

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 1 of 11

Streamlining Information Assurance Testing With Automation

Christopher Huey, Charles McElveen Kelly Djahandari
Cobham Analytic Solutions Northrop Grumman

Orlando, FL Orlando, FL
 Chris.Huey@cobham.com,

Charles.McElveen@cobham.com
Kelly.Djahandari@ngc.com

ABSTRACT

System complexity, aggressive schedules, and limited resources are risks a program must overcome in order to
properly implement and maintain system security configuration controls during development, integration, fielding,
and operations. Vulnerabilities caused by inadequate system security configurations create opportunities for
adversaries to successfully conduct cyber attacks on systems. A driving factor contributing to this challenge is the
lack of efficient methods for verifying the system security configurations comply with the security requirements.
Identifying and reporting vulnerabilities in a timely manner are critical for effectively mitigating identified risks.
Automated test tools exist for assisting in the process, but many conduct generic test inspections and are not tailored
to verify the specific security policies and requirements established for the system.

This paper describes a process used by the Combat Air Force (CAF) Distributed Mission Operations Network
(DMON) Cross Domain Solution team to effectively identify and mitigate security vulnerabilities during system
development, integration, and deployment. The process leveraged automated tools and an associated strategy to
streamline the Information Assurance testing effort and increase the cyber security posture of the DMON Cross
Domain Solution. The paper addresses process enhancements implemented to establish and sustain a high level of
security assurance required in the warfighter’s integrated live, virtual, constructive training environments.

ABOUT THE AUTHORS

Christopher Huey, CISSP, is a Principle Cyber Security Engineer with over 24 years experience in information
assurance on Department of Defense (DoD) and Intelligence Community programs. He is currently supporting the
Distributed Mission Operations Network Cross Domain Solution Services program by supporting security testing,
certification and accreditation activities, and process improvement tasks. Mr. Huey received his Bachelor’s Degree
in Computer Science from the University of Michigan and his Master’s Degree in Systems Engineering from
George Mason University.

Charles McElveen, CISSP, ISSEP, is a Principle Cyber Security Engineer with over 27 years of progressive
experience supporting a variety of military and DoD programs. He is currently supporting the Distributed Mission
Operations Network Cross Domain Solution Services tasking. He received his Bachelor’s Degree in Computer
Science from the University of Southern Mississippi and a Master’s Degree in Management/Management
Information Systems from Florida Institute of Technology.

Kelly Djahandari, CISSP, is a Cyber Architect and is leading the Cross Domain Solution Research and
Development task order under the Distributed Mission Operations Mission Training program. Her information
assurance experience includes more than 16 years of software engineering in network security research and cross
domain solutions. She received a Bachelor’s Degree from George Mason University and a Master’s Degree from the
University of Virginia.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 2 of 11

Streamlining Information Assurance Testing With Automation

Christopher Huey, Charles McElveen Kelly Djahandari
Cobham Analytic Solutions Northrop Grumman

Orlando, FL Orlando, FL
 Chris.Huey@cobham.com,

Charles.McElveen@cobham.com
Kelly.Djahandari@ngc.com

INTRODUCTION

Many programs are faced with limited budgets and
compressed schedules, so the need to streamline
processes while maintaining or increasing quality is
crucial to the success of the program. Information
Assurance is a program facet that must be improved to
help achieve the DoD training transformation vision
and goals of speed, agility and security. Information
Assurance testing is a necessary activity that must be
successfully accomplished and documented before
systems and networks can be accredited for operations.
The Combat Air Force (CAF) Distributed Mission
Operations (DMO) Network Cross Domain Solution
(DCDS) test engineers employed automated test tools
in conjunction with a structured test methodology to
reduce the Information Assurance testing effort.
Streamlining the Information Assurance testing process
with automation allowed the program to increase test
coverage and build confidence in the system’s security
posture while reducing the time to execute tests,
analyze results, and generate test reports.

This paper describes the automated test tools and
related processes that were successfully implemented
to support Information Assurance testing of the DCDS.
The paper provides objectives to consider during the
selection and implementation of automated test tools
and addresses process enhancements implemented to
establish and sustain a high level of security assurance
required in the warfighter’s integrated live, virtual, and
constructive training environments.

OVERVIEW

The CAF DMO DCDS Team is responsible for
conducting Information Assurance testing to support
Certification and Accreditation of the DCDS using the
Joint Army, Air Force, Navy (JAFAN) 6/3 Protection
Level 3 requirements [1]. The criticality of the DCDS
in protecting data warrants a high degree of security
testing assurance. The DCDS is deployed to multiple
sites around the world. Each deployment of the DCDS
requires the DCDS Team to conduct separate formal

Information Assurance tests in support of receiving an
approval to operate the system at a particular site.

