” (weather avoidance 
priority). We hypothesize these priorities can be 
inferred from the observable actions performed by an 
operator during mission planning: the model seeks to 
capitalize on regularities in planning actions to predict 
an operator’s likely priorities and future actions. 
 
The machine learning component of the model 
specifies the causal relation between planning priorities 
and planning actions as a Markov Decision Process 
based on rational probabilistic planning. Bayesian 
inference is used to invert the causal relation between 
priorities and actions, using observed action sequences 
to infer the most probable priorities that led to these 
actions (Baker et al., 2009). 

The principal properties of the Bayesian inverse 
planning framework are: 
 
• Operators can be effectively modeled as 

approximately rational planners. In attempting to 
capture the priorities and behaviors of agents, we 
assume they will choose the actions that most 
efficiently lead them to the accomplishment of 
their goals while maintaining their priorities. 

 
• Inverse planning can be accomplished by 

integrating bottom-up information from observed 
data and top-down constraints from a hypothesis 
space of possible goals. This approach allows 
inference of an agent’s latent goals and 
preferences, as well as prediction of the agent’s 
future actions. 

 
Goal-based planning as a Markov Decision Process 
MDPs are a machine learning framework for sequential 
decision-making under uncertainty (Puterman, 2005). 
Given an environment and a goal, a trained MDP 
model specifies a course of action from any state of the 
world that maximizes the rewards to a participant. 
 
By employing an MDP to model an operator's planning 
behavior, we assume they act rationally in making 
planning decisions, choosing actions likely to bring 
them closer to achieving their goal. 
 
A Markov Decision Process comprises a state variable, 
a model of the environment, and a set of rewards or 
costs. The state variable includes information about the 
operator’s state and the configuration of the 
environment. The environment specifies what actions 
the operator can perform, and a causal model of how 
these actions change his state and the environment. 
Actions are associated with a reward or cost which 
may be received upon performing an action or for 
performing an action and transitioning to the next state 
(Puterman, 2005). 
 
In the MDP formulation, actions are chosen 
probabilistically. This allows the model to account for 
noise and variation in how operators create plans given 
the same scenarios. The MDP maintains a probability 
distribution over actions P(Actions | Goal, 
Environment). 
 
Bayesian inverse planning 
In an MDP-based goal inference model (Figure 2), the 
inferences that can be made about operators’ goals 
during planning depend on the structure of the goal 
hypothesis space and the prior probabilities of goals 
assigned within the model. In the current 
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implementation of the model, we make the simplifying 
assumption operators have a single optimal plan state, 
or goal, which they attempt to achieve throughout each 
mission scenario. A priority is associated with a 
number of goal states, the only requirement being that 
a goal state must carry out at least one priority (e.g., 
“avoiding weather zones”). Thus a single goal state 
may involve carrying out a single priority or multiple 
priorities simultaneously. 
 

 
 

Figure 2. The hypothesized causal structure of goal- 
and priority-based planning. Shaded nodes 
represent observed variables; unshaded nodes are 
latent variables whose values must be inferred. 
 
The model includes only one parameter, β, which 
controls the level of determinism with respect to 
optimal action selection that the MDP model is able to 
fit. High values for β will fit participants whose actions 
follow the optimal sequence of actions to their goal, 
while low values for β will better fit participants who 
deviate from this sequence. In future work, we plan to 
implement more complex models in which goals may 
change throughout the course of planning. 
 
The technical details of the implementation of the 
model are described elsewhere (Riordan et al., 2011). 
 
Model Population and Training 
 
In order to populate the model with appropriate 
features (namely, the priorities, goals and constraints to 
look for) and, subsequently, to train the model on a 
body of relevant data, we conducted a controlled, 
human-in-the-loop experimentation where participants 
used the planning interface to complete 18 scenarios. 
Planning actions, in the form of XML log files, were 
collected automatically and a cognitive walkthrough 

was performed after each scenario to elicit from 
participants what priorities, goals, and constraints they 
employed while creating the mission plans. 
 
Method 
Forty-two undergraduate and graduate students, aged 
18-69 years (average 30 years ± 12.5), participated in 
the experiment. Six had prior military experience (from 
ROTC student to Commissioned Officer), seven had 
prior aviation background (from pilot licenses to flying 
courses), eleven were familiar with the RPA domain, 
five had mission planning experience (in the military 
or civilian world), and eight had participated in other 
controlled experiments featuring RPAs. All were 
compensated $10/hour. 
 
