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ABSTRACT 
 
High-fidelity training simulation architectures integrate all aspects of the mission system software including the 
system emulation, sensor/communication models, and truth engines. While this practice is beneficial for updates and 
maintenance, it creates difficulties when attempting to repurpose the training system to other platforms, develop new 
models, or reuse models with other truth engines. Additionally, managing multiple projects that require extensive 
integration efforts of models and truth engines requires time and money that are ill afforded on tight production 
schedules.  
 
The modeling and simulation team for Boeing Surveillance and Engagement supports software test and training 
simulations for six intelligence, surveillance, and reconnaissance (ISR) platforms. To support its customers and 
requirements, the team developed a simulation architecture that separates truth, simulation models, and mission 
system software into different modules. These modules are tightly integrated, but loosely coupled. As a result, both 
mission software testing and training system configurations are reconfigurable with multiple truth engines.  
 
This paper reviews key principles on developing a reconfigurable simulation that interfaces with multiple mission 
systems, expansion of sensor/subsystem models, and creating a common interface for truth data. It also provides 
lessons learned on how to manage the architecture to ensure future flexibility without having to create ad hoc, 
single-use solutions. The paper provides guidance on avoiding heavy simulation integration periods from project to 
project and creating simulation architectures capable of flexibility, modification, and expansion. 
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INTRODUCTION 
 
Flexibility in a simulation comes at a price. As 
designers anticipate future improvements, use cases, 
and upgrades, they must define a simulation 
architecture that can accommodate expansion, 
reconfiguration, and modification. In doing so, they 
create rigidity and standards into the design, rules that 
must be followed in the future to ensure that flexibility 
does not result in redesign.  
 
The modeling and simulation designers at Boeing’s 
Surveillance and Engagement division faced a difficult 
task of designing a simulation software set that could 
satisfy a multitude of different needs and customers. 
Rather than identifying all requirements upfront and 
developing a monolithic simulation set for meeting 
those requirements, they developed a flexible 
architecture that allowed them to more easily adjust to 
changes in the future, and above all, provide the ability 
to connect to the various truth engines used by their 
customers.  
 
A truth engine is a software application that generates 
input data to simulation models. Truth may be a tactical 
picture developed by flight instructors, environmental 
data for sensors, or a central source for time to several 
systems. In this situation, the team worked with many 
different truth engines for their Intelligence, 
Surveillance, and Reconnaissance (ISR) mission system 
software models. Each truth engine had its own output 
format, different features, and varying levels of fidelity. 
With all the different sources of truth the team was 
required to operate with, they needed to develop a 
simulation architecture that could accommodate the 
differences and future changes.  
 
This paper briefly describes the situation the team faced 
and the many facets involved in their solution. Next, it 
describes the architecture they created and how it 
accommodated their needs. Finally, the paper provides 
lessons learned about developing an architecture that 
can accommodate multiple truth engines. 

THE SITUATION 
 
The Airborne Warning Systems (AWS) mission 
computing group with Boeing’s Surveillance and 
Engagement division develops software for multiple 
platforms and different customers for those platforms. 
For example, the group supports mission system 
software for the U.S. AWACS Block 30/35, U.S. 
AWACS Block 40/45, French AWACS Mid-life 
Upgrade, and other domestic and international 
platforms. While the mission computing characteristics 
are similar, the systems vary in their capability, fidelity, 
and output. Additionally, international variants of the 
aircraft require adherence to International Trade and 
Arms Regulations (ITAR) and export restrictions. All 
of these differences require unique software 
deployments and quality control standards.  
 
The modeling and simulation team supports the 
software development testing group to perform system 
verification and validation (SV&V). They develop 
sensor, environmental, and ownship models to ensure 
mission computing behaves correctly and within the 
scope of platform requirements. The group also builds 
high fidelity communications models that accurately 
represent the tactical environment in today’s network-
centric battle space.   
 
Several years ago the team won a contract to provide a 
simulation set for AWS mission system trainers. The 
trainers would support up to 15 operator workstations 
that could be reconfigured into multiple, independent 
scenarios. The customer required that the operational 
flight program (OFP) software (the same software that 
operates on the aircraft) run on the training device and 
that the team have sufficiently high fidelity models to 
support it. However, because the team typically 
supported SV&V activities, they did not have instructor 
operator software or truth engines that could accurately 
portray and support distributed training events as 
required by the contract.  
 