Early testing to support each DCDS deployment was
conducted using 65 manual test cases consisting of a
voluminous set of tedious, time consuming test steps.
The test engineers executed the manual test cases in
approximately 16 hours during formal testing. The
first DCDS test was accomplished in 2007 and since
then, improvements have been made as the testing
process evolved. The latest and most dramatic
improvements involved implementing automated test
tools. The DCDS Team enhanced the Information
Assurance test process using industry-proven
techniques and leveraged automated tools to streamline
the testing effort. The test suite currently consists of 30
manual test cases and 144 automated test cases. The
test engineers now execute the full complement of tests
in approximately 8 hours.

AUTOMATED TESTING OBJECTIVES

The DCDS Team established five key objectives as a
basis for defining and implementing an effective
automated testing approach (see Table 1).

Table 1. Test Automation Key Objectives

The major consideration that applies to each key
objective listed above is cost. Investing in test
automation can be an expensive undertaking that runs a
high risk of completely eliminating any overall cost
savings and test assurance gains established as program
goals. Numerous inexpensive or free automated

1. Leverage existing industry-accepted
security testing tools

2. Allow for customized automated test
cases to be developed and executed

3. Streamline the security test execution
process

4. Generate detailed and understandable
test artifacts

5. Maintain requirements traceability
within testing artifacts

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 3 of 11

security test tools exist. However, they may not
sufficiently support all test automation key objectives
in Table 1. Conversely, there are automated test tools
that implement a rich feature set, but they tend to be
very expensive. Initial investment costs to consider
include the tool’s purchase price as well as expenses
related to: (1) additional hardware and software needed
for the tool to function; (2) vendor technical training;
(3) reduced initial productivity resulting from “the
learning curve”; and (4) vendor technical support.
Recurring costs include renewing the annual license
and the time and effort needed to develop, tune, and
finalize automated tests and periodically update (or fix)
automated tests to align with evolving system
baselines. The decision to implement any automated
test techniques should undergo an in-depth, return-on-
investment analysis before committing to such an
under taking. Return-on-investment should be assessed
based on direct and indirect benefits across people,
processes, and technology drivers [2].

A certain level of automation can be productively
implemented on most programs to benefit the
Information Assurance testing process. Figure 1
depicts the test components that comprise the full
DCDS security test suite. The test suite used in
conjunction with a test process adapted for test
automation achieved a 50% reduction in the time to
formally execute DCDS Information Assurance tests
and increased assurances that the system meets
established security requirements by conducting more
comprehensive and exhaustive tests.

Figure 1. DCDS Test Suite Composition

The following paragraphs provide details explaining
how each of the test automation key objectives were
considered and used by the DCDS Team to implement
an automated test process.

Objective #1 - Leverage Existing Test Tools

Automated security tools are invaluable for
Information Assurance testing efforts since they can
perform a bulk of the verification tests that must be

accomplished to support system Certification and
Accreditation. Selection of security test tools should
be primarily based on the tool’s compatibility with the
system architecture, security requirements verification
coverage, and the program’s cost and schedule
budgetary constraints.

Coordination with the security stakeholders is also
important to ensure the selected toolset aligns with the
program’s security testing objectives and effectively
supports the overall Certification and Accreditation
effort. It is counterproductive to select a test tool that
either underachieves (e.g., falls well short of meeting
the established security test objectives) or overachieves
the program’s objectives (e.g., includes expensive
unnecessary features or primarily conducts security
verification checks beyond what the Designated
Accrediting Authority representatives require for
Certification and Accreditation). A multitude of
commercial, shareware, and DoD security testing tools
exist ranging from those that scan for common security
vulnerabilities to those that analyze systems for
compliance with specific organizational security
policies, such as the DoD Information Systems Agency
(DISA) Gold Disk [3].

Recently, the National Institute of Standards and
Technology (NIST) established a standard protocol to
help the Government overcome the challenges of
validating compliance with applicable technical
security requirements. NIST is a federal technology
agency that works with industry to develop and apply
technology, measurements, and standards. NIST
Special Publication (SP) 800-117 addresses the
Security Content Automation Protocol (SCAP™)
which is a multi-purpose protocol used to perform
automated configuration, vulnerability, and patch
checking, technical control compliance activities, and
security measurement [4]. SCAP-enabled tools are
available that can be used to perform automated
security configuration verification checks, and many
have been validated by NIST (visit the NIST SCAP
Validated Products website [5] for the current list).
The configuration checks performed by SCAP-enabled
tools are expressed as SCAP content, which are
machine-readable eXtensible Markup Language
(XML) policy documents. One example of a NIST-
validated SCAP-enabled tool is the Center for Internet
Security (CIS) Configuration Assessment Tool (CAT)
which is available exclusively to CIS Security
Benchmark members [6]. The CIS-CAT has the ability
to perform configuration checks against a large set of
CIS security benchmarks existing as SCAP content
developed and maintained by CIS.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 4 of 11