The experiment duration averaged three hours and 
included three phases: training, data-gathering, and 
debriefing. First, participants underwent a 45-minute 
training session, which included a series of PowerPoint 
training modules and the completion of two practice 
scenarios, under experimenter supervision. Then, 
participants played multiple simulation scenarios in 
which they were tasked with creating a mission plan 
for two RPAs in a hostile environment based on a set 
of rules of engagement (ROE). Participants were 
responsible for assigning RPAs to targets, setting 
parameters and constructing flight routes. Finally, a 
cognitive walkthrough protocol was implemented. 
This experiment included two independent variables: 
planning time (that is, how long the participant was 
allowed to plan the RPAs’ missions) and scenario 
complexity. There were two levels of planning time: 
short (3 minutes) and long (6 minutes). There were 
three levels of scenario complexity: low (10 targets and 
few ROE constraints), medium (20 targets and few 
ROE constraints), and high (20 targets and many ROE 
constraints). ROE constraints typically included the 
number of weather zones to avoid, the maximum total 
flight time, fuel allowance, and the number and 
duration of actions to perform at targets. A repeated-
measures design was implemented, in which all 
participants saw three replicates of the six conditions 
(two planning times by three scenario complexities), 
yielding a total of 18 trials per participant. Blocking of 
the randomized replications was counterbalanced 
across participants. 
 
During each trial, the simulation testbed recorded 
interface interactions and plan state in XML log files. 
This data was pushed to a database for subsequent use 
by the model.  
 
Additionally, at the conclusion of the 18 trials, a 
cognitive walkthrough (CWT) protocol was performed 
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and included the following elements: (1) a review of a 
video of the last scenario was played while participants 
commented on their decision-making processes, their 
strategies and the objectives, constraints and priorities 
they tried to satisfy; (2) a series of questions was 
administered to reveal how their decision-making 
process and strategies changed under various scenario 
conditions, and to specify what their main priorities 
were, what trade-offs they considered, and what 
constraints were of higher importance to them. 
 
Results 
Seven hundred and fifty-six XML log files (18 
scenarios by 42 participants) were recorded during this 
experiment to constitute the initial training data for the 
machine learner. 
 
Among other questions, the CWT protocol asked 
participants to mention and rank-order what they 
considered to be their planning priorities during the 
various scenarios they played. Fourteen subjective 
planning priorities were described by participants: 
“Avoid weather zones,” “Use closest targets,” 
“Minimize threat level,” “Monitor planning time,” 
“Monitor mission time,” “Use adequate covertness,” 
“Satisfy ROE objectives,” “Address biggest threat,” 
“Optimize speed,” “Optimize vehicle use,” “Minimize 
distance traveled,” “Balance vehicle load,” “Create 
complete plan,” and “Minimize fuel usage.”  
 

 
 

Figure 3. Count and Score for each priority 
mentioned. 

 
Figure 3 displays the count of participants who 
mentioned each priority, and each priority’s total score 
based on the rankings provided by participants. The 
scoring metric is a weighted function where the score 
is increased by 5, 4, 3, 2 or 1 point(s) when the priority 
is ranked respectively 1st, 2nd, 3rd, 4th or 5th. It appears 
that “Use closest targets” was, by far, the prevalent 
priority, measured by count or score. “Use adequate 
covertness” and “Avoid weather areas” came in second 
and third position respectively. This trend existed 
regardless of the participants’ backgrounds. Table 1 

describes the trade-offs associated with these three top 
planning priorities. 
 

Table 1. Selected planning priorities. 
 

Priority Description & Tradeoffs 

Use closest 
targets 

The operator may assign UASs to 
the targets closest to them. Doing so 
may involve tradeoffs with 
covertness or entry into dangerous 
weather zones. 

Use adequate 
covertness 

The covertness capability is not 
shared by all UASs; hence the 
operator must consider the impact 
of routing a covert UAS to one 
target on its availability to cover 
other targets. 

Avoid 

weather 
areas 

Going around weather zones might 
take more time than going through 
them. The operator must consider 
this trade-off in the route planning. 

 
These three priorities were selected to be represented 
in the model. In the model’s state variable, we encoded 
how well participants maintained these priorities with 
each action they took, along with other features 
describing the configuration of the environment. 
Participants’ goals were represented as states in the 
model in which the mission was completed and one or 
more of the three priorities was maintained (e.g., no 
weather zones were crossed in any plan). We assumed 
each action taken by a participant was an effort to 
maintain a priority and achieve a goal state. Based on 
how the participant’s actions change the state of the 
environment, the model classifies the action into one of 
the following predefined actions: 

 
 New plan: avoid weather. A UAS is assigned to 

an available target such that the route avoids 
weather zones. 
 