The culmination of supporting multiple programs, 
ensuring high fidelity models (legacy and future), and 
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developing simulations for both SV&V and training 
forced the team software architects to reconsider their 
product architecture. Because their role was supporting 
mission computing, they were assured the ability to 
integrate their product as the company acquired new 
platform contracts. However, the need to support 
multiple test groups with varying needs, and now the 
requirement to support training, ensured that the 
simulation set would need to interact with many 
different truth engines.  
 
Truth Engines and Requirements 
 
The truth engines used by the team provide information 
to the simulation about a tactical environment including 
ownship data, terrain, weather, entities, kinematic data, 
and also command and control capabilities. The engines 
support different types of simulated events such as 
stress loading the system with high entity counts, 
tactical coordination training, or simply testing system 
start up and operation. Many of the customers use their 
own truth engines for testing and the simulation team 
needed to be assured that their simulation set was 
compatible with each of them. 
 
The team attempted to meet the following broad 
architecture requirements: 

 Accommodate multiple truth sources and 
levels of truth fidelity within a single 
architecture. 

 Allow sensor models to be easily reconfigured 
within the simulation to accommodate 
different platform configurations. 

 Provide high fidelity sensor interfaces to the 
operational flight program. 

 Deploy the simulation on multiple hardware 
configurations including desktops, high-end 
stress-load computing, and even the aircraft 
platform (airborne embedded training). 

 
Using internal research and development funds, the 
team took 18 months to develop the requisite 
architecture and simulation set.  
 

THE ARCHITECTURE 
 
Given the new requirements and demands on the 
simulation system, the team emphasized rigidity in how 
simulation elements integrated, but also wished to 
create a flexible system to allow different pieces to 
interface with the simulation. This was not a 
contradiction of terms, either. 
 
The underlying principles were based on separation of 
the three major components of the simulation: the truth 

engine, the simulation models, and the operational 
flight program (Figure 1).  
 

 
 

Figure 1. Separating the three major components of the 
simulation. 

The division of these components was both practical 
and necessary for two reasons. First, the main software 
interfaces occurred between the individual components, 
meaning there was natural separation between the 
components where data needed to be shared. Second, 
the truth engines and the OFPs were both outside the 
control of the group. For example, the truth engines 
were developed by different groups or companies and 
the simulation team had little input in their design or 
modifications. The OFP capabilities were determined 
by the customer, requiring the simulation group to 
eventually model their characteristics. So the team had 
the most freedom to develop their architecture in 
between those components. 
 
Major Components 
 
Truth Engine Characteristics 
Due to customer requirements and internal operations, 
the modeling and simulation team was required to use 
several different truth engines. Some engines were 
proprietary toolsets and could more easily be modified 
by the team if necessary. However, several engines 
were COTS/GOTS products or, in some cases, provided 
by subcontractors to the specific programs.  At the time, 
a total of seven different truth engines needed to 
interface with the simulation.  
 
Some engines were used to record and playback system 
performance to test system integration with low-fidelity 
input. Other engines provided robust kinematic data 
about the tactical environment with terrain and weather 
generation capabilities. Engines used for training 
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systems also incorporate distributed protocols such as 
the Distributed Interactive Simulation (DIS) format.  
 
While the truth engines varied, they provided the 
following characteristics, at widely different fidelity 
levels:  

 Scenario data  
 Ownship model data 
 Synthetic environment 
 Flight dynamics 
 Entity attributes 

 
All of these characteristics were managed by a truth 
engine executive that coordinated entities and terrain 
and maintains scenario time. The scenario files included 
information about the entities, such as their location and 
cued events. Depending on the truth engine, the 
ownship models varied from mere location, heading, 
speed, altitude information to specifics about navigation 
or sensor system malfunctions. The fidelity of the 
synthetic environment differed from engine to engine 
for maps, digital terrain elevation data (DTED), 
atmospherics, and weather. The flight dynamics model, 
or kinematics model, directed how different entities 
operated in the environment, such as turning rates for 
certain aircraft flying between way points. Finally, the 
entity attribute files provided specific information about 
each entity such as type, identify friend/foe (IFF) mode 
codes, radar cross-section, and weapons loadout.  
 
