Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

You Can Handle the Truth:
Simulation Architecture for Multiple Truth Engines

James A. Hadley, Steven E. Elrod Timothy E. Etters
The Boeing Company
Kent, WA
james.hadley3@boeing.com, steven.e.elrod@boeing.com, timothy.e.etters@boeing.com

ABSTRACT

High-fidelity training simulation architectures integrate all aspects of the mission system software including the
system emulation, sensor/communication models, and truth engines. While this practice is beneficial for updates and
maintenance, it creates difficulties when attempting to repurpose the training system to other platforms, develop new
models, or reuse models with other truth engines. Additionally, managing multiple projects that require extensive
integration efforts of models and truth engines requires time and money that are ill afforded on tight production
schedules.

The modeling and simulation team for Boeing Surveillance and Engagement supports software test and training
simulations for six intelligence, surveillance, and reconnaissance (ISR) platforms. To support its customers and
requirements, the team developed a simulation architecture that separates truth, simulation models, and mission
system software into different modules. These modules are tightly integrated, but loosely coupled. As a result, both
mission software testing and training system configurations are reconfigurable with multiple truth engines.

This paper reviews key principles on developing a reconfigurable simulation that interfaces with multiple mission
systems, expansion of sensor/subsystem models, and creating a common interface for truth data. It also provides
lessons learned on how to manage the architecture to ensure future flexibility without having to create ad hoc,
single-use solutions. The paper provides guidance on avoiding heavy simulation integration periods from project to
project and creating simulation architectures capable of flexibility, modification, and expansion.

ABOUT THE AUTHORS

James A. Hadley is currently a training systems analyst with The Boeing Company in Kent, WA. He holds a
Masters degree in instructional technology and is currently an Education Ph.D candidate at Capella University. Over
the last ten years, Jim has developed instructional simulations for the U.S. Navy, Department of Energy, and the
pharmaceutical industry. His research interests include instructional design, learning theory, and instructional
product development.

Steven E. Elrod is an Associate Technical Fellow with The Boeing Company. He specializes in simulation software
and software product line architecture for the Surveillance & Engagement organization. Steve has a B.S. in
Electrical Engineering from the South Dakota School of Mines & Technology (1981) and an M.S. in Electrical
Engineering from Stanford University (1985).

Timothy Etters is the first line leader for the AWS 40/45 AWACS Simulation IPT. The Simulation team provides
software for use with mission computing for desktop, labs, and trainers, and provides high fidelity sensor
simulations for Boeing surveillance aircraft. Tim grew up in southern Oregon, he graduated from Whitworth
University in Spokane, WA, with a B.S. in Computer Science and Mathematics as a double major.

2012 Paper No. 12198 Page 1 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

You Can Handle the Truth:
Simulation Architecture for Multiple Truth Engines

James A. Hadley, Steven E. Elrod, Timothy E. Etters
The Boeing Company
Kent, WA
james.hadley3@boeing.com, steven.e.elrod@boeing.com, timothy.e.etters@boeing.com

INTRODUCTION

Flexibility in a simulation comes at a price. As
designers anticipate future improvements, use cases,
and upgrades, they must define a simulation
architecture that can accommodate expansion,
reconfiguration, and modification. In doing so, they
create rigidity and standards into the design, rules that
must be followed in the future to ensure that flexibility
does not result in redesign.

The modeling and simulation designers at Boeing’s
Surveillance and Engagement division faced a difficult
task of designing a simulation software set that could
satisfy a multitude of different needs and customers.
Rather than identifying all requirements upfront and
developing a monolithic simulation set for meeting
those requirements, they developed a flexible
architecture that allowed them to more easily adjust to
changes in the future, and above all, provide the ability
to connect to the various truth engines used by their
customers.

A truth engine is a software application that generates
input data to simulation models. Truth may be a tactical
picture developed by flight instructors, environmental
data for sensors, or a central source for time to several
systems. In this situation, the team worked with many
different truth engines for their Intelligence,
Surveillance, and Reconnaissance (ISR) mission system
software models. Each truth engine had its own output
format, different features, and varying levels of fidelity.
With all the different sources of truth the team was
required to operate with, they needed to develop a
simulation architecture that could accommodate the
differences and future changes.

