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ABSTRACT 

 

Human activity Modeling and Simulation (M&S) plays an important role in simulation-based training and Virtual 

Reality (VR). However, human activity M&S technology currently used in various simulation-based training tools 

and VR systems lacks sufficient biofidelity and thus is not able to describe and demonstrate the nuances of human 

activities and human signatures. This inadequacy becomes crucial when the training or the use of VR is human 

centered, such as human threat recognition training and dismount detection training. Human signatures that can be 

observed from a fairly long distance include body shape, gesture, and motion. In recent years, the Air Force 

Research Laboratory has investigated human modeling and simulation with high biofidelity, with an emphasis on 

true human shape and motion. This paper presents the technical development from these investigations, which 

include (a) static shape modeling and morphing; (b) pose modeling and dynamic modeling; (c) motion capture (in 

particular, markerless motion capture); (d) inverse kinematics and motion mapping/creation; and (e) creation and 

replication of human activity in 3-D space with true shape and motion. A brief review is conducted to discuss the 

methods and techniques related to these topics, along with some research results. Examples are provided to illustrate 

the importance of biofidelity in the simulation-based training.  
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INTRODUCTION 

Human activity modeling and simulation (M&S) plays 

an important role in simulation-based training and 

virtual reality (VR). However, the human activity M&S 

technology currently used in most simulation-based 

training tools and VR systems lacks sufficient realism. 

In order to virtually describe and demonstrate the 

nuances of human activities and human signatures, 

modeling human shape and motion with high 

biofidelity is crucial.  

 

Using conventional human modeling tools (e.g., 

Blender, 3dsMax, and Maya) or game engines (e.g., 

CryEngine 3, VBS2, and Delta3D), human activity 

modeling includes character building that creates its 

shape model and character animation that drives the 

model with the prescribed motion, both of which are 

associated with a skeleton model of the character. The 

shape model is defined by the surfaces attached to the 

skeleton, and the process of attaching surfaces to the 

skeleton is usually called skinning. The prescribed 

motion is given by the gross motion (translation and 

rotation of the whole body) and a sequence of poses 

that in turn, is defined by the joint angles for each pose. 

As the skeleton is driven by the prescribed motion, the 

attached surfaces will move accordingly and deform in 

a certain pattern which is controlled by specific 

blending schemes of the tools used.  Therefore, in order 

to achieve high biofidelity for human activity M&S, it 

is essential to attain high biofidelity in the M&S of 

human shape and motion.   

  

From the perspective of the motion status of a subject 

to be modeled, human shape modeling can be classified 

as either static or dynamic. Static shape modeling 

creates a model to describe the human shape at a 

particular pose, usually a standing pose. The static 

model can be used for human activity modeling as a 

character shape model. Dynamic shape modeling deals 

with shape variations due to pose changes or due to the 

subject being in motion. Apart from conventional 

approaches for human activity modeling and 

simulation, dynamic shape modeling has emerged as a 

viable alternative technique and shown its great 

potential for human activity modeling. Dynamic human 

shape modeling describes human shape changes during 

motion and thus can be used to directly replicate 

human activities in a 3-D space.   

 

In recent years, a series of research activities has been 

performed at the Air Force Research Laboratory on 

human modeling and simulation, with an emphasis on 

high biofidelity and the goal to recognize human 

activities. This paper presents the results of these 

studies, along with discussions on the topics of static 

and dynamic human shape modeling, human motion 

capture and creation, and human activity replication 

and creation.   

 

STATIC HUMAN SHAPE MODELING 

 

Software tools such as MakeHuman 

(http://www.makehuman.org/, a free software tool) are 

now available to create various generic human shape 

models with input parameters for gender, height, 

weight, etc. While these human shape models provide a 

realistic, graphical description of human body shape, 

they are often not able to depict the unique features that 

are associated with an individual or with a particular 

racial or ethnic group and thus lack the desired 

biofidelity. With advances in surface digitization 

technology, a 3-D surface scan of the whole body can 

be acquired in a few seconds. Whole body 3-D surface 

scans provide a very detailed capture of the body 

shape. Based on body scan data, human shape 

modeling with high biofidelity becomes possible. 

