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ABSTRACT

In order to achieve an increasingly dynamic and nuanced commander’s intent, warfighters must understand when
and where to apply their skills most effectively. Current training methods, though very effective at producing skilled
warfighters, focus primarily on lower level skills and outcome-based performance. However, there is a need to
assess the warfighter at the level of intent and how the warfighter factors that into their process of skill selection and
skill execution. Cognitive models appear as a promising solution to understanding warfighter processes and intent.
Yet, traditional cognitive models designed to replicate human cognitive processes are cumbersome to develop and
maintain, requiring large amounts of data.

An innovative capability was designed to address these challenges by leveraging advances in training technology
that increase data availability to capture warfighter actions and behaviors during training while applying recent
research findings focused on understanding intent from actions (Baker, Saxe & Tenenbaum 2007). This capability
integrates a modeling method to infer intent from actions, by employing Markov Decision Processes and Bayesian
inverse planning.

This paper will describe initial testing and evaluation of this technology with novice remotely-piloted aircraft
operators and show the model’s ability to infer intent and predict operator actions with a satisfying level of
reliability. Initially implemented in a basic research setting, this modeling method is currently being transitioned to
simulation and training environments with gradually increasing level of fidelity, beginning with an operationally-
relevant, game-based training environment. This paper will describe the transition plan and discuss how this
modeling approach constitutes an example of a new generation of practical, lightweight, and extremely useful
cognitive models.
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INTRODUCTION

In order to achieve an increasingly dynamic and
nuanced commander’s intent, warfighters must
understand when and where to apply their skills most
effectively. Consequently, a need to understand how
the warfighter factors intent into their process of skill
selection and skill execution has emerged. While
cognitive models are a promising solution to assess the
warfighter at the level of intent, they are traditionally
designed to replicate human cognitive processes, are
cumbersome to develop and maintain, and require
large amounts of data.

To address these limiting factors, we have designed an
innovative capability: the Mixed Initiative Machine for
Instructed Computing, a modeling method to infer
intent from actions, by employing Markov Decision
Processes and Bayesian inverse planning.

This paper will describe initial testing and evaluation
of this technology with novice remotely-piloted aircraft
operators and show the model’s ability to infer trainee
intent and predict trainee actions. Initially implemented
in a basic research setting, this modeling method is
currently being transitioned to simulation environments
with gradually increasing level of fidelity, beginning
with an operationally-relevant, game-based training
environment. This paper will describe the results of
this transition and discuss how this modeling approach
constitutes an example of a new generation of
practical, lightweight, and useful cognitive models.

BACKGROUND

Current training methods, though very effective at
producing skilled warfighters, focus primarily on lower
level skills and outcome-based performance. However,
considering the crucial need to satisfy commander’s
intent, assessing how the warfighter translates intent
into action has become a necessity: How do
warfighters process intent? What priorities or goals
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constitute high-order cognitive constraints that drive
skill selection and execution? Cognitive models are a
promising solution to understanding warfighter
processes and intent. Traditional cognitive models such
as Soar (Laird et al., 1987) or ACT-R (Anderson and
Lebiere, 1998) have typically been constructed to
reproduce in details how human cognitive processes
operate: these architectures generally focus on
modeling fine-grained human behavior and decision-
making and include low-level characteristics of human
cognitive processes. Consequently, they are fastidious
to apply and maintain, and require large amounts of
data to be useful.

MODEL DEVELOPMENT

In order to enable the assessment of warfighter intent
without entailing cumbersome model development, we
took a radically different approach and developed a
low-cost, high-impact cognitive model of intent that
leverages a framework of Bayesian inference for
understanding intent from actions (Baker, Saxe &
Tenenbaum 2009) as well as advances in training
technology that make it feasible to capture warfighter
actions and behaviors during training. In contrast with
existing cognitive architectures, we seek to model
human high-level goals and priorities by making
inferences from observed data. In turn, using the
model's inferences, rather than predict the detailed
time-course of cognitive processing, our aim is to
accurately predict the content of future human behavior
(e.g., whether the operator will choose one possible
action versus another).