This paper briefly describes the situation the team faced
and the many facets involved in their solution. Next, it
describes the architecture they created and how it
accommodated their needs. Finally, the paper provides
lessons learned about developing an architecture that
can accommodate multiple truth engines.

2012 Paper No. 12198 Page 2 of 9

THE SITUATION

The Airborne Warning Systems (AWS) mission
computing group with Boeing’s Surveillance and
Engagement division develops software for multiple
platforms and different customers for those platforms.
For example, the group supports mission system
software for the U.S. AWACS Block 30/35, U.S.
AWACS Block 40/45, French AWACS Mid-life
Upgrade, and other domestic and international
platforms. While the mission computing characteristics
are similar, the systems vary in their capability, fidelity,
and output. Additionally, international variants of the
aircraft require adherence to International Trade and
Arms Regulations (ITAR) and export restrictions. All
of these differences require unique software
deployments and quality control standards.

The modeling and simulation team supports the
software development testing group to perform system
verification and validation (SV&V). They develop
sensor, environmental, and ownship models to ensure
mission computing behaves correctly and within the
scope of platform requirements. The group also builds
high fidelity communications models that accurately
represent the tactical environment in today’s network-
centric battle space.

Several years ago the team won a contract to provide a
simulation set for AWS mission system trainers. The
trainers would support up to 15 operator workstations
that could be reconfigured into multiple, independent
scenarios. The customer required that the operational
flight program (OFP) software (the same software that
operates on the aircraft) run on the training device and
that the team have sufficiently high fidelity models to
support it. However, because the team typically
supported SV&YV activities, they did not have instructor
operator software or truth engines that could accurately
portray and support distributed training events as
required by the contract.

The culmination of supporting multiple programs,
ensuring high fidelity models (legacy and future), and

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

developing simulations for both SV&V and training
forced the team software architects to reconsider their
product architecture. Because their role was supporting
mission computing, they were assured the ability to
integrate their product as the company acquired new
platform contracts. However, the need to support
multiple test groups with varying needs, and now the
requirement to support training, ensured that the
simulation set would need to interact with many
different truth engines.

Truth Engines and Requirements

The truth engines used by the team provide information
to the simulation about a tactical environment including
ownship data, terrain, weather, entities, kinematic data,
and also command and control capabilities. The engines
support different types of simulated events such as
stress loading the system with high entity counts,
tactical coordination training, or simply testing system
start up and operation. Many of the customers use their
own truth engines for testing and the simulation team
needed to be assured that their simulation set was
compatible with each of them.

The team attempted to meet the following broad
architecture requirements:

e Accommodate multiple truth sources and
levels of truth fidelity within a single
architecture.

e Allow sensor models to be easily reconfigured
within the simulation to accommodate
different platform configurations.

e Provide high fidelity sensor interfaces to the
operational flight program.

e Deploy the simulation on multiple hardware
configurations including desktops, high-end
stress-load computing, and even the aircraft
platform (airborne embedded training).

Using internal research and development funds, the
team took 18 months to develop the requisite
architecture and simulation set.

THE ARCHITECTURE

Given the new requirements and demands on the
simulation system, the team emphasized rigidity in how
simulation elements integrated, but also wished to
create a flexible system to allow different pieces to
interface with the simulation. This was not a
contradiction of terms, either.

The underlying principles were based on separation of
the three major components of the simulation: the truth

2012 Paper No. 12198 Page 3 of 9

engine, the simulation models, and the operational
flight program (Figure 1).

Truth Engine

Models and
Sim Engine

Operational Flight
Program

Figure 1. Separating the three major components of the
simulation.

The division of these components was both practical
and necessary for two reasons. First, the main software
interfaces occurred between the individual components,
meaning there was natural separation between the
components where data needed to be shared. Second,
the truth engines and the OFPs were both outside the
control of the group. For example, the truth engines
were developed by different groups or companies and
the simulation team had little input in their design or
modifications. The OFP capabilities were determined
by the customer, requiring the simulation group to
eventually model their characteristics. So the team had
the most freedom to develop their architecture in
between those components.