However, scan data files are usually very large and 

noisy and require further processing before becoming 

usable for shape modeling. The major issues involved 

with static shape modeling using scan data include 

surface registration, shape variation characterization, 

and shape reconstruction.  

 

Surface Registration 

 

Surface registration or point-to-point correspondence 

among the scan data of different subjects is essential to 

many problems of human shape modeling, such as 

shape parameterization and characterization,  human 

mailto:zcheng,%20smosher%7d@infoscitex.com
mailto:jsmith,%20idavenport%7d@infoscitex.com
mailto:john.camp@wpafb.af.mil
mailto:darrell.lochtefelt@wpafb.af.mil
http://www.makehuman.org/


 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012 

2012 Paper No. 12038 Page 3 of 10 

shape variability (Allen et al., 2003; Azouz et al., 

2005), and pose modeling and animation (Allen et al., 

2002; Anguelov et al., 2005) where multiple subjects 

or multiple poses are involved. The method used for 

surface registration in this paper is called Coherent 

Point Drift (CPD), which can be used to register two 

point sets rigidly or non-rigidly. The description of 

CPD is provided in (Myronenko and Song, 2010).  

Often, the number of surfaces (accordingly the number 

of points) of the original scan data may be too large to 

be handled by the available computer memory on a 

typical workstation.  Also, the original data may 

contain poorly formed polygons, webs between 

adjacent surfaces such as fingers and holes in the mesh. 

Therefore, the original scan data were smoothed and 

then simplified. After the number of faces was reduced 

to 20,000, the registration process was successfully 

completed.  Figures 1 (a) and (b) illustrate the 

registration results of two different subjects in the same 

pose.  

 
(a) Before registration 

 
(b) After Registration 

Figure 1. Surface (point-to-point) registration between 

two different subjects in the same pose 

Shape Variation Characterization 

 

The human body comes in many shapes and sizes.  

Characterizing human shape variation is traditionally 

the subject of anthropometry—the study of human 

body measurement. The sparse measurements of 

traditional anthropometric shape characterization 

curtail its ability to capture the detailed shape 

variations needed for realism. While characterizing 

human shape variation based on a 3-D range scan could 

capture the details of shape variation, the method relies 

on three conditions: noise elimination, hole-filling and 

surface completion, and point-to-point correspondence. 

Also, whole body scanners generate large data files that 

cannot be used directly for shape variation analysis. 

Therefore, it is necessary to convert 3-D scans to a 

compact representation that retains information of the 

body shape. Principal components analysis (PCA) has 

often been used as a solution to the problem. Allen et 

al. (2003) captured the variability of human shape by 

performing PCA over the displacements of the points 

from the template surface to an instance surface. 

Anguelov et al. (2005) also used PCA to characterize 

the shape deformation and then used the principal 

components for shape completion. Ben Azouz et al. 

(2005) applied PCA to the volumetric models where 

the vector is formed by the signed distance from a 

voxel to the surface of the model.  

 

Shape Parameterization 

 

For human shape modeling, it is desirable to have a set 

of parameters to describe human shape and its variation 

among different subjects. Human body shape can be 

parameterized in three different levels.  

 Using surface elements. After surface registration 

of scan data among all subjects, the same set of 

vertices or other surface elements can be used to 

describe different body shapes (3D surfaces) 

(Allen et al., 2003; Anguelov et al., 2005). In other 

words, different body shapes are parameterized by 

the same set of vertices. While this method of 

characterization usually incurs a large number of 

parameters, a body shape can be directly generated 

from these parameters. 

 Using principal component coefficients. After 

PCA, human body shape space is characterized by 

principal components. Each shape can be projected 

onto the eigenspace formed by principal 

components.  Within this space, a human shape 

can be parameterized by its projection coefficients 

(Allen et al., 2003; Azouz et al., 2005). If the full 

eigenspace is used, perfect reconstruction can be 

achieved from the parameters to the body shape.   

 Using anthropometric features. The relationship 

between eigenvectors and human anthropometric 
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features (e.g., height and weight) can be 

established through regression analysis (Allen et 

al., 2003; Azouz et al., 2005), and then a body 

shape can be parameterized by these features. This 

type of parameterization is not an exact mapping 

between a human body shape and its 

anthropometric features. Perfect reconstruction of 

a body shape usually cannot be achieved given a 

limited number of features.     