Out of necessity, the entity attribute files are also shared 
directly with the simulation and sensor models because 
the data are directly applicable to certain sensors. 
Together, the truth engine executive provides data to 
the simulation/truth interface (see Figure 2).  
 

 
 

Figure 2. Common truth engine architecture. 

Some truth engines allowed several live/virtual 
participants and made distributed network capabilities  
available to coordinate multiple ownship models and 
data link communications. Given customer and internal 
requirements, the team used the Distributed Interactive 
Simulation (DIS) standard to communicate via protocol 
data units (PDUs).  
 
Because the simulation and sensor models required 
specific inputs, the team created specifications for the 
simulation/truth interface where truth engine data were 
translated. This interface is clearly defined and 
structured. This strict adherence to interface protocols 
was one of the most important characteristics of the 
architecture and is explained later.  
 
Models and Simulation Core 
The next component of the architecture focused on the 
simulation, sensor, and communications models.  
Because the mission system was the same software 
used on the aircraft, the models had to provide interface 
inputs that mimicked actual inputs from the real sensors 
and subsystems. Similarly, the models had to accept 
inputs from the truth engine that represented 
information from the ownship and tactical environment.  
 
In order to support multiple deployments, each model 
was designed with strict input/output parameters. This 
allowed interchangeability between models under 
different mission deployments. For example, the 
AWACS aircraft has several international derivatives, 
each with similar sensors and communications 
subsystems. Due to ITAR issues, these sensors or 
subsystems may be limited in capability. The models, 
therefore, had to be modified to meet restrictions and 
customer requirements. These changes would not 
necessarily affect the mission computing software, so 
the input/output had to be consistent.  
 
The simulation core manages all of the data from the 
truth engine and attribute files to the models. This 
model coordinates time, sensor inputs, and navigation. 
It also provides data back to the truth engine for 
ownship, active sensor activity, and data link activity. 
Figure 3 shows a block-level representation of the 
model architecture.  
 



 
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012 

2012 Paper No. 12198 Page 5 of 9 

 
 

Figure 3. Block-level representation of the model 
architecture. 

The simulation architecture and characteristics are 
explained in more depth in the following section.  
 
Operational Flight Program 
Due to ITAR and proprietary issues, the architecture of 
the OFP cannot be discussed in this paper. However, 
there are many benefits to using an OFP in a training 
simulator versus using a system emulation.  
  
As military systems advance further and further into the 
digital age, the ability to integrate mission sensors, 
communications, and tracking tools into a single 
software set allows for better situational awareness of 
the tactical environment and easier maintenance or 
updates to the system. Many legacy military aircraft 
consist of individual sensors throughout the aircraft, 
each with their own processors, displays, and interface 
controls. Operators monitor sensors at a work station 
consisting of separate displays and indicators to 
analyze/identify/track contacts. Multiple operators or 
specialists relay sensor data to senior operators or 
mission crew members who build the tactical picture 
and make decisions about how to employ the platform.  
 
Twenty-first century mission systems, however, 
specialize in integrating sensor data and leveraging 
digital tools and capabilities to automate many of the 
menial tasks, such as establishing a track on a contact, 
navigating routes, and analyzing signal data. 
Additionally, networked operational workstations allow 
mission crew members to share the same data and build 
a complete tactical picture. Operators still play an 
integral part, but their specialized skills are now 
focused on activities that the computing systems cannot 
do well such as threat analysis, tactics, and sensor 
interpretation.  
 
In modern training systems, many DoD acquisitions are 
also leveraging the existing mission computing 

software to run natively on the training hardware. This 
approach ensures students have concurrency between 
the platform and the training device (a situation that is 
not common with legacy platforms). This improvement 
exposes students to the up-to-date graphical user 
interfaces, system behaviors, and actual algorithms used 
within the mission system rather than emulations of the 
systems that lack fidelity (Turner, Barnes, & Woodall, 
1996). 
 
The major benefit of using the OFP on the same 
simulation model used for both SV&V activities and for 
training is that the simulation models are validated early 
on in the development process. Additionally, the 
simulation can be deployed in desktop configurations 
early on for train-the-trainer activities and courseware 
teams can also use the systems for obtaining media and 
system functionality information.  
 
The simulation software, then, “plugs” directly into the 
mission system software of the OFP, meaning it uses 
the same data interfaces as those used on the aircraft 
(see Figure 4). The sensor models provide high fidelity 
input that can be used for either testing or training. 
Again, due to proprietary reasons, the architecture of 
the OFP cannot be shown in this diagram.  
 