DISA and NIST are conveying and publishing the
testable portions of security configuration guides as
SCAP content. DISA provides global NetCentric
solutions for warfighter support. Publically available
SCAP content is currently only limited to Microsoft
Windows® operating systems and Microsoft Internet
Explorer® web browsers [7]. MITRE maintains a
large, open source collection of vulnerability SCAP
content in a publicly accessible repository (visit the
MITRE OVAL repository web site [8] for details). The
vulnerability content is ingestible by SCAP-enabled
tools to allow automated checking for known security
vulnerabilities associated with common applications
and products. This provides significant value to the
DoD by providing a capability for organizations to
automatically identify vulnerabilities frequently
exploited to harm networked systems.

Unfortunately, there are recognized cases where SCAP
content does not work correctly with SCAP-enabled
tools. This problem demonstrates the current lack of
maturity of SCAP and the SCAP-enabled tools [7].
However, it should not preclude a programs’
motivation to consider the use of SCAP-enabled tools
for conducting automated Information Assurance
testing since a large percentage of tests will work
correctly and the few (if any) erroneous tests that might
exist can be disabled or fixed.

The DCDS Team chose to implement the Navy
security scanner tool called SECSCN to test the Linux
servers because it generates test artifacts based on
Director Intelligence Community Directive 6/3 [9],
which contains security requirements identical to
JAFAN 6/3 with a few minor exceptions. The DCDS
Team also implemented the Space and Naval Warfare
(SPAWAR) SCAP Compliance Checker tool which is
free for use by any Federal Government employee or
contractor. The DCDS Team obtained the DISA SCAP
Automated Benchmark for Windows [10] as input to
the SCAP Compliance Checker to automate testing of
the Microsoft Windows systems. Using the DISA
SCAP Automated Benchmark precluded the need to
perform the time-consuming manual steps normally
required as part of executing the DISA Gold Disk. The
DCDS Team augmented the DCDS security test suite
with a custom developed tool that performed tests not
covered by SECSCN and the SCAP Compliance
Checker. The custom security tool also allowed
DCDS-specific automated tests to be developed and
executed. Additional details regarding the custom tool
are addressed in Objective #2 – Create Customized
Automated Security Checks.

For systems that employ a large amount of security-
relevant GUI-based functionality, it may be necessary

to use GUI-based automated test tools. If the program
decides to implement a GUI-based test tool for
functional testing, it would be wise to leverage the tool
to support Information Assurance testing when
feasible. The DCDS does not employ a significant set
of GUI-based security functionality. Therefore, the
DCDS Team determined that implementing an
automated GUI tool would be an unjustified program
investment since the automated test cases implemented
by the automated toolset encompass over 94% of the
security test cases.

Programs should be prepared to handle common
pitfalls associated with security test tools. It is not
uncommon for test tools to report false-positive
findings (i.e., discrepancies associated with security
configuration settings which are not relevant to how
the system is designed for operations).
The DCDS Team experienced SCAP related issues that
required mitigation. For example, a few configuration
checks specified within DISA SCAP content resulted
in unacceptable execution times (e.g., an individual test
case took over eight hours to complete). Also, there
were instances where checks specified in Mitre’s open-
source vulnerability SCAP content resulted in false-
positive findings caused by incorrect logic performed
by the test tool. The DCDS Team handled these
problems as follows: (1) developed rationale
explaining why false-positive findings are not
applicable or are not considered security risks so test
results can be defended during the Certification and
Accreditation process; (2) changed the SCAP content
to disable faulty checks; (3) updated the SCAP content
to resolve discrepancies; and (4) developed custom
automated test cases to replace faulty checks (see
Objective #2 – Create Customized Automated Security
Checks).

Objective #2 – Create Customized Automated
Security Checks

The goal of this objective is to minimize the amount of
onerous, time-consuming manual test cases needed to
accomplish Information Assurance testing by
leveraging customized automated tests. Many security
test tools perform generic verification checks designed
primarily for security-enabled products deployed in
commonly used environments. While most of these
generic checks are useful for verifying compliance with
applicable security requirements, the checks typically
cover a subset of the overall set of verification checks
that are necessary for successful Certification and
Accreditation. Some tools include steps that instruct
the user to perform a multitude of manual checks.
Also, many test tools, such as SECSCN, do not provide
a capability to effectively create custom test cases to

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 5 of 11

verify system-specific configurations and functionality.
Therefore, a key aspect of achieving this goal is to
select and implement an automated test tool that
provides the ability to create and modify custom,
system-specific test cases.