 

Shape Reconstruction 

 

Given a number of scan data sets of different subjects, 

a novel human shape can be created that will have 

resemblance to the samples but is not the exact copy of 

any existing one. This can be realized in three ways. 

 Interpolation or morphing. One shape can be 

gradually morphed to another by interpolating 

between their vertices or other graphic entities. In 

order to create a faithful intermediate shape 

between two individuals, it is critical that all 

features are well-aligned; otherwise, features will 

cross-fade instead of move. Figure 2 illustrates 

shape morphing from one male subject to a female 

subject performed by the authors (Cheng et al, 

2009).  

 Reconstruction from eigenspace. After PCA 

analysis, the features of sample shapes are 

characterized by eigenvectors or eigen-persons 

which form an eigenspace. Any new shape model 

can be generated from this space by combining a 

number of eigen-persons with appropriate 

weighting factors (Azouz et al., 2005).     

 Feature-based synthesis. Once the relationship 

between human anthropometric features and 

eigenvectors is established, a new shape model can 

be constructed from the eigenspace with desired 

features by editing multiple correlated attributes, 

such as height and weight (Allen et al., 2003) or 

fat percentage and hip-to-waist ratio (Seo et al., 

2003).  

 
Figure 2. Morphing from one subject to another 

DYNAMIC SHAPE MODELING 

 

Dynamic shape modeling deals with shape variations 

due to pose changes or due to the subject being in 

motion. Two major issues involved in dynamic shape 

modeling are surface (shape) deformation with respect 

to pose changes and dynamic shape capture and 

reconstruction. 

 

Body Deformation Modeling 

 

Two main approaches for modeling body deformations 

are anatomical modeling and example-based modeling. 

The anatomical modeling is based on an accurate 

representation of the major bones, muscles, and other 

interior structures of the body (Aubel and Thalmann 

2001). The finite element method is the primary 

modeling technique used for anatomical modeling. In 

the example-based approach, a model of some body 

part in several different poses with the same underlying 

mesh structure can be generated by an artist. These 

poses are correlated to various degrees of freedom, 

such as joint angles. Lewis et al. (2000) and Sloan et al. 

(2001) developed similar techniques for applying 

example-based approaches to meshes. Instead of using 

artist-generated models, recent work on the example-

based modeling uses range-scan data. Allen et al. (2002 

& 2003) presented an example-based method for 

calculating skeleton-driven body deformations. Their 

example data consists of range scans of a human body 

in a variety of poses. Using markers captured during 

range scanning, a kinematic skeleton is constructed 

first to identify the pose of each scan. Then a mutually 

consistent parameterization of all the scans is 

constructed using a posable subdivision surface 

template. Anguelov et al. (2005) developed a method 

that incorporates both articulated and non-rigid 

deformations.  A pose deformation model was 

constructed from a training set of scan data that derives 

the non-rigid surface deformation as a function of the 

pose of the articulated skeleton. A separate model of 

shape variation was derived from the training data also.  

The two models were combined to produce a 3-D 

surface model with realistic muscle deformation for 

different people in different poses. The integrated 

model is called SCAPE (Shape Completion and 

Animation of People). 

 

The method developed for pose deformation modeling 

in this paper employs the template model associated 

with the pose data set (Anguelov et al. 2005). It 

consists of 16 segments, each of which has the pre-

defined surface division. The method consists of 

multiple steps, which are described below.  
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Coordinate Transformation  

The body shape variations caused by pose changing 

and motion can be decomposed into rigid and non-rigid 

deformation.  Rigid deformation is associated with the 

orientation and position of segments.  Non-rigid 

deformation is related to the changes in shape of soft 

tissues associated with the segments in motion, which, 

however, excludes local deformation caused by muscle 

action alone.  In the global (body) coordinate system, a 

segment surface has the articulated motion and surface 

deformation. However, in the local (segment) 

coordinate system, a segment surface has deformation 

only. Therefore, by transforming the global coordinate 

system to the local system, the effect of the articulated 

motion on each segment could be eliminated.  