Major Components

Truth Engine Characteristics

Due to customer requirements and internal operations,
the modeling and simulation team was required to use
several different truth engines. Some engines were
proprietary toolsets and could more easily be modified
by the team if necessary. However, several engines
were COTS/GOTS products or, in some cases, provided
by subcontractors to the specific programs. At the time,
a total of seven different truth engines needed to
interface with the simulation.

Some engines were used to record and playback system
performance to test system integration with low-fidelity
input. Other engines provided robust kinematic data
about the tactical environment with terrain and weather
generation capabilities. Engines used for training

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

systems also incorporate distributed protocols such as
the Distributed Interactive Simulation (DIS) format.

While the truth engines varied, they provided the
following characteristics, at widely different fidelity
levels:
e Scenario data
Ownship model data
Synthetic environment
Flight dynamics
Entity attributes

All of these characteristics were managed by a truth
engine executive that coordinated entities and terrain
and maintains scenario time. The scenario files included
information about the entities, such as their location and
cued events. Depending on the truth engine, the
ownship models varied from mere location, heading,
speed, altitude information to specifics about navigation
or sensor system malfunctions. The fidelity of the
synthetic environment differed from engine to engine
for maps, digital terrain elevation data (DTED),
atmospherics, and weather. The flight dynamics model,
or kinematics model, directed how different entities
operated in the environment, such as turning rates for
certain aircraft flying between way points. Finally, the
entity attribute files provided specific information about
each entity such as type, identify friend/foe (IFF) mode
codes, radar cross-section, and weapons loadout.

Out of necessity, the entity attribute files are also shared
directly with the simulation and sensor models because
the data are directly applicable to certain sensors.
Together, the truth engine executive provides data to
the simulation/truth interface (see Figure 2).

Distributed Network (DIS)

Scenario

Ownship Model

SyntheticEnv
Flight Dynamics

wv)
Q
-
-
Ko
-
g
=
L=
(1]

Truth Engine Executive
Sim/Truth Interface

Figure 2. Common truth engine architecture.

2012 Paper No. 12198 Page 4 of 9

Some truth engines allowed several live/virtual
participants and made distributed network capabilities
available to coordinate multiple ownship models and
data link communications. Given customer and internal
requirements, the team used the Distributed Interactive
Simulation (DIS) standard to communicate via protocol
data units (PDUs).

Because the simulation and sensor models required
specific inputs, the team created specifications for the
simulation/truth interface where truth engine data were
translated. This interface is clearly defined and
structured. This strict adherence to interface protocols
was one of the most important characteristics of the
architecture and is explained later.

Models and Simulation Core

The next component of the architecture focused on the
simulation, sensor, and communications models.
Because the mission system was the same software
used on the aircraft, the models had to provide interface
inputs that mimicked actual inputs from the real sensors
and subsystems. Similarly, the models had to accept
inputs from the truth engine that represented
information from the ownship and tactical environment.

In order to support multiple deployments, each model
was designed with strict input/output parameters. This
allowed interchangeability between models under
different mission deployments. For example, the
AWACS aircraft has several international derivatives,
each with similar sensors and communications
subsystems. Due to ITAR issues, these sensors or
subsystems may be limited in capability. The models,
therefore, had to be modified to meet restrictions and
customer requirements. These changes would not
necessarily affect the mission computing software, so
the input/output had to be consistent.

The simulation core manages all of the data from the
truth engine and attribute files to the models. This
model coordinates time, sensor inputs, and navigation.
It also provides data back to the truth engine for
ownship, active sensor activity, and data link activity.
Figure 3 shows a block-level representation of the
model architecture.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

Simulation Core

Active Sensor
Active Sensor
Passive Sensor
Passive Sensor

=
T
0
=
E
0
)
©
oy
>
®
2

Data Comm Model

Figure 3. Block-level representation of the model
architecture.

The simulation architecture and characteristics are
explained in more depth in the following section.