Test tools are emerging that offer robust, innovative
features to allow custom security verification checks to
be built and executed more quickly, easily, and cheaper
than repetitively having to execute manual steps. An
example is SCAP-enabled test tools. SCAP content
ingested and used by test tools can be tailored to align
with unique aspects of the system, and system-specific
security configuration checks can be incorporated into
SCAP content as additional configuration checks
performed by the tool. It is very important to closely
track and manage all modifications made to third party
SCAP content. At a minimum, the following should be
performed by the program’s technical staff when
changes are made to third party SCAP content: (1)
identify the specific changes and coordinate the
changes with the security stakeholders to receive
concurrence; (2) control and manage the changes
through the program’s Configuration Management
process; and (3) implement a mechanism to merge the
changes into newly acquired SCAP content released by
third parties to ensure the changes persist within new
versions.

The test tool developed by the DCDS Team
implements a unique grammar for constructing human-
readable, custom automated tests for the network
devices and Linux platforms within the DCDS,
including the security-enabled applications installed on
the Linux platforms. The philosophy behind the tool is
to create a simple, human readable test plan (including
test case procedures or test steps) that feed directly into
the test tool. This allowed the security stakeholders the
ability to fully understand exactly how requirements
were interpreted and verified during Information
Assurance testing.

Objective #3 – Streamline Test Execution

Many system deployment timelines are established
within an aggressive schedule. Therefore, each hour
that can be saved conducting formal testing is an hour
that can be productively used on other activities. This
objective involves ensuring test execution occurs in a
smooth, logical, and efficient manner. The ultimate
goal for the DCDS Team was to reduce the schedule
footprint needed for formal security configuration
testing, which includes executing the tests, gathering
test results data, and analyzing test results to identify
potential security deficiencies. This objective was
achieved using the DCDS automated security tool

suite. The automated test tools coupled with enhanced
test processes allowed a six-fold increase in test cases
while reducing the overall time by 50% for conducting
the tests and analyzing the results.

Depending on the size of the system infrastructure,
executing automated tests (to include, as necessary,
uploading the tests, manually initiating automated test
execution, collecting test results, analyzing test results,
and removing the test ruminants) can be a daunting
effort, but clearly not as much if the tests were manual.
Some system infrastructures containing a large number
of components may warrant the need to employ
enterprise management tools such as BMC BladeLogic
Automation Suite (a SCAP-enabled toolset) [11] or
Microsoft® System Center Configuration Manager
(with the SCAP Extensions Module) [12]. These types
of tools can be used to automatically execute security
configuration verification checks from a central
location, and collect and consolidate the results at the
enterprise level. Enterprise management tools can be
leveraged to conduct security testing across the entire
infrastructure, thereby reducing the overall effort
needed to individually execute security tests on each
component of the system’s infrastructure.
Additionally, the tools can be configured to
periodically validate that the infrastructure continues to
comply with established security configuration
standards during operation.

For programs with mid-sized to large system
infrastructures that are not interested in deploying a
commercial enterprise management solution, an option
to consider is to implement Capistrano [13] to execute
automated security tests across components of the
infrastructure. Capistrano is an open source Unix-
based utility for executing commands in parallel on
multiple systems, primarily for deploying applications.
Capistrano can be used to deploy automated test
utilities or scripts onto multiple servers, initiate the
execution of the automated tests, collect the test results
into a single centralized location, and remove the test-
related programs and results files from each system, as
necessary.

Objective #4 - Generate Detailed and
Understandable Security Test Artifacts

An important aspect of this objective is for the
automated test tools to: (1) clearly articulate, in an
understandable manner, the security deficiencies
identified by the tools; (2) identify requirements
affected by security deficiencies; and (3) produce
deliverable-level test reports with minimal human
intervention. Achieving this objective fosters an ability
to generate security test reports that contain relevant

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 6 of 11

evidentiary information needed for system Certification
and Accreditation. The automated test tools used by
the DCDS Team fully satisfy this objective.

The SECSN tool automatically generates a detailed test
report in Hyper Text Markup Language (HTML)
format that explains identified security deficiencies in
an understandable manner along with the affected
requirements, and provides specific supporting details
such as the command used to assess the system
configuration and rationale explaining why the
configuration is important. Another valuable test
artifact generated by SECSCN is a Security
Requirements Traceability Matrix which maps each
test case to the applicable source requirement.