Domain

In order to scope the development of the cognitive
model, we focused on the domain of multiple-remotely
piloted aircrafts (RPAs) mission planning and
execution. We developed a use-case to illustrate how
this modeling method will be used to support a mission
planner as they are tasked with the creation of an air
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tasking order (ATO) for four RPAs in an intelligence,
surveillance and recognition (ISR) mission. Using a
resource allocation planning interface (Figure 1), the
operator develops a plan that specifies what RPA goes
to what target, in what order, at what speed, and with
what purpose. The operator is provided with rules of
engagement (ROEs) and instructions reflective of the
commander’s intent, i.e., a set of constraints and
priorities (such as *“target X requires a covert
approach” or “avoid weather as much as possible), as
well as objectives to maximize or minimize (such as
“maximize the number of targets covered” or
“minimize fuel consumption”).

Figure 1. Multi-RPA Mission Planning Interface
Model Structure

At the core of the system is a model capable of
inferring an operator’s mission planning priorities.
Planning priorities refer to those outcomes that
operators try to rank and optimize over, during the
mission planning process. These include, for example,
“assign all targets to at least one RPA” (coverage
priority) or “avoid weather zones” (weather avoidance
priority). We hypothesize these priorities can be
inferred from the observable actions performed by an
operator during mission planning: the model seeks to
capitalize on regularities in planning actions to predict
an operator’s likely priorities and future actions.

The machine learning component of the model
specifies the causal relation between planning priorities
and planning actions as a Markov Decision Process
based on rational probabilistic planning. Bayesian
inference is used to invert the causal relation between
priorities and actions, using observed action sequences
to infer the most probable priorities that led to these
actions (Baker et al., 2009).
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The principal properties of the Bayesian inverse
planning framework are:

e Operators can be effectively modeled as
approximately rational planners. In attempting to
capture the priorities and behaviors of agents, we
assume they will choose the actions that most
efficiently lead them to the accomplishment of
their goals while maintaining their priorities.

* Inverse planning can be accomplished by
integrating bottom-up information from observed
data and top-down constraints from a hypothesis
space of possible goals. This approach allows
inference of an agent’s latent goals and
preferences, as well as prediction of the agent’s
future actions.

Goal-based planning as a Markov Decision Process
MDPs are a machine learning framework for sequential
decision-making under uncertainty (Puterman, 2005).
Given an environment and a goal, a trained MDP
model specifies a course of action from any state of the
world that maximizes the rewards to a participant.

By employing an MDP to model an operator's planning
behavior, we assume they act rationally in making
planning decisions, choosing actions likely to bring
them closer to achieving their goal.

A Markov Decision Process comprises a state variable,
a model of the environment, and a set of rewards or
costs. The state variable includes information about the
operator’s state and the configuration of the
environment. The environment specifies what actions
the operator can perform, and a causal model of how
these actions change his state and the environment.
Actions are associated with a reward or cost which
may be received upon performing an action or for
performing an action and transitioning to the next state
(Puterman, 2005).

In the MDP formulation, actions are chosen
probabilistically. This allows the model to account for
noise and variation in how operators create plans given
the same scenarios. The MDP maintains a probability
distribution  over actions P(Actions | Goal,
Environment).

Bayesian inverse planning

In an MDP-based goal inference model (Figure 2), the
inferences that can be made about operators’ goals
during planning depend on the structure of the goal
hypothesis space and the prior probabilities of goals
assigned within the model. In the current
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implementation of the model, we make the simplifying
assumption operators have a single optimal plan state,
or goal, which they attempt to achieve throughout each
mission scenario. A priority is associated with a
number of goal states, the only requirement being that
a goal state must carry out at least one priority (e.g.,
“avoiding weather zones”). Thus a single goal state
may involve carrying out a single priority or multiple
priorities simultaneously.

Priorities

Environment Goals

Principle of
rational action

Figure 2. The hypothesized causal structure of goal-
and priority-based planning. Shaded nodes
represent observed variables; unshaded nodes are
latent variables whose values must be inferred.

The model includes only one parameter, 5, which
controls the level of determinism with respect to
optimal action selection that the MDP model is able to
fit. High values for g will fit participants whose actions
follow the optimal sequence of actions to their goal,
while low values for g will better fit participants who
deviate from this sequence. In future work, we plan to
implement more complex models in which goals may
change throughout the course of planning.

The technical details of the implementation of the
model are described elsewhere (Riordan et al., 2011).

Model Population and Training

In order to populate the model with appropriate
features (namely, the priorities, goals and constraints to
look for) and, subsequently, to train the model on a
body of relevant data, we conducted a controlled,
human-in-the-loop experimentation where participants
used the planning interface to complete 18 scenarios.
Planning actions, in the form of XML log files, were
collected automatically and a cognitive walkthrough
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was performed after each scenario to elicit from
participants what priorities, goals, and constraints they
employed while creating the mission plans.