Operational Flight Program

Due to ITAR and proprietary issues, the architecture of
the OFP cannot be discussed in this paper. However,
there are many benefits to using an OFP in a training
simulator versus using a system emulation.

As military systems advance further and further into the
digital age, the ability to integrate mission sensors,
communications, and tracking tools into a single
software set allows for better situational awareness of
the tactical environment and easier maintenance or
updates to the system. Many legacy military aircraft
consist of individual sensors throughout the aircraft,
each with their own processors, displays, and interface
controls. Operators monitor sensors at a work station
consisting of separate displays and indicators to
analyze/identify/track contacts. Multiple operators or
specialists relay sensor data to senior operators or
mission crew members who build the tactical picture
and make decisions about how to employ the platform.

Twenty-first century mission systems, however,
specialize in integrating sensor data and leveraging
digital tools and capabilities to automate many of the
menial tasks, such as establishing a track on a contact,
navigating routes, and analyzing signal data.
Additionally, networked operational workstations allow
mission crew members to share the same data and build
a complete tactical picture. Operators still play an
integral part, but their specialized skills are now
focused on activities that the computing systems cannot
do well such as threat analysis, tactics, and sensor
interpretation.

In modern training systems, many DoD acquisitions are
also leveraging the existing mission computing

2012 Paper No. 12198 Page 5 of 9

software to run natively on the training hardware. This
approach ensures students have concurrency between
the platform and the training device (a situation that is
not common with legacy platforms). This improvement
exposes students to the up-to-date graphical user
interfaces, system behaviors, and actual algorithms used
within the mission system rather than emulations of the
systems that lack fidelity (Turner, Barnes, & Woodall,
1996).

The major benefit of using the OFP on the same
simulation model used for both SV&V activities and for
training is that the simulation models are validated early
on in the development process. Additionally, the
simulation can be deployed in desktop configurations
early on for train-the-trainer activities and courseware
teams can also use the systems for obtaining media and
system functionality information.

The simulation software, then, “plugs” directly into the
mission system software of the OFP, meaning it uses
the same data interfaces as those used on the aircraft
(see Figure 4). The sensor models provide high fidelity
input that can be used for either testing or training.
Again, due to proprietary reasons, the architecture of
the OFP cannot be shown in this diagram.

Distributcd Network {DIS)

Scenario

SyntheticEnv

o
=
(=]
=
=
br=
u
=
2
O

Truth Engine Executive

Flight Dynamics

Entity Attributes

Sim/Truth Interface

Simulation Core

Navigation Model
Data Comm Model
Active Sensor
Active Sensor
Passive Sensor
Passive Sensor

Figure 4. Block diagram of truth engine, simulation, and
OFP components.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

The critical points of this architecture are between the
Sim/Truth Interface and the Simulation Core where
truth data are passed back and forth. Also, note that the
Entity Attributes interface directly with the Simulation
Core as well as the Truth Engine Executive. The Entity
Attribute file aligns with the scenario files and passes
critical sensor data to the sensor models.

In test or training situations involving weather or
terrain, the truth engine manages the synthetic
environment, entity locations within the scenario, and
the ownship model, and then, through the Sim/Truth
Interface, determines if weather or terrain create
occlusion or degradation impacts on the sensor models.
For example, if the DTED information indicates that a
mountain range is blocking an entity from the ownship
line of sight, that information is passed through the
Sim/Truth Interface to the Simulation Core to either
indicate signal loss or degradation to a particular
sensor.

While the overall architecture is extremely complex,
with many interfaces, there are deliberate separations
between the components to ensure flexibility and future
modification. The following section covers the
characteristics of the architecture.

CHARACTERISTICS/BENEFITS OF THE
ARCHITECTURE

In order to meet the heavy requirements the team
created for itself, the simulation needed to have certain
characteristics. One key need was to develop a
capability to reconfigure between the truth engines,
models, and the OFP. Next, the simulation architecture
needed to be scalable to various hardware deployments,
plus resolve time synching and multiple thread
processes. Finally, the developers needed to define how
different truth engines would interface with the
simulation.