The custom tool developed by the DCDS Team
provides a comprehensive set of test artifacts used to
support Certification and Accreditation. Figure 2
depicts an example of a failed check within the test
report. The test report includes the source
requirement, component allocations, design criteria,
test case description, test step identifier, automated test
steps (in human understandable form) and a pass/fail
designation. Since the custom tool does not
have a pedigree comparable to the SECSCN tool, the
report includes specific details explaining why each
verification check either passed or failed. These details

Figure 2. Example Failed Check Test Report

include a pointer to the specific line within the
configuration file that caused the check to either pass
or fail. If required, confidence can be gained that the
tool is reporting the correct results by following the
pointers contained in the test report and manually
verifying the results support compliance (or failure)
with the requirement.

The SCAP Compliance Checker tool generates reports
in HTML or XML format. Figure 3 depicts a snapshot
of HTML-formatted test results information generated

Figure 3. Example SCAP Compliance Checker Report

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 7 of 11

for a single verification check. The tool generates
reports in sufficient detail to understand the specific
verification check and the associated test results.
However, there were some ambiguous test results that
required supplemental data contained in the applicable
DISA Security Technical Implementation Guide [14]
in order to fully understand how to resolve the finding.
The SCAP Compliance Checker tool was able to ingest
the DISA SCAP Automated Benchmark for Windows
and execute the set of specified automated tests, but it
was not fully compatible with the DISA SCAP content.
For example, the “Description” part of the report
includes XML tags that were not correctly formatted
within the report. This incompatibility only presented
a minor challenge in reviewing the verification check
description information and did not affect execution of
the automated tests.

For tools that generate test reports in HTML or XML
format, programs can leverage the report formats to
perform custom, post test execution processing to
generate higher fidelity test reports. For example, the
test reports can be ingested into a database, and
custom-developed utilities can process the data to
perform the following: (1) generate trending and
metrics reports; (2) filter false-positive findings from
test reports; (3) map untraced test results to the affected
security requirements; and (4) maintain and associate
risk management data to each discrepancy (e.g., Plan of
Action and Milestones information).

Objective #5 - Maintain Requirements Traceability
Information

Requirements are the foundation for any system,
forming the basis of the system’s design and
implementation. The most important aspect of
Information Assurance testing is ensuring the system
complies with all applicable security requirements and
the resultant test evidence is sufficient to support
system Certification and Accreditation. Without the
aid of an automated tool, the effort to maintain
requirements traceability throughout the system
lifecycle is a daunting task. The ability to trace
requirements and ensure requirements coverage is an
important feature of the automated security testing
toolset used by the DCDS Team. Equally important is
the ability to capture meaningful engineering data such
as design criteria (often referred to as detailed or
derived requirements) and descriptions of the system
security architecture implemented to comply with
requirements. Integration of these types of engineering
artifacts within the toolset is paramount for providing
security stakeholders the ability to better understand
the “big picture” with regards to the overall security
design and how the system was tested to verify

compliance with security requirements. Security
stakeholders include developers, integrators, test
engineers, and the government Designated Accrediting
Authority representatives. Figure 4 depicts an example
illustrating the value of maintaining traceability
information from requirements through test artifacts.

Figure 4. Security Engineering Traces

A variety of different Commercial-Off-The-Shelf
products exist that can be implemented to maintain and
manage traceability data such as IBM Rational
DOORS® [15]. However, there are very few
requirements management products that can be
implemented out-of-the-box to directly link traceability
data to automated test artifacts. For products that
provide end-to-end traceability such as Hewlett
Packard Quality Center [16], the testing features
offered by the tool (or the integrated add-on products)
may not meet the program’s automated testing
objectives. Development of custom middleware to
incorporate data maintained by traceability tools with
automated test artifacts is a technically feasible
alternative. Any product that stores information within
a non-proprietary database or maintains (or generates)
data in common formats such as XML can be
integrated into a quasi-seamless toolset. Programs
have successfully implemented custom middleware
utilities to bind disparate tools together into a fully
integrated end-to-end toolset, although this effort could
add considerable cost to the program [17].

SCAP-enabled tools can be used to manage and
maintain requirements mappings to specific
verification checks performed by the tool. SCAP

JAFAN 6/3, Para. 4.B.3.a(9)(e):

The following shall be

specified: Aging of static

authenticators

Requirement

The system must force user

passwords to be changed

every 180 days

Design Criteria

Test Case: CICT-MS-0001 (1c)

For Linux systems, verify

PASS_MAX_DAYS = 180 in file

/etc/login.defs

Test Step

Automated Test

Raw
requirement

from applicable
source

Interpretation
of the

requirement

Pass/Fail Indicator &

Specific Failure Reason or Pass

Rationale

What must be
implemented to

comply with
the

requirement

Security
compliance

indicator

Test Results

A2011.024

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 8 of 11

content allows requirements mappings to be
characterized such that each security configuration
check is traced to the applicable source requirements.
However, SCAP content may not pre-exist to
specifically cover the system’s source security
requirements. Since SCAP content is in XML format,
it is possible to enhance the SCAP content to
incorporate the applicable requirements mappings that
are needed to support the system’s Certification and
Accreditation effort. Another automation-related
alternative is for the test engineers to ingest test reports
into a database that appropriately maps the test results
to the system’s source requirements.