 New plan: proximity. A UAS is assigned to an 
available target that is closer to it than to the other 
UAS. 
 

 New plan: maintain covertness. A UAS is 
assigned to an available target such that the UAS 
chosen meets the covertness requirements 
specified in the scenario. 
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 Plan modification: avoid weather. The operator 
alters an existing plan so the UAS's trajectory 
avoids weather zones. 

 
 Plan modification: proximity. The operator 

implements modifications based on proximity. 
These modifications include both the objective 
(i.e., change the target to a different, unassigned 
target to minimize distance travelled) and the 
assigned UAS (i.e., assign a different UAS to fly 
to the target to minimize distance travelled). 

 
 Plan modification: maintain covertness. The 

operator changes the target of an existing plan so a 
UAS is assigned to a target based on the 
covertness requirements specified in the scenario. 

 
 

MODEL EVALUATION 
 
Following the first experiment that led to the selection 
of model feature and to the training of the model’s 
algorithms, we conducted two additional experiments, 
replicating exactly the first one, to evaluate the ability 
of the model to infer operator priorities and to predict 
operator actions. 
 
Priority Inference 
 
Method 
To assess the model’s performance at priority 
inference, we repeated the first experiment with fifteen 
undergraduate and graduate students, aged 18-43 years 
(average 26 years ± 7.5). While the experimental 
procedure was the same, at the end of each scenario, 
we asked participants to indicate their subjective 
assessment of what planning priorities they used in the 
scenario they just completed: each priority was rated 
for importance and time spent attending to it, and their 
order of presentation was fully randomized to avoid 
response bias. 
 
Table 2. Correlation between operator ratings and 

model predictions for several values of β 
 

β 0.5 1 1.5 2 2.5 

r 0.315 0.283 0.264 0.256 0.248 
 

Results 
Using the algorithms trained using data from the first 
experiment, the model was applied to data from this 
second experiment, and we compared the model 
outputs (i.e., operator priorities inferred by the model’s 
algorithms) to the operators’ subjective assessments 

(i.e., operator priorities as stated by the operator). 
Several values of the β parameter were tested. Table 2 
presents the correlation values obtained for five values 
of β. β = 0.5 led to the highest correlation r = 0.315. 
 
Subsequently, we broke down the results by planning 
priorities, focusing on the three priorities featured in 
the model. The correlation results are presented in 
Table 3: the “covertness” priority led to the highest 
correlation of r = 0.562. 

 
Table 3. Correlation r between operator ratings and 

model predictions for each planning priority 
 

Priority Covertness Proximity 
Avoiding 
weather 

r 0.562 0.365 0.359 
 
The results of this second experiment show the model 
can infer operators’ priorities at a reasonable level of 
reliability. This work extends the results obtained by 
Baker et al. (2009), and shows Bayesian inverse 
planning can both account for operator goals and the 
preferences that guide the selection of these goals. 
 
Action Prediction 
 
Method 
To assess the model’s performance at predicting 
operator actions, we repeated the first experiment with 
eight undergraduate and graduate students, aged 18-54 
years (average 27 years ± 11.7). While the 
experimental procedure was the same, after the 
experiment, two human coders observed all videos of 
all scenarios for all participants and manually coded 
each of their actions in a database by assigning a 
probability that each participant action fell into each of 
the six action types represented in the model. For this 
experiment, the low-level actions with the planning 
interface were grouped together into sequences that 
corresponded to the high-level priorities encoded in the 
model. Inter-coder reliability using Cohen’s Kappa was 
0.737. 
 

Table 4. Correlation r between coder ratings and 
model predictions for several values of β 

 
β 0.5 1 1.5 2 2.5 

r 0.551 0.572 0.577 0.576 0.570 
 
Results 
The trained model was applied to the data of 
Experiment 3 and the prediction output was compared 
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to the coders’ assignment of probability distributions to 
actions. This evaluation was performed for a range of 
values of the β parameter. Table 4 lists the resulting 
correlation values obtained for five values of β. The 
highest correlation (r =0.577) was obtained for β = 1.5. 
 
The results of this third experiment show the model 
can reasonably predict an operator’s action during 
planning. Future enhancements to the model will seek 
to improve these scores. 
 