Reconfigurability

The goal of a flexible architecture is the ability to
reconfigure the system in many different ways. For
example, as new customers purchase a platform, they
select sensors to meet their mission needs. Some sensor
models may already exist, while others must be created
or modified. In the case of international customers
procuring derivative aircraft, system capability or
fidelity may be limited by export restrictions. In all of
these situations, the ability to develop a library of

B simConfig (=13
File Edit Help
= i T ® %
Truth Engines - | rConfiguration- | rMissionComputing
Truth Engine 1 Truth Engine 3 Platform A
Truth Engine 2 RadioSim Interface 4— Platform B
Truth Engine 3 AWSSIM Truth -~ Platform C
Truth Engine 4 Active Sensor 1 <+ _' Models
Truth Engine 5 RadioSim Interface 44— YT
Truth Engine 6 Ideal Data Link B . -
Truth Engine 3 Passive Sensor4 -+ R:;::Sairff:;:rr:ce
~Applications - Pagsre Soneots niadd Malfunc Sensaor2
Distributed Model <+
Desktop Sensor 1 Ideal Sensor 2
Active Sensor Dr Prototype Sensor3
DIS Netwark 8 ang Data Link A
Df‘ Ideal Data Link A
ATS <) , :
| — Ode fS] Data Link B
Ideal Data Link B
Passive Sensor4
Passive Sensors
Distributed Model
SimConfig started: Fri Jun 01 14:55:52 PDT 2012 |

2012 Paper No. 12198 Page 6 of 9

Figure5. Screen capture of the simulation configuration tool (image
has been altered for export purposes)

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

models is a cost-effective way of
repurposing.

reusing or

To achieve this goal, the team developed a simulation
reconfiguration tool, essentially a software application
allowing users to select a platform, add sensor and
subsystem models, and then choose a truth engine (see
Figure 5).

The tool allowed users to modify the 1/0 scheme they
were using, such as switching between a 1553 data bus
interface or a desktop Ethernet connection. These
options supported different hardware configurations
where the simulation would be deployed. Additionally,
the tool provided settings for software testing such as
log services, measuring instruments, and selecting the
fidelity level of models (ideal scenarios, radar constant
false alarm rates, etc.). Finally, the tool provided inputs
for interface configuration, frame rates, IP addresses,
ports, and exercise IDs. This tool is essential, and upon
configuration creates a script that identifies how all the
elements of the simulation will work in concert with
each other during runtime.

Tightly Integrated, Loosely Coupled

The phrase “tightly integrated, loosely coupled” might
be best be explained with the analogy of Henry Ford’s
use of interchangeable parts in automobiles (McGregor,
Northrop, Jarrad, & Pohl, 2002). Individual parts have a
specific function, such as an oil filter or a carburetor.
However, parts from vehicle to wvehicle are
interchangeable because the vehicle frame and design
provide for it. Rather than building customized
solutions from one vehicle to the next, strict
specifications for placement, inputs, and outputs for
parts accommodate easy removal and replacement of
parts without modification to the structure or part.

This same concept applies to the simulation and
modeling architecture. Individual models follow strict
parameters in relation to receiving simulation core
inputs and mission system outputs. Tightly integrated
refers to having standard interfaces, while loosely
coupled refers to easy removal/replacement of the
models. Likewise, the models interact with only a few
other components in the system. They have a single
function that is independent of the rest of the system
with discrete connectivity to other components.

Scalability

Building full-scale simulations requires vast amounts of
hardware to house databases, process data, and display
tactical situations. Those configurations are difficult to
scale down and operate as a part-task trainer or even a
desktop trainer. The simulation team knew upfront that

2012 Paper No. 12198 Page 7 of 9

the simulation would need to be deployed in various
use cases. These use cases included:
Hardware-in-the-loop

Stimulated to real aircraft hardware

Desktop testing stations

Interim training devices

Full-scale training devices

e On-aircraft embedded training

The team faced several challenges in meeting this
requirement. With several systems needing to
synchronize, they wrestled with resolving time issues.
Also, because of the multiples uses of the simulation,
from load testing to functional testing, they needed a
solution for data processor management.