The SECSCN tool and the custom security test tool
allow the traceability information in Figure 4 to be
effectively maintained. For the requirements traces
associated with the SCAP Compliance Checker tool,
the DCDS Team maintained a hardcopy version of
mappings from the test ID contained within the DISA
Windows SCAP content (used as input for the tool) and
the DCDS source requirements from JAFAN 6/3.

PROCESS IMPROVEMENTS

Implementation of automated test tools was an
important factor in improving the quality of the
security testing process since it allowed numerous,
comprehensive tests to be accomplished quicker than a
human can perform the tests while reducing the risk of
human error. Equally important was the need to adapt
the existing security test process to accommodate the
use of automated tools and then actively strive to
implement regular enhancements to further improve
the process. The following paragraphs describe
process improvements implemented by the DCDS
Team while incorporating the use of automated test
tools within the overall security testing methodology.

Automated Tests vs. Manual Tests

In an ideal scenario, all security tests required for
Certification and Accreditation would be conducted
using automated tests. Unfortunately, it is impractical
to expect the full set of security tests to be performed
solely using automation, no matter how robust the suite
of testing tools [18]. Some test cases can be cost
prohibitive to fully automate. For example, system-
level or end-to-end security testing typically involves a
structured sequence of test steps to verify functionality
implemented by multiple system components operating
in harmony. It is difficult to effectively automate these
types of tests due to technical constraints of being able
to align the sequence of test steps across multiple
system components or because the time to implement
is considered exorbitant. The DCDS Team established

guidelines to assist in deciding which DCDS security
tests to automate (see Table 2). The criteria within
Table 2 helped focus the DCDS Team on automating
test cases based on cost and value and avoid
automating tests with minimal return on investment.

Table 2. Manual vs. Automate Criteria

Test Early and Often

Aggressive schedules, limited resources, and the
challenges of developing complex systems sometimes
drive programs to implement test methodologies that
entail generating test procedures in parallel with the
system development and integration effort and then
testing the system for the first time towards the latter
part of the schedule. The system is frequently
baselined just-in-time to execute the full gamut of test
procedures during a planned dry-run event. Dry-run
testing is typically used to ensure the system is stable
and to rehearse for the formal test event. It is not
unusual for dry-run testing to immediately precede the
formal test event with very little slack time between the
two activities. This approach adds risk to the schedule
since it leaves minimal time to correct discrepancies
identified during dry-run testing.

The DCDS Team instituted a “test early and often”
approach as depicted in Figure 5 to reduce the risk of
significant system vulnerabilities existing prior to
formal security testing [19]. The philosophy behind
“test early and often” is to construct individual

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 9 of 11

automated security tests as early as possible during the
development and integration phase. Each completed
automated test is added to a growing collection of
automated test cases. The methodology involves
continuously building the collection of automated test
cases, executing the tests regularly during development
and integration, tuning the test cases as necessary, and
resolving any unexpected discrepancies as early as
possible.

Figure 5. Test Early and Often Methodology

The Navy SECSCN tool and the SPAWAR SCAP
Compliance Checker tool were used to support the
“test early and often” process. Also, the custom test
tool implemented by the DCDS Team facilitated the
“test early and often” approach since the development
of automated test cases using the tool followed a
similar process typically used to construct manual test
procedures. More specifically, the tool accepted input
in the form of a logically constructed test procedure
that was human readable and understandable, similar to
the manner in which manual test procedures are
developed. Once the test procedure is completed using
the tool, it can be immediately executed to support the
“test early and often” methodology.

The “test early and often” methodology cannot be
effectively accomplished using a large set of manual
tests that are tedious, time consuming, and prone to
human error. It is not reasonable to expect manual
testing to be accomplished at the frequency required to
effectively implement a “test early and often”
methodology. However, periodically executing the
manual security tests at strategic times during the
development and integration phase must be
accomplished to realize the full benefits of this
methodology.

The “test early and often” methodology used by the
DCDS Team insured compliance with all applicable
security requirements prior to the system baseline
milestone. The process identified incorrectly
configured security settings during development and
integration, and recognized instances where system
evolution caused regressions within the system’s

security posture. Since these problems were identified
early, it was possible to fix the problems well in
advance of the system baseline milestone.

