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ABSTRACT

Human activity Modeling and Simulation (M&S) plays an important role in simulation-based training and Virtual
Reality (VR). However, human activity M&S technology currently used in various simulation-based training tools
and VR systems lacks sufficient biofidelity and thus is not able to describe and demonstrate the nuances of human
activities and human signatures. This inadequacy becomes crucial when the training or the use of VR is human
centered, such as human threat recognition training and dismount detection training. Human signatures that can be
observed from a fairly long distance include body shape, gesture, and motion. In recent years, the Air Force
Research Laboratory has investigated human modeling and simulation with high biofidelity, with an emphasis on
true human shape and motion. This paper presents the technical development from these investigations, which
include (a) static shape modeling and morphing; (b) pose modeling and dynamic modeling; (c) motion capture (in
particular, markerless motion capture); (d) inverse kinematics and motion mapping/creation; and (e) creation and
replication of human activity in 3-D space with true shape and motion. A brief review is conducted to discuss the
methods and techniques related to these topics, along with some research results. Examples are provided to illustrate
the importance of biofidelity in the simulation-based training.

ABOUT THE AUTHORS

Dr. Zhiging Cheng is a principal engineer of Infoscitex Corporation, providing support to the Air Force Research
Laboratory (AFRL) for the programs of human identification and activity recognition based on human bio-
signatures. He has vast research experience in the areas of human modeling and simulation, artificial intelligence
and machine learning, computer vision, and optimization. He has assumed many R&D projects as the principal
investigator or as a major investigator and has published over 70 technical papers as the lead author. Currently, as a
technical lead, he is working on the HMASINT program, a multi-directorate endeavor by the AFRL, to develop
technologies for human measurement and intelligence information.

Dr. John Camp is a computer research scientist employed by the United States Air Force Research Laboratory
(AFRL). Dr. Camp is the Government lead for AFRL's biofidelic human avatar program. As a program manager,
he has been responsible for the successful development and implementation of a wide variety of products
representing virtual humans in modeling and simulation. His research interests include computer vision and
graphics. Dr. Camp received a B.S. in mathematics from the University of Florida, a Masters in computer systems
from the Air Force Institute of Technology, and a Ph.D. in Computer Engineering from Wright State University.

Dr. Darrell Lochtefeld is a senior operations research analyst employed by the United States Air Force Research
Laboratory (AFRL). As a scientist for the H-MASINT program, Dr. Lochtefeld directs and executes basic and
applied research related to the discovery and exploitation of human biosignatures. His research interests include
heuristic optimization, computational intelligence, data mining, modeling and simulation, and computer vision. Dr.
Lochtefeld is the author of numerous conference proceedings, technical papers, and journal papers including
research appearing in the Journal of Soft Computing and IEEE Transactions on Evolutionary Computation. Dr.
Lochtefeld received a B.S. in computer science from Wright State University, a Masters in Business Administration
(MBA) from the Ohio State University, and a Ph.D. in engineering from Wright State University.

2012 Paper No. 12038 Page 1 of 10


mailto:zcheng,%20smosher%7d@infoscitex.com
mailto:jsmith,%20idavenport%7d@infoscitex.com
mailto:john.camp@wpafb.af.mil
mailto:darrell.lochtefelt@wpafb.af.mil

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

Human Activity Modeling and Simulation with High Biofidelity

Zhiging Cheng, Stephen Mosher
Jeanne Smith, and Isiah Davenport
Infoscitex Corporation
Dayton, Ohio, USA
{zcheng, smoshert@infoscitex.com
{jsmith, idavenport}@infoscitex.com

INTRODUCTION

Human activity modeling and simulation (M&S) plays
an important role in simulation-based training and
virtual reality (VR). However, the human activity M&S
technology currently used in most simulation-based
training tools and VR systems lacks sufficient realism.
In order to virtually describe and demonstrate the
nuances of human activities and human signatures,
modeling human shape and motion with high
biofidelity is crucial.