Method

Forty-two undergraduate and graduate students, aged
18-69 years (average 30 years + 12.5), participated in
the experiment. Six had prior military experience (from
ROTC student to Commissioned Officer), seven had
prior aviation background (from pilot licenses to flying
courses), eleven were familiar with the RPA domain,
five had mission planning experience (in the military
or civilian world), and eight had participated in other
controlled experiments featuring RPAs. All were
compensated $10/hour.

The experiment duration averaged three hours and
included three phases: training, data-gathering, and
debriefing. First, participants underwent a 45-minute
training session, which included a series of PowerPoint
training modules and the completion of two practice
scenarios, under experimenter supervision. Then,
participants played multiple simulation scenarios in
which they were tasked with creating a mission plan
for two RPAs in a hostile environment based on a set
of rules of engagement (ROE). Participants were
responsible for assigning RPAs to targets, setting
parameters and constructing flight routes. Finally, a
cognitive walkthrough protocol was implemented.

This experiment included two independent variables:
planning time (that is, how long the participant was
allowed to plan the RPAS’ missions) and scenario
complexity. There were two levels of planning time:
short (3 minutes) and long (6 minutes). There were
three levels of scenario complexity: low (10 targets and
few ROE constraints), medium (20 targets and few
ROE constraints), and high (20 targets and many ROE
constraints). ROE constraints typically included the
number of weather zones to avoid, the maximum total
flight time, fuel allowance, and the number and
duration of actions to perform at targets. A repeated-
measures design was implemented, in which all
participants saw three replicates of the six conditions
(two planning times by three scenario complexities),
yielding a total of 18 trials per participant. Blocking of
the randomized replications was counterbalanced
across participants.

During each trial, the simulation testbed recorded
interface interactions and plan state in XML log files.
This data was pushed to a database for subsequent use
by the model.

Additionally, at the conclusion of the 18 trials, a
cognitive walkthrough (CWT) protocol was performed
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and included the following elements: (1) a review of a
video of the last scenario was played while participants
commented on their decision-making processes, their
strategies and the objectives, constraints and priorities
they tried to satisfy; (2) a series of questions was
administered to reveal how their decision-making
process and strategies changed under various scenario
conditions, and to specify what their main priorities
were, what trade-offs they considered, and what
constraints were of higher importance to them.

Results

Seven hundred and fifty-six XML log files (18
scenarios by 42 participants) were recorded during this
experiment to constitute the initial training data for the
machine learner.

Among other questions, the CWT protocol asked
participants to mention and rank-order what they
considered to be their planning priorities during the
various scenarios they played. Fourteen subjective
planning priorities were described by participants:
“Avoid weather zones,” “Use closest targets,”
“Minimize threat level,” “Monitor planning time,”
“Monitor mission time,” “Use adequate covertness,”
“Satisfy ROE objectives,” “Address biggest threat,”
“Optimize speed,” “Optimize vehicle use,” “Minimize
distance traveled,” “Balance vehicle load,” “Create
complete plan,” and “Minimize fuel usage.”

Count

Figure 3. Count and Score for each priority
mentioned.

Figure 3 displays the count of participants who
mentioned each priority, and each priority’s total score
based on the rankings provided by participants. The
scoring metric is a weighted function where the score
is increased by 5, 4, 3, 2 or 1 point(s) when the priority
is ranked respectively 1%, 2" 3" 4™ or 5™, It appears
that “Use closest targets” was, by far, the prevalent
priority, measured by count or score. “Use adequate
covertness” and “Avoid weather areas” came in second
and third position respectively. This trend existed
regardless of the participants’ backgrounds. Table 1
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describes the trade-offs associated with these three top
planning priorities.

Table 1. Selected planning priorities.

Priority Description & Tradeoffs
The operator may assign UASs to
the targets closest to them. Doing so
Use closest : .
may involve tradeoffs  with
targets

covertness or entry into dangerous
weather zones.

The covertness capability is not
shared by all UASs; hence the

Use adequate | operator must consider the impact

covertness | of routing a covert UAS to one
target on its availability to cover
other targets.
Avoid Going around weather zones might
take more time than going through
weather them. The operator must consider
areas this trade-off in the route planning.