Simplify Manual Security Testing

The robustness of the automated test suite allowed the
DCDS Team to establish a streamlined process to
reduce the manual testing effort on systems tested after
the first deployment. This test process involves
executing a subset of the overall test cases to verify the
system continues to function as expected while
maintaining a high degree of testing assurance.
Although the streamlined test approach is largely
feasible because the same baseline is deployed to
multiple sites, it is possible to employ a similar process
for verifying system changes made as part of a
structured patch management process involving minor
to moderate system changes.

The DCDS Team used the following three test
categories to support the streamlined test process:

• Demonstration Tests – These manual tests
demonstrate certain DCDS functionality (e.g.,
verify that when a user executes a specific
function, the application generates the expected
output). This category of test is normally
executed only once to support formal
Certification and Accreditation, but must also be
performed when a system change warrants
specific tests to be performed on subsequent
baselines. The DCDS Team established Re-
Execution Criteria defining specific conditions
warranting performance of particular
Demonstration tests during security testing of
subsequent baselines.

• Configuration Tests – These manual and
automated tests involve verification of system
security configuration settings. This category of
test is performed as part of each formal security
test activity to ensure all security-relevant
configuration settings are correct. This test is
especially important for verifying that the
manual installation steps, which are prone to
human error, were properly conducted

• Check-Out Tests – These manual tests are a
subset of the Demonstration Tests established to
verify that the security-critical interfaces and
system process dependencies are properly
enabled and implemented after installation (e.g.,
verify that data generated and transmitted from
one system is properly received and processed
by another system). This category of test is
performed as part of each formal security test

System Development and Integration

Develop

Automated Test

Case

Security Test

Plan
Execute

Automated

Test Suite

Add to

Automated

Test Suite

Resolve

Security

Discrepancies

.

A2011.025

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 10 of 11

activity to ensure the system is functioning
correctly end-to-end.

Security testing of the first deployment of a DCDS
baseline involves conducting all the automated and
manual tests to support the Certification and
Accreditation activities needed for an Approval to
Operate. For subsequent DCDS deployments to
different sites, the DCDS Team executes only the
Configuration and Check-Out tests. This reduces the
manual test cases that need to be executed by
approximately 50%.

The following aspects greatly contribute to the
program’s ability to implement a streamlined security
test approach similar to the approach used by the
DCDS Team:

• The program implements a structured, sound
Configuration Management program to control,
track, and manage system changes;

• The effect each system change has on the
security posture of the system can always be
positively determined (and defended);

• The system installation process is highly
structured, stable, and repeatable (e.g., there is a
high degree of assurance that the installation
process will not introduce new discrepancies
into the deployed system); and

• The program worked directly with the program’s
Designated Accrediting Authority to ensure
system Certification and Accreditation can be
maintained while employing a streamlined
security test approach.

Perform Checks-and-Balances

Automated security test tools typically verify the
system’s operational-level technical mechanisms and
are normally not used to verify development processes
that are essential in preserving the system’s security
posture during development and integration.
Configuration Management problems can negatively
impact system quality, delay deployments, and increase
system development and lifecycle costs [20]. The
DCDS requires a high degree of security assurances
which could be tarnished if problems with
Configuration Management are ever encountered.

The DCDS Team realized the importance of
maintaining the proper level of security assurance
throughout the entire DCDS life cycle and decided to
leverage the rich feature set implemented by the
automated tool suite to perform checks-and-balances
on programmatic aspects, such as Configuration
Management. The DCDS Team built detailed test

cases designed to verify the integrity of security-
relevant configuration items such as the installed Red
Hat Enterprise Linux packages and versions and
application configuration files. For example, instead of
inspecting individual parts of a configuration file, the
DCDS Team constructed tests to inspect each-and-
every line of the file to ensure unexpected changes
were not made to the baseline. Augmenting the
automated tests to perform a feasible level of checks-
and-balances was a relatively simple and inexpensive
effort that greatly increased the overall confidence
gained with the stakeholders that the DCDS is being
properly controlled during development and correctly
installed during deployment.

CONCLUSION

A one-size-fits-all solution for implementing an
automated test capability is not feasible; the solution
must be customized to help achieve the program’s
unique goals. Investing in test automation must be
carefully considered based on a return-on-investment
analysis tailored specifically for the program. The
DCDS Team implemented two different DoD security
test tools augmented with an innovative custom test
tool to successfully conduct Information Assurance
testing of the DCDS. The test cases increased six-fold
and the overall test schedule was trimmed in half when
compared to the previous manual-only testing
methodology. Employing automated test tools allowed
the engineers to institute a “test early and often”
approach which was invaluable to the program for
identifying and correcting security deficiencies well in
advance of the system baseline milestone.