Using conventional human modeling tools (e.g.,
Blender, 3dsMax, and Maya) or game engines (e.g.,
CryEngine 3, VBS2, and Delta3D), human activity
modeling includes character building that creates its
shape model and character animation that drives the
model with the prescribed motion, both of which are
associated with a skeleton model of the character. The
shape model is defined by the surfaces attached to the
skeleton, and the process of attaching surfaces to the
skeleton is usually called skinning. The prescribed
motion is given by the gross motion (translation and
rotation of the whole body) and a sequence of poses
that in turn, is defined by the joint angles for each pose.
As the skeleton is driven by the prescribed motion, the
attached surfaces will move accordingly and deform in
a certain pattern which is controlled by specific
blending schemes of the tools used. Therefore, in order
to achieve high biofidelity for human activity M&S, it
is essential to attain high biofidelity in the M&S of
human shape and motion.

From the perspective of the motion status of a subject
to be modeled, human shape modeling can be classified
as either static or dynamic. Static shape modeling
creates a model to describe the human shape at a
particular pose, usually a standing pose. The static
model can be used for human activity modeling as a
character shape model. Dynamic shape modeling deals
with shape variations due to pose changes or due to the
subject being in motion. Apart from conventional
approaches for human activity modeling and
simulation, dynamic shape modeling has emerged as a
viable alternative technique and shown its great
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potential for human activity modeling. Dynamic human
shape modeling describes human shape changes during
motion and thus can be used to directly replicate
human activities in a 3-D space.

In recent years, a series of research activities has been
performed at the Air Force Research Laboratory on
human modeling and simulation, with an emphasis on
high biofidelity and the goal to recognize human
activities. This paper presents the results of these
studies, along with discussions on the topics of static
and dynamic human shape modeling, human motion
capture and creation, and human activity replication
and creation.

STATIC HUMAN SHAPE MODELING

Software tools such as MakeHuman
(http://www.makehuman.org/, a free software tool) are
now available to create various generic human shape
models with input parameters for gender, height,
weight, etc. While these human shape models provide a
realistic, graphical description of human body shape,
they are often not able to depict the unique features that
are associated with an individual or with a particular
racial or ethnic group and thus lack the desired
biofidelity. With advances in surface digitization
technology, a 3-D surface scan of the whole body can
be acquired in a few seconds. Whole body 3-D surface
scans provide a very detailed capture of the body
shape. Based on body scan data, human shape
modeling with high biofidelity becomes possible.
However, scan data files are usually very large and
noisy and require further processing before becoming
usable for shape modeling. The major issues involved
with static shape modeling using scan data include
surface registration, shape variation characterization,
and shape reconstruction.

Surface Registration

Surface registration or point-to-point correspondence
among the scan data of different subjects is essential to
many problems of human shape modeling, such as
shape parameterization and characterization, human
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shape variability (Allen et al., 2003; Azouz et al.,
2005), and pose modeling and animation (Allen et al.,
2002; Anguelov et al., 2005) where multiple subjects
or multiple poses are involved. The method used for
surface registration in this paper is called Coherent
Point Drift (CPD), which can be used to register two
point sets rigidly or non-rigidly. The description of
CPD is provided in (Myronenko and Song, 2010).
Often, the number of surfaces (accordingly the number
of points) of the original scan data may be too large to
be handled by the available computer memory on a
typical workstation.  Also, the original data may
contain poorly formed polygons, webs between
adjacent surfaces such as fingers and holes in the mesh.
Therefore, the original scan data were smoothed and
then simplified. After the number of faces was reduced
to 20,000, the registration process was successfully
completed.  Figures 1 (a) and (b) illustrate the
registration results of two different subjects in the same
pose.

(b) After Registration
Figure 1. Surface (point-to-point) registration between
two different subjects in the same pose
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Shape Variation Characterization

The human body comes in many shapes and sizes.
Characterizing human shape variation is traditionally
the subject of anthropometry—the study of human
body measurement. The sparse measurements of
traditional anthropometric shape characterization
curtail its ability to capture the detailed shape
variations needed for realism. While characterizing
human shape variation based on a 3-D range scan could
capture the details of shape variation, the method relies
on three conditions: noise elimination, hole-filling and
surface completion, and point-to-point correspondence.
Also, whole body scanners generate large data files that
cannot be used directly for shape variation analysis.
Therefore, it is necessary to convert 3-D scans to a
compact representation that retains information of the
body shape. Principal components analysis (PCA) has
often been used as a solution to the problem. Allen et
al. (2003) captured the variability of human shape by
performing PCA over the displacements of the points
from the template surface to an instance surface.
Anguelov et al. (2005) also used PCA to characterize
the shape deformation and then used the principal
components for shape completion. Ben Azouz et al.
(2005) applied PCA to the volumetric models where
the vector is formed by the signed distance from a
voxel to the surface of the model.