 

Surface Deformation Characterization 

Suppose the surface deformations of each segment are 

collected in all poses. Then PCA can be used to find 

the principal components of the surface deformation 

for each segment. Figure 3 illustrates the eigen value 

percentage ratio in each component (total 70) of all 

segments (total 16). It is shown that for all segments, 

the variance (eigen value ratio) of principal 

components increases sequentially, and significant 

principal components are those from the order of 60 to 

70. As PCA exploits the underlying characteristics of a 

data set, the surface deformation of a segment in all 

observed poses can be characterized by these principal 

components.  The surface deformation in a particular 

pose can be decomposed or projected in the space that 

is formed by the PCs. Each decomposition/projection 

coefficient represents the contribution or effect from 

the corresponding PC. 

 

Figure 3. Eigen value ratio for all 16 segments. 

 

Surface Deformation Reconstruction 

The decomposition/projection coefficients can be used 

to reconstruct surface deformation. There are two types 

of reconstruction: (a) Full reconstruction, which uses 

all the PCs or eigenvectors; and (b) Partial 

reconstruction, which uses a number of significant PCs. 

Figure 4 illustrates the reconstructed shape for 2 

different poses. In each row of Figure 4, the first is the 

original shape, the second is the shape from full 

reconstruction, and the third and fourth are the shapes 

from partial reconstruction with 20 and 10 largest PCs, 

respectively. It is shown that the full reconstruction can 

completely reconstruct the original surface deformation 

in all poses, which means it is a perfect reconstruction, 

and partial reconstruction can provide a reasonable 

approximation of the original shape. While full 

reconstruction provides complete reconstruction of the 

original deformation, it is not necessary in many cases. 

On the other hand, the accuracy of partial 

reconstruction can be controlled by selecting a proper 

number of significant PCs. As partial reconstruction 

provides a reasonable simplification or approximation 

to the original deformation, it is often used in practice.   

 

(a) Pose-1 

 

(b) Pose-2 

Figure 4. Shape reconstruction using principal 

components (First column: original shape; second 

column: full reconstruction; Third column: partial 

reconstruction with 20 largest PCs; Fourth column 

partial reconstruction with 10 largest PCs). 

 

Surface Deformation Representation  

As the surface deformation of a segment is assumed to 

depend only on the rotation of the joint(s) connected, 

the relationship between the surface deformation and 

joint rotations has to be known.  Joint rotations can be 

conveniently represented by their twist coordinates. 

The surface deformation can be compactly represented 

by its decomposition/projection coefficients.  Ideally, 

the surface deformation can be expressed as a function 

of joint rotations.  The relation between surface 

deformation and joint rotations can be linear or 
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nonlinear. An appropriate function needs to be 

identified. The same function can be applied to all 

poses. Then, the measurement of surface deformation 

and joint rotations in all poses can be used to estimate 

the parameters of the function. 

 

Surface Deformation Prediction  

It is not feasible to measure the surface deformation of 

each segment for all possible poses, because the human 

body has a large number of degrees of freedom and can 

take virtually an infinite number of different poses. As 

a matter of fact, only a limited number of poses can be 

investigated in tests, but it is often required to predict 

surface deformation for new poses that have not been 

observed. Three methods can be used to predict surface 

deformation.   

• Method-1: using principal components. Given the 

joint twist angles for a segment to define a 

particular pose, projection coefficients can be 

estimated. Using the full or a partial set of 

principal components, the surface deformation is 

reconstructed.   

• Method-2: taking the nearest neighbor pose.  

Given the joint twist angles, find the nearest 

neighbor to the prescribed pose and take its surface 

deformation as an approximation. The 

neighborhood is measured in terms of the 

Euclidean distance between the joint twist angles 

for the two poses.  

• Method-3: interpolating between two nearest 

neighbors. Given the joint twist angles, find two 

nearest neighbors to the prescribed pose. The pose 

deformation is determined by interpolating 

between the deformations of these two neighbor 

poses.  

 

Figure 5 illustrates the predicted shape for 8 different 

poses using method-2. 

 

 

 

Figure 5. Predicted shape in 8 different poses. 