 
 

Figure 4. Block diagram of truth engine, simulation, and 
OFP components. 
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The critical points of this architecture are between the 
Sim/Truth Interface and the Simulation Core where 
truth data are passed back and forth. Also, note that the 
Entity Attributes interface directly with the Simulation 
Core as well as the Truth Engine Executive. The Entity 
Attribute file aligns with the scenario files and passes 
critical sensor data to the sensor models.  
 
In test or training situations involving weather or 
terrain, the truth engine manages the synthetic 
environment, entity locations within the scenario, and 
the ownship model, and then, through the Sim/Truth 
Interface, determines if weather or terrain create 
occlusion or degradation impacts on the sensor models. 
For example, if the DTED information indicates that a 
mountain range is blocking an entity from the ownship 
line of sight, that information is passed through the 
Sim/Truth Interface to the Simulation Core to either 
indicate signal loss or degradation to a particular 
sensor.  
 
While the overall architecture is extremely complex, 
with many interfaces, there are deliberate separations 
between the components to ensure flexibility and future 
modification. The following section covers the 
characteristics of the architecture.  

CHARACTERISTICS/BENEFITS OF THE 
ARCHITECTURE 

 
In order to meet the heavy requirements the team 
created for itself, the simulation needed to have certain 
characteristics. One key need was to develop a 
capability to reconfigure between the truth engines, 
models, and the OFP. Next, the simulation architecture 
needed to be scalable to various hardware deployments, 
plus resolve time synching and multiple thread 
processes. Finally, the developers needed to define how 
different truth engines would interface with the 
simulation.  
 
Reconfigurability 
 
The goal of a flexible architecture is the ability to 
reconfigure the system in many different ways. For 
example, as new customers purchase a platform, they 
select sensors to meet their mission needs. Some sensor 
models may already exist, while others must be created 
or modified. In the case of international customers 
procuring derivative aircraft, system capability or 
fidelity may be limited by export restrictions. In all of 
these situations, the ability to develop a library of 

Figure 5. Screen capture of the simulation configuration tool (image 
has been altered for export purposes)
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models is a cost-effective way of reusing or 
repurposing.  
 
To achieve this goal, the team developed a simulation 
reconfiguration tool, essentially a software application 
allowing users to select a platform, add sensor and 
subsystem models, and then choose a truth engine (see 
Figure 5). 
   
The tool allowed users to modify the I/O scheme they 
were using, such as switching between a 1553 data bus 
interface or a desktop Ethernet connection. These 
options supported different hardware configurations 
where the simulation would be deployed. Additionally, 
the tool provided settings for software testing such as 
log services, measuring instruments, and selecting the 
fidelity level of models (ideal scenarios, radar constant 
false alarm rates, etc.). Finally, the tool provided inputs 
for interface configuration, frame rates, IP addresses, 
ports, and exercise IDs. This tool is essential, and upon 
configuration creates a script that identifies how all the 
elements of the simulation will work in concert with 
each other during runtime. 
 
Tightly Integrated, Loosely Coupled 
The phrase “tightly integrated, loosely coupled” might 
be best be explained with the analogy of Henry Ford’s 
use of interchangeable parts in automobiles (McGregor, 
Northrop, Jarrad, & Pohl, 2002). Individual parts have a 
specific function, such as an oil filter or a carburetor. 
However, parts from vehicle to vehicle are 
interchangeable because the vehicle frame and design 
provide for it. Rather than building customized 
solutions from one vehicle to the next, strict 
specifications for placement, inputs, and outputs for 
parts accommodate easy removal and replacement of 
parts without modification to the structure or part. 
 
This same concept applies to the simulation and 
modeling architecture. Individual models follow strict 
parameters in relation to receiving simulation core 
inputs and mission system outputs. Tightly integrated 
refers to having standard interfaces, while loosely 
coupled refers to easy removal/replacement of the 
models. Likewise, the models interact with only a few 
other components in the system. They have a single 
function that is independent of the rest of the system 
with discrete connectivity to other  components. 
 