Shape Parameterization

For human shape modeling, it is desirable to have a set
of parameters to describe human shape and its variation
among different subjects. Human body shape can be
parameterized in three different levels.

e Using surface elements. After surface registration
of scan data among all subjects, the same set of
vertices or other surface elements can be used to
describe different body shapes (3D surfaces)
(Allen et al., 2003; Anguelov et al., 2005). In other
words, different body shapes are parameterized by
the same set of vertices. While this method of
characterization usually incurs a large number of
parameters, a body shape can be directly generated
from these parameters.

e Using principal component coefficients. After
PCA, human body shape space is characterized by
principal components. Each shape can be projected
onto the eigenspace formed by principal
components. Within this space, a human shape
can be parameterized by its projection coefficients
(Allen et al., 2003; Azouz et al., 2005). If the full
eigenspace is used, perfect reconstruction can be
achieved from the parameters to the body shape.

e Using anthropometric features. The relationship
between eigenvectors and human anthropometric
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features (e.g., height and weight) can be
established through regression analysis (Allen et
al., 2003; Azouz et al., 2005), and then a body
shape can be parameterized by these features. This
type of parameterization is not an exact mapping
between a human body shape and its
anthropometric features. Perfect reconstruction of
a body shape usually cannot be achieved given a
limited number of features.

Shape Reconstruction

Given a number of scan data sets of different subjects,

a novel human shape can be created that will have

resemblance to the samples but is not the exact copy of

any existing one. This can be realized in three ways.

e Interpolation or morphing. One shape can be
gradually morphed to another by interpolating
between their vertices or other graphic entities. In
order to create a faithful intermediate shape
between two individuals, it is critical that all
features are well-aligned; otherwise, features will
cross-fade instead of move. Figure 2 illustrates
shape morphing from one male subject to a female
subject performed by the authors (Cheng et al,
2009).

e Reconstruction from eigenspace. After PCA
analysis, the features of sample shapes are
characterized by eigenvectors or eigen-persons
which form an eigenspace. Any new shape model
can be generated from this space by combining a
number of eigen-persons with appropriate
weighting factors (Azouz et al., 2005).

o Feature-based synthesis. Once the relationship
between human anthropometric features and
eigenvectors is established, a new shape model can
be constructed from the eigenspace with desired
features by editing multiple correlated attributes,
such as height and weight (Allen et al., 2003) or
fat percentage and hip-to-waist ratio (Seo et al.,
2003).
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Figure 2. Morphing from one subject to another
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DYNAMIC SHAPE MODELING

Dynamic shape modeling deals with shape variations
due to pose changes or due to the subject being in
motion. Two major issues involved in dynamic shape
modeling are surface (shape) deformation with respect
to pose changes and dynamic shape capture and
reconstruction.

Body Deformation Modeling

Two main approaches for modeling body deformations
are anatomical modeling and example-based modeling.
The anatomical modeling is based on an accurate
representation of the major bones, muscles, and other
interior structures of the body (Aubel and Thalmann
2001). The finite element method is the primary
modeling technique used for anatomical modeling. In
the example-based approach, a model of some body
part in several different poses with the same underlying
mesh structure can be generated by an artist. These
poses are correlated to various degrees of freedom,
such as joint angles. Lewis et al. (2000) and Sloan et al.
(2001) developed similar techniques for applying
example-based approaches to meshes. Instead of using
artist-generated models, recent work on the example-
based modeling uses range-scan data. Allen et al. (2002
& 2003) presented an example-based method for
calculating skeleton-driven body deformations. Their
example data consists of range scans of a human body
in a variety of poses. Using markers captured during
range scanning, a kinematic skeleton is constructed
first to identify the pose of each scan. Then a mutually
consistent parameterization of all the scans is
constructed using a posable subdivision surface
template. Anguelov et al. (2005) developed a method
that incorporates both articulated and non-rigid
deformations. A pose deformation model was
constructed from a training set of scan data that derives
the non-rigid surface deformation as a function of the
pose of the articulated skeleton. A separate model of
shape variation was derived from the training data also.
The two models were combined to produce a 3-D
surface model with realistic muscle deformation for
different people in different poses. The integrated
model is called SCAPE (Shape Completion and
Animation of People).