Time

One of the main difficulties when coordinating between
separate and reconfigurable simulation elements is how
time is handled. Some components, such as the OFP or
sensor models, require consistent and accurate time
representation with sensitive margins for frame
overruns. Time may be defined by the truth engine as
scenario time, or time may be defined by the operating
system based on a hardware timer. However, when the
elements operate over multiple pieces of hardware, all
the elements must synchronize. Otherwise delays and
frame overruns occur, causing the simulation to
represent inaccurate data.

When the team initially developed the architecture, time
was defined by several time events. This created
difficulties with time references. Finally, the team
resolved the issue by centralizing control of the single
timer event within the simulation coupled with prox’ied
control of OFP time. It is the master time/event
manager.

Multithreading

Just as managing time is essential between multiple
elements, processing becomes important when dealing
with potentially different data loads. The team needed
to be able to control and adjust the data threading model
within the simulation core. For functional testing at a
desktop, the simulation may run twenty applications
with only 50 entities in a single sequential thread.
However, when doing stress load testing across
multiple machines with 2,000 entities, it was necessary
to manage the thread model with multiple cores. The
thread model provides mapping to different hardware
configurations such as running the truth engine on one
machine, using hardware in the loop, and even running
simulation models across multiple machines. The team
included capabilities within the simulation
configuration tool to control the multithreading model.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

Because of the different deployment configurations, the
team also needed the ability to either deploy the
software as a single executable file or as multiple
executables launched on different machines. These
elements were defined in the simulation configuration
tool and executed following the configuration files
specification.

Developer Kits

Truth Development Kit (TDK)

Because of the strict I/O parameters for the models and
the simulation engine, the team was able to develop a
development kit specifying how truth engines would
interface with models. This documentation has proven
essential when new projects emerge with either
customer-mandated truth engines or using highly
specialized engines to test mission system software.

One such occasion occurred when the team began
development for an update of a legacy platform. The
government customer was upgrading their OFP but
wished to continue using the same truth engine vendor.
The team subcontracted the vendor and provided them
with the detailed specifications in the developer kit. As
a result, the team was able to develop a completely
integrated solution even though different parts of the
system were designed by different groups.

Model Development Kit (MDK)

The team also created a model development kit for
guidance on developing different models that could be
added to a model library. The kit is beneficial for
expanding the simulation capabilities for different
platforms. For example, the organization needed a new
radar for a ground-based command and control system.
Knowing they would use the simulation architecture,
developers from another organization followed the
MDK to create the needed radar model. As a result, it
easily integrated into the existing simulation, saving a
lot of time and effort trying to define interfaces.

Multipurpose

The benefit of the architecture in the end was that it
allowed the simulation to be wused in multiple
environments. To date, the architecture has been
leveraged for development activities, functional testing,
stress-load testing, training devices, demonstrations,
mission planning, and concept of operations planning.

Another benefit is that testers operate the same user
environment from program to program. Despite having
multiple platforms, the testers are familiar with the tool
sets that are used. Similarly, they are able to reuse

2012 Paper No. 12198 Page 8 of 9

scenario files from program to program with only minor
changes. The overall benefit is having individuals move
across programs but do not have to be retrained or
ramp-up on a completely different set of standards.

LESSONS LEARNED

While the team developed a successful architecture and
continues to improve it, there were many lessons
learned in the process that other organizations can take
advantage of if they initiate a similar architecture.

OFP versus Emulation for Training Simulations

Use of the OFP in a training simulation has many
advantages. It ensures an accurate system
representation for training. Updates to the aircraft
software can be done concurrently in the trainers, thus
ensuring operators are always training with the most
recent version.

The difficulty with using an OFP, however, is that it
requires very close integration with the organization
that developed it. The modeling and simulation team
was already embedded with the mission systems
software group and could easily coordinate changes and
updates. However, this is not always the case. With
many legacy platforms, the aircraft software may be
built by one company, upgraded by another, and the
trainer built by a completely different organization.
Modeling and simulation groups may run into
proprietary information issues or simply have difficulty
gathering accurate system performance data. In these
cases, the organization may have no other choice than
to build an emulation of the system and base fidelity on
training requirements rather than system specifications.