 

Dynamic Shape Capture and Reconstruction  

   

Dynamic Shape Capture 

During dynamic activities, the surface of the human 

body moves in many subtle but visually significant 

ways: bending, bulging, jiggling, and stretching. Park 

and Hodgins (2006) developed a technique for 

capturing and animating those motions using a 

commercial motion capture system with approximately 

350 markers.  Supplemented with a detailed, actor 

specific surface model, the motion of the skin was then 

computed by segmenting the markers into the motion 

of a set of rigid parts and a residual deformation.    

Sand et al. (2003) developed a method (a needle 

model) for the acquisition of deformable human 

geometry from silhouettes. New technologies are 

emerging that can capture body shape and motion 

simultaneously at a fairly high frame rate (Nguyen and 

Wang, 2010; Izadi et al., 2011).  

 

Shape Reconstruction from Imagery Data 

 From Photos 

Seo et al. (2006) presented a data-driven shape model 

for reconstructing human body models from one or 

more 2D photos. A data-driven, parameterized 

deformable model acquired from a collection of range 

scans of a real human body is used to complement the 

image-based reconstruction by leveraging the quality, 

shape, and statistical information accumulated from 

multiple shapes of range-scanned people. Guan et al. 

(2009) developed a method for estimating human body 

shape from a single photograph or painting.  

 From Video Sequences 

The recent work done by Balan et al. (2007) proposed a 

method for recovering human shape models directly 

from images. Specifically, the human body shape is 

represented by the SCAPE (Anguelov et al., 2005) and 

the parameters of the model are directly estimated from 

image data. A cost function between image 

observations and a hypothesized mesh is defined and 

the problem is formulated as an optimization. Hasler et 

al. (2009a) developed a method to estimate the detailed 

3-D body shape of a person even if heavy or loose 

clothing is worn. Within a space of human shapes 

learned from a large database of registered body scans, 

the method fits a template model (a 3-D scan model of 

a person wearing clothes) to the silhouettes of video 

images using ICP (iterative closest point) registration 

and Laplacian mesh deformation. 

 

HUMAN MOTION CAPTURE AND 

PREDICTION 

 

Motion capture (mocap) technologies can be marker-

based or vision-based.  The challenges for motion 
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analysis involve inverse kinematics (IK) and motion 

mapping and creation.  

 

Marker-Based Motion Capture 

 

As a traditional technique, marker-based motion 

capture technology has been developed to an advanced 

level that provides accurate and consistent 

measurements of body motion. The markers used in 

motion capture can be aligned with those used during 

body scanning thus providing some correspondence 

between body shape and skeleton motion. Various 

software tools are available for the analysis of motion 

capture data. The major limitations of marker-based 

motion capture technology include (a) it can only be 

used in a laboratory environment; (b) it has a limited 

coverage space; and (c) it requires subject cooperation.  

Several new technologies are emerging that use sensors 

mounted on the body (e.g., RF, accelerometers 

(Tautges et al., 2010), or mini-cameras (Shiratori et al., 

2011)), enabling open-field motion capture.  

 

Markerless Motion Capture  

 

As an active research area in computer vision for 

decades, markerless or vision-based human motion 

analysis has the potential to provide an inexpensive, 

unobtrusive solution for the estimation of body poses 

and motions. Extensive research efforts have been 

performed in this domain (Moeslund et al., 2006), 

which have been motivated by the fact that many 

application areas, including surveillance, human–

computer interaction and automatic annotation, will 

benefit from a robust solution to the problem (Poppe 

2007). Agarwal and Triggs (2006) developed a 

learning-based method for recovering 3-D human body 

pose from single images and monocular image 

sequences. Their approach requires neither an explicit 

body model nor prior labeling of body parts in the 

image. Instead, it recovers pose by direct nonlinear 

regression against shape descriptor vectors extracted 

automatically from image silhouettes. A recent 

development is capturing motion and dynamic body 

shape simultaneously from video imagery. Using 

SCAPE (Anguelov et al., 2005), Balan et al. (2007) 

developed a method for estimating the model 

parameters directly from image data. Their results 

showed that such a rich generative model as SCAPE 

enables the automatic recovery of detailed human 

shape and pose from images. Hasler et al. (2009b) 

presented an approach for markerless motion capture of 

articulated objects, which are recorded with multiple 

unsynchronized moving cameras. Instead of using 

fixed (and expensive) hardware synchronized cameras, 

their approach is able to track people with off-the-shelf 

handheld video cameras.   