The method developed for pose deformation modeling
in this paper employs the template model associated
with the pose data set (Anguelov et al. 2005). It
consists of 16 segments, each of which has the pre-
defined surface division. The method consists of
multiple steps, which are described below.
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Coordinate Transformation

The body shape variations caused by pose changing
and motion can be decomposed into rigid and non-rigid
deformation. Rigid deformation is associated with the
orientation and position of segments.  Non-rigid
deformation is related to the changes in shape of soft
tissues associated with the segments in motion, which,
however, excludes local deformation caused by muscle
action alone. In the global (body) coordinate system, a
segment surface has the articulated motion and surface
deformation. However, in the local (segment)
coordinate system, a segment surface has deformation
only. Therefore, by transforming the global coordinate
system to the local system, the effect of the articulated
motion on each segment could be eliminated.

Surface Deformation Characterization

Suppose the surface deformations of each segment are
collected in all poses. Then PCA can be used to find
the principal components of the surface deformation
for each segment. Figure 3 illustrates the eigen value
percentage ratio in each component (total 70) of all
segments (total 16). It is shown that for all segments,
the wvariance (eigen wvalue ratio) of principal
components increases sequentially, and significant
principal components are those from the order of 60 to
70. As PCA exploits the underlying characteristics of a
data set, the surface deformation of a segment in all
observed poses can be characterized by these principal
components. The surface deformation in a particular
pose can be decomposed or projected in the space that
is formed by the PCs. Each decomposition/projection
coefficient represents the contribution or effect from
the corresponding PC.
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Figure 3. Eigen value ratio for all 16 segments.

Surface Deformation Reconstruction

The decomposition/projection coefficients can be used
to reconstruct surface deformation. There are two types
of reconstruction: (a) Full reconstruction, which uses
all the PCs or eigenvectors; and (b) Partial
reconstruction, which uses a number of significant PCs.
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Figure 4 illustrates the reconstructed shape for 2
different poses. In each row of Figure 4, the first is the
original shape, the second is the shape from full
reconstruction, and the third and fourth are the shapes
from partial reconstruction with 20 and 10 largest PCs,
respectively. It is shown that the full reconstruction can
completely reconstruct the original surface deformation
in all poses, which means it is a perfect reconstruction,
and partial reconstruction can provide a reasonable
approximation of the original shape. While full
reconstruction provides complete reconstruction of the
original deformation, it is not necessary in many cases.
On the other hand, the accuracy of partial
reconstruction can be controlled by selecting a proper
number of significant PCs. As partial reconstruction
provides a reasonable simplification or approximation
to the original deformation, it is often used in practice.

B 7A }
(b) Pose-2

Figure 4. Shape reconstruction using principal
components (First column: original shape; second
column: full reconstruction; Third column: partial
reconstruction with 20 largest PCs; Fourth column

partial reconstruction with 10 largest PCs).

Surface Deformation Representation

As the surface deformation of a segment is assumed to
depend only on the rotation of the joint(s) connected,
the relationship between the surface deformation and
joint rotations has to be known. Joint rotations can be
conveniently represented by their twist coordinates.
The surface deformation can be compactly represented
by its decomposition/projection coefficients. Ideally,
the surface deformation can be expressed as a function
of joint rotations. The relation between surface
deformation and joint rotations can be linear or
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nonlinear. An appropriate function needs to be
identified. The same function can be applied to all
poses. Then, the measurement of surface deformation
and joint rotations in all poses can be used to estimate
the parameters of the function.