These three priorities were selected to be represented
in the model. In the model’s state variable, we encoded
how well participants maintained these priorities with
each action they took, along with other features
describing the configuration of the environment.
Participants’ goals were represented as states in the
model in which the mission was completed and one or
more of the three priorities was maintained (e.g., no
weather zones were crossed in any plan). We assumed
each action taken by a participant was an effort to
maintain a priority and achieve a goal state. Based on
how the participant’s actions change the state of the
environment, the model classifies the action into one of
the following predefined actions:

e New plan: avoid weather. A UAS is assigned to
an available target such that the route avoids
weather zones.

e New plan: proximity. A UAS is assigned to an
available target that is closer to it than to the other
UAS.

e New plan: maintain covertness. A UAS is
assigned to an available target such that the UAS
chosen meets the covertness requirements
specified in the scenario.
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e Plan modification: avoid weather. The operator
alters an existing plan so the UAS's trajectory
avoids weather zones.

e Plan modification: proximity. The operator
implements modifications based on proximity.
These modifications include both the objective
(i.e., change the target to a different, unassigned
target to minimize distance travelled) and the
assigned UAS (i.e., assign a different UAS to fly
to the target to minimize distance travelled).

¢ Plan modification: maintain covertness. The
operator changes the target of an existing plan so a
UAS is assigned to a target based on the
covertness requirements specified in the scenario.

MODEL EVALUATION

Following the first experiment that led to the selection
of model feature and to the training of the model’s
algorithms, we conducted two additional experiments,
replicating exactly the first one, to evaluate the ability
of the model to infer operator priorities and to predict
operator actions.

Priority Inference

Method

To assess the model’s performance at priority
inference, we repeated the first experiment with fifteen
undergraduate and graduate students, aged 18-43 years
(average 26 years * 7.5). While the experimental
procedure was the same, at the end of each scenario,
we asked participants to indicate their subjective
assessment of what planning priorities they used in the
scenario they just completed: each priority was rated
for importance and time spent attending to it, and their
order of presentation was fully randomized to avoid
response bias.

Table 2. Correlation between operator ratings and
model predictions for several values of g

p 0.5 1 15 2 2.5
r | 0.315 | 0.283 | 0.264 | 0.256 | 0.248
Results

Using the algorithms trained using data from the first
experiment, the model was applied to data from this
second experiment, and we compared the model
outputs (i.e., operator priorities inferred by the model’s
algorithms) to the operators’ subjective assessments
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(i.e., operator priorities as stated by the operator).
Several values of the f parameter were tested. Table 2
presents the correlation values obtained for five values
of 5. p=0.5 led to the highest correlation » = 0.315.

Subsequently, we broke down the results by planning
priorities, focusing on the three priorities featured in
the model. The correlation results are presented in
Table 3: the “covertness” priority led to the highest
correlation of » = 0.562.

Table 3. Correlation r between operator ratings and
model predictions for each planning priority

Priority | Covertness | Proximity Avoiding
weather
r 0.562 0.365 0.359

The results of this second experiment show the model
can infer operators’ priorities at a reasonable level of
reliability. This work extends the results obtained by
Baker et al. (2009), and shows Bayesian inverse
planning can both account for operator goals and the
preferences that guide the selection of these goals.

Action Prediction

Method

To assess the model’s performance at predicting
operator actions, we repeated the first experiment with
eight undergraduate and graduate students, aged 18-54
years (average 27 years * 11.7). While the
experimental procedure was the same, after the
experiment, two human coders observed all videos of
all scenarios for all participants and manually coded
each of their actions in a database by assigning a
probability that each participant action fell into each of
the six action types represented in the model. For this
experiment, the low-level actions with the planning
interface were grouped together into sequences that
corresponded to the high-level priorities encoded in the
model. Inter-coder reliability using Cohen’s Kappa was
0.737.

Table 4. Correlation r between coder ratings and
model predictions for several values of g

B 0.5 1 1.5 2 25
r | 0551 | 0572 | 0.577 | 0.576 | 0.570
Results

The trained model was applied to the data of
Experiment 3 and the prediction output was compared
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to the coders’ assignment of probability distributions to
actions. This evaluation was performed for a range of
values of the g parameter. Table 4 lists the resulting
correlation values obtained for five values of S. The
highest correlation (» =0.577) was obtained for § = 1.5.

The results of this third experiment show the model
can reasonably predict an operator’s action during
planning. Future enhancements to the model will seek
to improve these scores.