Scalability 
 
Building full-scale simulations requires vast amounts of 
hardware to house databases, process data, and display 
tactical situations. Those configurations are difficult to 
scale down and operate as a part-task trainer or even a 
desktop trainer. The simulation team knew upfront that 

the simulation would need to be deployed in various 
use cases. These use cases included: 

 Hardware-in-the-loop 
 Stimulated to real aircraft hardware 
 Desktop testing stations 
 Interim training devices 
 Full-scale training devices 
 On-aircraft embedded training 

 
The team faced several challenges in meeting this 
requirement. With several systems needing to 
synchronize, they wrestled with resolving time issues. 
Also, because of the multiples uses of the simulation, 
from load testing to functional testing, they needed a 
solution for data processor management. 
 
Time 
One of the main difficulties when coordinating between 
separate and reconfigurable simulation elements is how 
time is handled. Some components, such as the OFP or 
sensor models, require consistent and accurate time 
representation with sensitive margins for frame 
overruns. Time may be defined by the truth engine as 
scenario time, or time may be defined by the operating 
system based on a hardware timer. However, when the 
elements operate over multiple pieces of hardware, all 
the elements must synchronize. Otherwise delays and 
frame overruns occur, causing the simulation to 
represent inaccurate data. 
 
When the team initially developed the architecture, time 
was defined by several time events. This created 
difficulties with time references. Finally, the team 
resolved the issue by centralizing control of the single 
timer event within the simulation coupled with prox’ied 
control of OFP time. It is the master time/event 
manager.  
 
Multithreading 
Just as managing time is essential between multiple 
elements, processing becomes important when dealing 
with potentially different data loads. The team needed 
to be able to control and adjust the data threading model 
within the simulation core. For functional testing at a 
desktop, the simulation may run twenty applications 
with only 50 entities in a single sequential thread. 
However, when doing stress load testing across 
multiple machines with 2,000 entities, it was necessary 
to manage the thread model with multiple cores. The 
thread model provides mapping to different hardware 
configurations such as running the truth engine on one 
machine, using hardware in the loop, and even running 
simulation models across multiple machines. The team 
included capabilities within the simulation 
configuration tool to control the multithreading model.  
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Because of the different deployment configurations, the 
team also needed the ability to either deploy the 
software as a single executable file or as multiple 
executables launched on different machines. These 
elements were defined in the simulation configuration 
tool and executed following the configuration files 
specification. 
 
Developer Kits 
 
Truth Development Kit (TDK) 
Because of the strict I/O parameters for the models and 
the simulation engine, the team was able to develop a 
development kit specifying how truth engines would 
interface with models. This documentation has proven 
essential when new projects emerge with either 
customer-mandated truth engines or using highly 
specialized engines to test mission system software.  
 
One such occasion occurred when the team began 
development for an update of a legacy platform. The 
government customer was upgrading their OFP but 
wished to continue using the same truth engine vendor. 
The team subcontracted the vendor and provided them 
with the detailed specifications in the developer kit. As 
a result, the team was able to develop a completely 
integrated solution even though different parts of the 
system were designed by different groups.  
 
Model Development Kit (MDK) 
The team also created a model development kit for 
guidance on developing different models that could be 
added to a model library. The kit is beneficial for 
expanding the simulation capabilities for different 
platforms. For example, the organization needed a new 
radar for a ground-based command and control system. 
Knowing they would use the simulation architecture, 
developers from another organization followed the 
MDK to create the needed radar model. As a result, it 
easily integrated into the existing simulation, saving a 
lot of time and effort trying to define interfaces.  
 
Multipurpose  
 
The benefit of the architecture in the end was that it 
allowed the simulation to be used in multiple 
environments. To date, the architecture has been 
leveraged for development activities, functional testing, 
stress-load testing, training devices, demonstrations, 
mission planning, and concept of operations planning.  
 
Another benefit is that testers operate the same user 
environment from program to program. Despite having 
multiple platforms, the testers are familiar with the tool 
sets that are used. Similarly, they are able to reuse 

scenario files from program to program with only minor 
changes. The overall benefit is having individuals move 
across programs but do not have to be retrained or 
ramp-up on a completely different set of standards. 
 

LESSONS LEARNED 
 
While the team developed a successful architecture and 
continues to improve it, there were many lessons 
learned in the process that other organizations can take 
advantage of if they initiate a similar architecture.  
 