Surface Deformation Prediction

It is not feasible to measure the surface deformation of

each segment for all possible poses, because the human

body has a large number of degrees of freedom and can
take virtually an infinite number of different poses. As

a matter of fact, only a limited number of poses can be

investigated in tests, but it is often required to predict

surface deformation for new poses that have not been
observed. Three methods can be used to predict surface
deformation.

*  Method-1: using principal components. Given the
joint twist angles for a segment to define a
particular pose, projection coefficients can be
estimated. Using the full or a partial set of
principal components, the surface deformation is
reconstructed.

* Method-2: taking the nearest neighbor pose.
Given the joint twist angles, find the nearest
neighbor to the prescribed pose and take its surface
deformation as an  approximation.  The
neighborhood is measured in terms of the
Euclidean distance between the joint twist angles
for the two poses.

e Method-3: interpolating between two nearest
neighbors. Given the joint twist angles, find two
nearest neighbors to the prescribed pose. The pose
deformation is determined by interpolating
between the deformations of these two neighbor
poses.

Figure 5 illustrates the predicted shape for 8 different
poses using method-2.

Figure 5. Predicted shape in 8 different poses.
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Dynamic Shape Capture and Reconstruction

Dynamic Shape Capture

During dynamic activities, the surface of the human
body moves in many subtle but visually significant
ways: bending, bulging, jiggling, and stretching. Park
and Hodgins (2006) developed a technique for
capturing and animating those motions using a
commercial motion capture system with approximately
350 markers. Supplemented with a detailed, actor
specific surface model, the motion of the skin was then
computed by segmenting the markers into the motion
of a set of rigid parts and a residual deformation.
Sand et al. (2003) developed a method (a needle
model) for the acquisition of deformable human
geometry from silhouettes. New technologies are
emerging that can capture body shape and motion
simultaneously at a fairly high frame rate (Nguyen and
Wang, 2010; Izadi et al., 2011).

Shape Reconstruction from Imagery Data

e From Photos

Seo et al. (2006) presented a data-driven shape model
for reconstructing human body models from one or
more 2D photos. A data-driven, parameterized
deformable model acquired from a collection of range
scans of a real human body is used to complement the
image-based reconstruction by leveraging the quality,
shape, and statistical information accumulated from
multiple shapes of range-scanned people. Guan et al.
(2009) developed a method for estimating human body
shape from a single photograph or painting.

e From Video Sequences

The recent work done by Balan et al. (2007) proposed a
method for recovering human shape models directly
from images. Specifically, the human body shape is
represented by the SCAPE (Anguelov et al., 2005) and
the parameters of the model are directly estimated from
image data. A cost function between image
observations and a hypothesized mesh is defined and
the problem is formulated as an optimization. Hasler et
al. (2009a) developed a method to estimate the detailed
3-D body shape of a person even if heavy or loose
clothing is worn. Within a space of human shapes
learned from a large database of registered body scans,
the method fits a template model (a 3-D scan model of
a person wearing clothes) to the silhouettes of video
images using ICP (iterative closest point) registration
and Laplacian mesh deformation.

HUMAN MOTION CAPTURE AND
PREDICTION

Motion capture (mocap) technologies can be marker-
based or vision-based. The challenges for motion
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analysis involve inverse kinematics (IK) and motion
mapping and creation.

Marker-Based Motion Capture

As a traditional technique, marker-based motion
capture technology has been developed to an advanced
level that provides accurate and consistent
measurements of body motion. The markers used in
motion capture can be aligned with those used during
body scanning thus providing some correspondence
between body shape and skeleton motion. Various
software tools are available for the analysis of motion
capture data. The major limitations of marker-based
motion capture technology include (a) it can only be
used in a laboratory environment; (b) it has a limited
coverage space; and (c) it requires subject cooperation.
Several new technologies are emerging that use sensors
mounted on the body (e.g., RF, accelerometers
(Tautges et al., 2010), or mini-cameras (Shiratori et al.,
2011)), enabling open-field motion capture.