In summary, employing automated test tools in
conjunction with a process that aligns with the use of
automated tools is a practical approach for streamlining
the security testing process. The potential benefits
include increased test assurances, reduced formal
testing timelines, and increased confidence the system
will successfully achieve Certification and
Accreditation.

REFERENCES

[1] Department of Defense (2004), Joint Air Force,

Army, Navy (JAFAN) 6/3 Manual (FOUO)
[2] Keene an NTT DATA Company (2006),

Whitepaper: ROI on Test Automation,
[http://www.keane.com/resources/pdf/WhitePap
ers/WP_ROIforTestAutomation.pdf]

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2011

2011 Paper No. 11024 Page 11 of 11

 [3] Defense Information Systems Agency (2011),
Gold Disk Web Page,
[http://iase.disa.mil/stigs/gold_disk/index.html],
and DoD General Purpose STIG Checklist and
Tool Compilation CD Web Page,
[http://iase.disa.mil/stigs/dod_purpose-
tool/index.html]

[4] National Institute of Standards and Technology
(2010), NIST Special Publication 800-117
(2010), Guide to Adopting and Using the
Security Content Automation Protocol (SCAP)
Version 1.0,
[http://csrc.nist.gov/publications/nistpubs/800-
117/sp800-117.pdf]

[5] National Institute of Standards and Technology
(2011), Security Content Automation Protocol
Validated Products Website
[http://nvd.nist.gov/scapproducts.cfm]

[6] The Center for Internet Security (CIS), CIS
Configuration Assessment Tool (CIS-CAT)
Datasheet, [http://benchmarks.cisecurity.org/en-
us/docs/collateral/cis-cat_datasheet.pdf]

 [7] Verder Pol, J (2010), SCAP Compliance
Checker: Developing a Government-Funded
SCAP-Validated Application,
[http://scap.nist.gov/events/2010/itsac/presentati
ons/day2/Innovative_Uses_of_SCAP-
Developing_a_Government-Funded_SCAP-
Validated_Application.pdf]

[8] MITRE (2011), OVAL Repository Website
[http://oval.mitre.org/repository]

[9] Director of Central Intelligence (2003), Director
of Central Intelligence Directive (DCID) 6/3
Manual, Protecting Sensitive Compartmented
Information Within Information Systems

[10] Defense Information Systems Agency (2011),
Security Technical Implementation Guide
(STIG) Operating Systems Web Page,
[http://iase.disa.mil/stigs/os/index.html#]

[11] BMC Software (2011), BMC BladeLogic
Automation Suite Datasheet,
[http://documents.bmc.com/products/documents/
32/50/203250/203250.pdf]

[12] Microsoft® (2006), System Center
Configuration Manager 2007 Desired
Configuration Management Web Page,
[http://www.microsoft.com/systemcenter/en/us/c
onfiguration-manager/cm-desired-configuration-
management.aspx]

[13] GitHub, Inc © (2011),
[https://github.com/capistrano/capistrano/wiki]

[14] Defense Information Systems Agency (DISA)
Security Technical Implementation Guides
(STIG) Web Page (2011),
[http://iase.disa.mil/stigs/index.html]

[15] IBM® Corporation, IBM Rational® DOORS®
(2010), [http://www.ibm.com/common/ssi/fcgi-
bin/ssialias?infotype=PM&subtype=SP&appna
me=SWGE_RA_RA_USEN&htmlfid=RAD140
37USEN&attachment=RAD14037USEN.PDF]

[16] Hewlett-Packard Development Company
(2011), HP Quality Center Software Web Page,
[http://www8.hp.com/us/en/software/software-
product.html?compURI=tcm:245-
937045&pageTitle=quality-center]

[17] Dustin, E (2001), Lessons in Test Automation:
A Manager's Guide to Avoiding Pitfalls When
Automating Testing,
[http://www.informit.com/articles/article.aspx?p
=21467]

 [18] Hoffman, D (1999), Cost Benefits Analysis of
Test Automation,
[http://www.softwarequalitymethods.com/Paper
s/Star99 model Paper.pdf]

[19] McGregor, J (2007), Test Early Test Often,
Journal of Object Technology, Vol. 6, No. 4,
[http://www.jot.fm/issues/issue_2007_05/colum
n1/]

[20] Aberdeen Group (2007), The Configuration
Management Benchmark Report, Formalizing
and Extending CM to Drive Quality,
[http://www.isscorp.com/Configuration_Manage
ment_Final.pdf]