 

TRANSITION TO A SIMULATION 
ENVIRONMENT 

 
Motivation 
 
The modeling method described in the previous section 
helps embed into the Remote Piloted Aircraft (RPA) 
novel models of tactical decision making and control 
from well-selected exemplars and interactions with 
human operators. This method is designed to benefit 
RPA by enabling them to reach their full autonomous 
potential. More specifically, this method will enable 
the following: (1a) expert human operators to teach the 
RPA to overcome problems normally caused by lack of 
context in automated control systems, (b) RPA to adapt 
more easily to dynamic and uncertain environments 
(through use of model restructuring software), and (c) 
learning in real-time in test and simulation 
environments, which will enhance and accelerate 
knowledge transfer of tactical maneuvers and new 
autonomous behaviors. 

Transition Environment 
 
The Gaming Research Integration for Learning 
Laboratory (GRILL) is one of several Air Force 
Research Laboratory (AFRL) sponsored research 
programs to evaluate gaming for training. More 
specifically, the GRILL is interested in answering 
questions such as how effective is game-based training, 
what aspects of gaming can be applied to the training 
realm, and what are the implications for games as part 
of a family of complimentary trainers in a Live, 
Virtual, and Constructive (LVC) architecture. The 
GRILL contains multiple types of training technologies 
that are integrated in a distributed network 
infrastructure. 
 
The current GRILL environment as configured for the 
model integration is illustrated in Figure 4. The GRILL 
is composed of the following modules: scenario and 
environment management, training platforms, and a 
distributed network infrastructure. The training 
platforms are the center of the GRILL environment. 
There are three training platforms that are of interest to 
this integration. Each of the platforms is equipped with 
software that allows the simulation (based on the 
trainee actions) to publish relevant information over 
the Distributed Interactive Simulation (DIS) protocol. 
In addition to publishing data over DIS, each trainee 
platform is equipped with an environment manager. 
The environment manager provides instructions and 
information regarding the scenario to the players 
during the training. The first platform is the Joint 
Terminal Attack Controller (JTAC), which is for a 

Figure 4. Integration Environment 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011 

2011 Paper No. 11211 Page 9 of 9 

forward observer on the ground. The JTAC training 
platform is developed as a Virtual Battle Space 2 
(VBS2) ground simulation. In addition to the JTAC, 
there are also F-16 X-Plane platforms that are the 
supporting entities in the environment. The F-16 pilots 
use a modified version of X-Plane. The integration we 
focus on concerns RPA simulations. Currently, RPA 
training platforms are found in two configurations. The 
first RPA simulation is developed by L-3 Link and 
simulation training using their proprietary Blue Box 
HD system. The second RPA simulation is a modified 
predator model using X-Plane. The X-Plane 
environments use a custom plug-in created by AFRL to 
publish data over the DIS protocol. Each of these 
training platforms run on their own PC’s which are 
networked through a gigabit switch. Each simulation 
platform is using a common set of terrain and model 
databases correlated with real-world data. These 
programs are tied together through DIS and through 
the environment manager software. The environment 
manager sends instructions and interacts with the 
players in a controlled manner. This software was 
originally created by AFRL. In the future, the plan is to 
replace the custom controller with a new environment 
manager provided by a third party vendor. 
 
 

DISCUSSION 
 
The integration of the model in the GRILL 
environment is continuing throughout the summer of 
2011. At this point, an integration plan and a training 
scenario have been developed. The work of integrating 
the technology with the data sources in the GRILL 
laboratory is ongoing. By the end of the summer, the 
hope is to demonstrate how a model that is able to infer 
operator intent and goals can lead to more responsive 
adaptive training environment including: (1) better and 
targeted adversarial behaviors, (2) more directed 
decision support that enables effective decision making 
by the trainee, and (3) real-time scenario modifications 
to enrich the training environment.  We believe this 
modeling approach constitutes an example of a new 
generation of practical, lightweight, and useful 
cognitive model that can be used to improve training 
effectiveness.  
 
 

CONCLUSION 
 
We described the development and evaluation of a new 
modeling method in the multi-RPA mission planning 
domain and showed how the Bayesian inverse 
planning framework can be used to infer intent from 
human user actions.  

 
We described our current efforts to transition this 
technology to the training domain by integrating the 
model into AFRL’s GRIL laboratory. 
 
This integration, scheduled to be completed by the fall 
of 2011, will enable improved training effectiveness in 
simulated training environments. 
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