Markerless Motion Capture

As an active research area in computer vision for
decades, markerless or vision-based human motion
analysis has the potential to provide an inexpensive,
unobtrusive solution for the estimation of body poses
and motions. Extensive research efforts have been
performed in this domain (Moeslund et al., 2006),
which have been motivated by the fact that many
application areas, including surveillance, human-
computer interaction and automatic annotation, will
benefit from a robust solution to the problem (Poppe
2007). Agarwal and Triggs (2006) developed a
learning-based method for recovering 3-D human body
pose from single images and monocular image
sequences. Their approach requires neither an explicit
body model nor prior labeling of body parts in the
image. Instead, it recovers pose by direct nonlinear
regression against shape descriptor vectors extracted
automatically from image silhouettes. A recent
development is capturing motion and dynamic body
shape simultaneously from video imagery. Using
SCAPE (Anguelov et al., 2005), Balan et al. (2007)
developed a method for estimating the model
parameters directly from image data. Their results
showed that such a rich generative model as SCAPE
enables the automatic recovery of detailed human
shape and pose from images. Hasler et al. (2009b)
presented an approach for markerless motion capture of
articulated objects, which are recorded with multiple
unsynchronized moving cameras. Instead of using
fixed (and expensive) hardware synchronized cameras,
their approach is able to track people with off-the-shelf
handheld video cameras.
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The approach developed by Agarwal and Triggs (2006)
was implemented in this paper for markerless motion
capture. As shown in Figure 6, using body scan and
mocap data collected in the AFRL 3dHSL Lab, 3-D
models were created for four activities (digging,
walking, jogging, and throwing) using Blender
(http://www.blender.org/). By animating the model of
each activity, a sequence of 3-D shape models was
generated for each activity, from which a sequence of
silhouettes was derived. By establishing the
relationship between image features (which are
described by the histogram of shape context of
silhouettes) and joint angles (which are used to define
poses), the motion of the subject (which is defined by a
sequence of poses) is captured. The resulting motion is
applied to the skeleton shown in each image in Figure
6, matching the animation’s motion.

(c) Jogging
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(d) Throwing
Figure 6. Markerless motion capture from 2-D video
imagery

Inverse kinematics

Inverse kinematics, the process of computing the pose
of a human body from a set of constraints, is widely
used in computer animation. However, the problem is
often underdetermined. While many poses are possible,
some poses are more likely than others. In general, the
likelihood of poses depends on the body shape and
style of the individual person. Grochow et al. (2004)
developed an inverse kinematics system based on a
learned model of human poses that can produce the
most likely pose satisfying the prescribed constraints in
real time. Training the model on different input data
leads to different styles of IK. The model is represented
as a probability distribution over the space of all
possible poses. This means that the model can generate
any pose, but prefers poses that are most similar to the
space of poses in the training data. A common task of
IK is to derive joint angles from markers, for which,
OpenSim (https://simtk.org/home/opensim), an open
source software package can be used.

Motion Mapping

Motion mapping and motion generation are two issues
related to IK but have independent significance. It is
desirable to map the motion from one subject to
another, because it is not feasible to do motion capture
for every subject and for every motion or activity. By
assuming that different subjects will take the same key
poses in an action or motion, one approach is mapping
joint angles from one to another, as shown in Figure 7
where motion is mapped onto 3dsMax biped models.
Note that since the pelvis is usually treated as the
reference segment, the hip joint center vertical location
needs to be adjusted to reflect the variation of subject
size in order to ensure appropriate contact between the
feet and the ground. While motion mapping may be
fairly natural and realistic, it may not be able to provide
sufficiently high biofidelity, because the differences
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between human bodies and the interaction between
human body and boundaries are ignored.

Figure 7. Mapping the captured motion into a group
Motion Creation

One method of motion creation is to create several key
poses (frames) and then fills the gaps between those
key poses via interpolation. This approach is often used
by game developers. The created motion is based on
human imagination and thus lacks realism and
biofidelity, as shown in Figure 8. Alternatively,
motion creation can be handled in more rigorous and
scientific ways. Wei et al. (2011) showed how
statistical motion priors can be combined seamlessly
with physical constraints for human motion modeling
and generation. The key idea of the approach is to learn
a nonlinear probabilistic force field function from
prerecorded motion data with Gaussian processes and
combine it with physical constraints in a probabilistic
framework. In addition, they showed how to effectively
utilize the new model to generate a wide range of
natural-looking motions that achieve the goals
specified by users. Some tools were developed for
motion creation based on biomechanics and physics,
such as DANCE (http://www.arishapiro.com/), which
is used for physics-based animation research, including
dynamic simulation of rigid bodies, motion capture and
dynamic control.