Groups that intend to develop this type of architecture
should conduct cost benefit analyses to determine
whether using an OFP is feasible or even possible. They
should determine upfront risks to gaining data, establish
proprietary information agreements with the original
equipment manufacturer (OEM), assess timelines to
having technical data, and identify subject matter
experts on both the customer side and OEM side who
can interpret data or gather missing information. If
these issues are not clearly established and understood,
then a system emulation may be a lower risk option.

Product Line vs One-Off

A major difficulty in any software organization is the
compromise often made between developing a one-off
product and a product line software package. On one
hand, the software team has a client or set of clients
making very specific demands of the product. They

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

want certain features and capability to meet their needs.
The software team attempts to meet these requirements
and satisfy customer demands.

However, over time the team may have many
similarities from product to product. In these situations
the organization can benefit from a product line
approach where they attempt to build up the features
and capabilities into a single product. This makes the
company more profitable and efficient by not having to
expend effort to “recreate the wheel” each time. The
product is therefore cheaper and can be fielded more
quickly.

The difficulty with a product line approach, though, is
getting a commitment from leadership and other
developers to make it work. Because customers levy
different requirements on a program, the programs are
typically only interested in satisfying their own
requirements. They may not care that XYZ program has
a similar but slightly different requirement. A product
line perspective and commitment means that leaders
attempt to compromise between programs while still
satisfying (or negotiating) with their customers. This is
not easy to do. Additionally, program leadership should
be willing to migrate from older systems to updated
product line systems.

Finally, the commitment to develop a product line also
means funding updates and improvements. The
modeling and simulation team was initially supporting
programs from a reactive point of view, meaning they
responded to requests from the programs. Eventually,
though, they requested internal development funds to
develop a new simulation set that would support the
programs rather than be reactive to them. Funding is
also needed to maintain the product and make needed
improvements. Securing that funding and
demonstrating a return on investment is essential to the
success of the team and the effectiveness of the
software.

Different Programs

Because the simulation set supports so many different
programs, it has created a difficult situation with
meeting different development schedules. One program
may require frequent tests and need weekly software
updates, while another program is less rigorous and
requires only monthly updates.

Rather than being at the whim of each of the programs
the team must be proactive in how it manages its own
software builds. This includes developing daily and
weekly builds made available to the programs and
managing requirements internally. They also prioritize

2012 Paper No. 12198 Page 9 of 9

fixes, bugs, and updates in a way that supports the
product line approach and can provide maximum
benefit to all the users.

Regular coordination with the programs is essential.
The team actually has bi-weekly meetings with
program leads to inform them of new functionality and
changes they will be receiving in their next build. A
similar meeting is done on a bi-weekly basis within the
team to ensure everyone knows what improvements are
coming.

CONCLUSION

Since first implementing the new architecture over four
years ago, the simulation and modeling team has a
much greater ability to meet the demands of current and
future programs. By separating the major components
and emphasizing a product line approach, team
members and sub-teams are now able to specialize in
certain areas. For example, the team currently is divided
into a modeling group, infrastructure group, and
test/integration group. Because of the standards
established early on, the team is more able to provide
accurate estimates for new work and can easily predict
how new sensor models, truth engines, and OFPs will
need to interact with the overall system. This greatly
decreased time and money on a program and
significantly decreased risk.

ACKNOWLEDGEMENTS

Special thanks to all the members of the AWSSim team
for their hard work and dedication. Thanks to Paul
Phillips for bird-dogging our paper and providing
valuable feedback. Also, a special vote of gratitude for
the testers and program leads who provide input to
improve the simulation. And finally, thanks to our
families for supporting us through the long hours and
arduous times.

REFERENCES

McGregor, J.D., Northrop, L.M., Jarrad, S., & Pohl, K.
(2002). Initiating software product lines. IEEE
Software 19(4), p. 24-27.

Turner, C., Barnes, K., and Woodall, K. (1996). Use of
operational flight programs (OFPS) on maintenance
trainers. Proceedings of the Interservice/Industry
Training, Simulation, and Education Conference
1996. Orlando, FL.