TRANSITION TO A SIMULATION
ENVIRONMENT

Motivation

The modeling method described in the previous section
helps embed into the Remote Piloted Aircraft (RPA)
novel models of tactical decision making and control
from well-selected exemplars and interactions with
human operators. This method is designed to benefit
RPA by enabling them to reach their full autonomous
potential. More specifically, this method will enable
the following: (1a) expert human operators to teach the
RPA to overcome problems normally caused by lack of
context in automated control systems, (b) RPA to adapt
more easily to dynamic and uncertain environments
(through use of model restructuring software), and (c)
learning in real-time in test and simulation
environments, which will enhance and accelerate
knowledge transfer of tactical maneuvers and new
autonomous behaviors.

AFRL GRILL

Transition Environment

The Gaming Research Integration for Learning
Laboratory (GRILL) is one of several Air Force
Research Laboratory (AFRL) sponsored research
programs to evaluate gaming for training. More
specifically, the GRILL is interested in answering
questions such as how effective is game-based training,
what aspects of gaming can be applied to the training
realm, and what are the implications for games as part
of a family of complimentary trainers in a Live,
Virtual, and Constructive (LVC) architecture. The
GRILL contains multiple types of training technologies
that are integrated in a distributed network
infrastructure.

The current GRILL environment as configured for the
model integration is illustrated in Figure 4. The GRILL
is composed of the following modules: scenario and
environment management, training platforms, and a
distributed network infrastructure. The training
platforms are the center of the GRILL environment.
There are three training platforms that are of interest to
this integration. Each of the platforms is equipped with
software that allows the simulation (based on the
trainee actions) to publish relevant information over
the Distributed Interactive Simulation (DIS) protocol.
In addition to publishing data over DIS, each trainee
platform is equipped with an environment manager.
The environment manager provides instructions and
information regarding the scenario to the players
during the training. The first platform is the Joint
Terminal Attack Controller (JTAC), which is for a

Training Platforms Lo
Environment Manager Environment Manager RPA L
i (X-Plane)

JTAC F-16 RPA 2

(vBS2) | (X-Plane) (Blue Box HD) ‘ AFRL Plug-in DIS converter

DIS converter DIS converter | lem Engine X-Plane Plug-in M Od el Rea I-T| me

‘ Action Forecasting
Model Model
> RPA Goal

Distributed Planner Inferencer
Interactive

Simulation (DIS)

Figure 4. Integration Environment
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forward observer on the ground. The JTAC training
platform is developed as a Virtual Battle Space 2
(VBS2) ground simulation. In addition to the JTAC,
there are also F-16 X-Plane platforms that are the
supporting entities in the environment. The F-16 pilots
use a modified version of X-Plane. The integration we
focus on concerns RPA simulations. Currently, RPA
training platforms are found in two configurations. The
first RPA simulation is developed by L-3 Link and
simulation training using their proprietary Blue Box
HD system. The second RPA simulation is a modified
predator model using X-Plane. The X-Plane
environments use a custom plug-in created by AFRL to
publish data over the DIS protocol. Each of these
training platforms run on their own PC’s which are
networked through a gigabit switch. Each simulation
platform is using a common set of terrain and model
databases correlated with real-world data. These
programs are tied together through DIS and through
the environment manager software. The environment
manager sends instructions and interacts with the
players in a controlled manner. This software was
originally created by AFRL. In the future, the plan is to
replace the custom controller with a new environment
manager provided by a third party vendor.

DISCUSSION

The integration of the model in the GRILL
environment is continuing throughout the summer of
2011. At this point, an integration plan and a training
scenario have been developed. The work of integrating
the technology with the data sources in the GRILL
laboratory is ongoing. By the end of the summer, the
hope is to demonstrate how a model that is able to infer
operator intent and goals can lead to more responsive
adaptive training environment including: (1) better and
targeted adversarial behaviors, (2) more directed
decision support that enables effective decision making
by the trainee, and (3) real-time scenario modifications
to enrich the training environment. We believe this
modeling approach constitutes an example of a new
generation of practical, lightweight, and useful
cognitive model that can be used to improve training
effectiveness.

CONCLUSION

We described the development and evaluation of a new
modeling method in the multi-RPA mission planning
domain and showed how the Bayesian inverse
planning framework can be used to infer intent from
human user actions.
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We described our current efforts to transition this
technology to the training domain by integrating the
model into AFRL’s GRIL laboratory.

This integration, scheduled to be completed by the fall
of 2011, will enable improved training effectiveness in
simulated training environments.
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