A A

META META

Figure 8. The comparison between two animations
(mocap data vs. key framing data)
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ACTIVITY REPLICATION AND CREATION
Replication

Activity replication is replicating a human activity that
was recorded from a human subject in a laboratory
using 3-D modeling. Technologies that are capable of
capturing human motion and 3-D dynamic shapes of a
subject during motion are not yet ready for practical
use. Data that can be readily used for 3-D activity
replication are not currently available. Alternatively, a
motion capture system can be used to capture markers
on the body during motion and a 3-D body scanner can
be used to capture the body shape in a pose. Based on
the body scan data and motion capture data, animation
techniques can be used to build a digital model to
replicate a human activity in 3-D space.

In this paper, open-source software was used for
activity replication. MeshLab
(http://meshlab.sourceforge.net/) was used to process
3-D scan data, OpenSim was used to derive skeleton
models and the associated joint angles from motion
capture data, and Blender was used to create an
animation model that integrated body shape and
motion. Human subject testing for data collection on
human activities was conducted in the 3-D Human
Signatures Laboratory (3DHSL) at the Air Force
Research Laboratory (AFRL). The data collected
included scans and mocap data.

The body scan data acquired consists of a large number
of data points (vertices) (typically a half-million or
more) and may contain holes and large openings. The
data were processed so that it could be used for the
modeling. MeshLab was used to clean-up the data and
to fill holes. Smoothing and approximation functions
in MeshLab were implemented to reduce the total
number of faces for each subject scan to 50,000 and to
create meshes of the body shape required for the
modeling. OpenSim was used to derive a skeleton
model from mocap data (TRC file) and to calculate the
joint angles for the skeleton. The skeleton model and
associated joint angles were put in a Bio-vision
Hierarchical (BVH) file. Both the body surface mesh
data and the BVH file were imported into Blender.
Blender was used to integrate the shape with the
motion and to create an animation model that replicates
an activity. Figure 9 shows the models created for four
activities (jogging, limping, shooting, and walking) at a
particular frame. Note that activity replication can be
done using commercial modeling tools (e.g., Autodesk
3dsMax and Maya).

Creation
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Activity creation involves motion creation and
dynamic shape creation. While some methods have
been developed for motion creation, many issues
remain. Creating a dynamic shape for any pose or
activity is still a challenging task. Alternatively, in the
following example, by matching body shape data with
mocap data, two activities (diving-rolling and running-
ducking) were created using body scan data and mocap
data collected from different subjects. The mocap data
for the two activities were derived from the Carnegie
Mellon ~ University (CMU) mocap database
(http://mocap.cs.cmu.edu/). Using the lengths of major
segments as the search criteria, the body shape data
were derived from the CAESAR (Civilian American
and European Surface Anthropometry Resource)
database (Robinette et al., 1999). Then, 3-D animation
models were created using Blender which fuses the
shape and motion information together and deforms the
body shape in accordance with body motion , as shown
in Figure 10.

Figure 9. Replication of a subject in four activities:
limping, jogging, shooting, and walking.

(a) Diving-rolling (b) Running-ducking
Figure 10. Activity creation using body scan data and

mocap data from different subjects.

CONCLUSIONS

Biofidelity is a critical factor when human activity
M&S is used in a virtual reality or training system that
is human centered. In order to attain high biofidelity, a
concerted effort for accurate human shape and motion
data collection, motion analysis, and shape modeling
must be undertaken. Based on subject tests and data
collection, human activities can be replicated in 3-D
space with fairly high biofidelity. The data-driven
human activity models can be incorporated into highly
fidelic 3-D scenario models to provide natural and
realistic exposure and experience to trainees/users.
However, it is not feasible to collect data for every


http://meshlab.sourceforge.net/
http://mocap.cs.cmu.edu/
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subject and for every activity. Therefore, it is necessary
to develop technologies for creating activities. Activity
creation relies on dynamic shape modeling and motion
creation, for which further investigations are needed to
overcome remaining technical obstacles.
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