OFP versus Emulation for Training Simulations 
 
Use of the OFP in a training simulation has many 
advantages. It ensures an accurate system 
representation for training. Updates to the aircraft 
software can be done concurrently in the trainers, thus 
ensuring operators are always training with the most 
recent version.  
 
The difficulty with using an OFP, however, is that it 
requires very close integration with the organization 
that developed it. The modeling and simulation team 
was already embedded with the mission systems 
software group and could easily coordinate changes and 
updates. However, this is not always the case. With 
many legacy platforms, the aircraft software may be 
built by one company, upgraded by another, and the 
trainer built by a completely different organization. 
Modeling and simulation groups may run into 
proprietary information issues or simply have difficulty 
gathering accurate system performance data. In these 
cases, the organization may have no other choice than 
to build an emulation of the system and base fidelity on 
training requirements rather than system specifications.  
 
Groups that intend to develop this type of architecture 
should conduct cost benefit analyses to determine 
whether using an OFP is feasible or even possible. They 
should determine upfront risks to gaining data, establish 
proprietary information agreements with the original 
equipment manufacturer (OEM), assess timelines to 
having technical data, and identify subject matter 
experts on both the customer side and OEM side who 
can interpret data or gather missing information. If 
these issues are not clearly established and understood, 
then a system emulation may be a lower risk option.  
 
Product Line vs One-Off 
 
A major difficulty in any software organization is the 
compromise often made between developing a one-off 
product and a product line software package. On one 
hand, the software team has a client or set of clients 
making very specific demands of the product. They 
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want certain features and capability to meet their needs. 
The software team attempts to meet these requirements 
and satisfy customer demands.  
 
However, over time the team may have many 
similarities from product to product. In these situations 
the organization can benefit from a product line 
approach where they attempt to build up the features 
and capabilities into a single product. This makes the 
company more profitable and efficient by not having to 
expend effort to “recreate the wheel” each time. The 
product is therefore cheaper and can be fielded more 
quickly.  
 
The difficulty with a product line approach, though, is 
getting a commitment from leadership and other 
developers to make it work. Because customers levy 
different requirements on a program, the programs are 
typically only interested in satisfying their own 
requirements. They may not care that XYZ program has 
a similar but slightly different requirement. A product 
line perspective and commitment means that leaders 
attempt to compromise between programs while still 
satisfying (or negotiating) with their customers. This is 
not easy to do. Additionally, program leadership should 
be willing to migrate from older systems to updated 
product line systems.  
 
Finally, the commitment to develop a product line also 
means funding updates and improvements. The 
modeling and simulation team was initially supporting 
programs from a reactive point of view, meaning they 
responded to requests from the programs. Eventually, 
though, they requested internal development funds to 
develop a new simulation set that would support the 
programs rather than be reactive to them. Funding is 
also needed to maintain the product and make needed 
improvements. Securing that funding and 
demonstrating a return on investment is essential to the 
success of the team and the effectiveness of the 
software. 
 
Different Programs 
 
Because the simulation set supports so many different 
programs, it has created a difficult situation with 
meeting different development schedules. One program 
may require frequent tests and need weekly software 
updates, while another program is less rigorous and 
requires only monthly updates. 
 
Rather than being at the whim of each of the programs 
the team must be proactive in how it manages its own 
software builds. This includes developing daily and 
weekly builds made available to the programs and 
managing requirements internally. They also prioritize 

fixes, bugs, and updates in a way that supports the 
product line approach and can provide maximum 
benefit to all the users.  
 
Regular coordination with the programs is essential. 
The team actually has bi-weekly meetings with 
program leads to inform them of new functionality and 
changes they will be receiving in their next build. A 
similar meeting is done on a bi-weekly basis within the 
team to ensure everyone knows what improvements are 
coming.  
 

CONCLUSION 
 
Since first implementing the new architecture over four 
years ago, the simulation and modeling team has a 
much greater ability to meet the demands of current and 
future programs. By separating the major components 
and emphasizing a product line approach, team 
members and sub-teams are now able to specialize in 
certain areas. For example, the team currently is divided 
into a modeling group, infrastructure group, and 
test/integration group. Because of the standards 
established early on, the team is more able to provide 
accurate estimates for new work and can easily predict 
how new sensor models, truth engines, and OFPs will 
need to interact with the overall system. This greatly 
decreased time and money on a program and 
significantly decreased risk.  
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