 

The approach developed by Agarwal and Triggs (2006) 

was implemented in this paper for markerless motion 

capture. As shown in Figure 6, using body scan and 

mocap data collected in the AFRL 3dHSL Lab, 3-D 

models were created for four activities (digging, 

walking, jogging, and throwing) using Blender 

(http://www.blender.org/). By animating the model of 

each activity, a sequence of 3-D shape models was 

generated for each activity, from which a sequence of 

silhouettes was derived. By establishing the 

relationship between image features (which are 

described by the histogram of shape context of 

silhouettes) and joint angles (which are used to define 

poses), the motion of the subject (which is defined by a 

sequence of poses) is captured. The resulting motion is 

applied to the skeleton shown in each image in Figure 

6, matching the animation’s motion. 

 
(a) Digging 

 
(b) Walking 

 
(c) Jogging 

http://www.blender.org/
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(d) Throwing 

Figure 6. Markerless motion capture from 2-D video 

imagery 

 

Inverse kinematics 

 

Inverse kinematics, the process of computing the pose 

of a human body from a set of constraints, is widely 

used in computer animation. However, the problem is 

often underdetermined. While many poses are possible, 

some poses are more likely than others. In general, the 

likelihood of poses depends on the body shape and 

style of the individual person. Grochow et al. (2004) 

developed an inverse kinematics system based on a 

learned model of human poses that can produce the 

most likely pose satisfying the prescribed constraints in 

real time. Training the model on different input data 

leads to different styles of IK. The model is represented 

as a probability distribution over the space of all 

possible poses. This means that the model can generate 

any pose, but prefers poses that are most similar to the 

space of poses in the training data. A common task of 

IK is to derive joint angles from markers, for which, 

OpenSim (https://simtk.org/home/opensim), an open 

source software package can be used.     

 

Motion Mapping 

 

Motion mapping and motion generation are two issues 

related to IK but have independent significance. It is 

desirable to map the motion from one subject to 

another, because it is not feasible to do motion capture 

for every subject and for every motion or activity. By 

assuming that different subjects will take the same key 

poses in an action or motion, one approach is mapping 

joint angles from one to another, as shown in Figure 7 

where motion is mapped onto 3dsMax biped models. 

Note that since the pelvis is usually treated as the 

reference segment, the hip joint center vertical location 

needs to be adjusted to reflect the variation of subject 

size in order to ensure appropriate contact between the 

feet and the ground.  While motion mapping may be 

fairly natural and realistic, it may not be able to provide 

sufficiently high biofidelity, because the differences 

between human bodies and the interaction between 

human body and boundaries are ignored. 

 
Figure 7.  Mapping the captured motion into a group 

 

Motion Creation 

 

One method of motion creation is to create several key 

poses (frames) and then fills the gaps between those 

key poses via interpolation. This approach is often used 

by game developers. The created motion is based on 

human imagination and thus lacks realism and 

biofidelity, as shown in Figure 8.  Alternatively, 

motion creation can be handled in more rigorous and 

scientific ways. Wei et al. (2011) showed how 

statistical motion priors can be combined seamlessly 

with physical constraints for human motion modeling 

and generation. The key idea of the approach is to learn 

a nonlinear probabilistic force field function from 

prerecorded motion data with Gaussian processes and 

combine it with physical constraints in a probabilistic 

framework. In addition, they showed how to effectively 

utilize the new model to generate a wide range of 

natural-looking motions that achieve the goals 

specified by users. Some tools were developed for 

motion creation based on biomechanics and physics, 

such as DANCE (http://www.arishapiro.com/), which 

is used for physics-based animation research, including 

dynamic simulation of rigid bodies, motion capture and 

dynamic control. 

 
Figure 8. The comparison between two animations 

(mocap data vs. key framing data) 

https://simtk.org/home/opensim
http://www.arishapiro.com/
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ACTIVITY REPLICATION AND CREATION   

 

Replication 

  

Activity replication is replicating a human activity that 

was recorded from a human subject in a laboratory 

using 3-D modeling.  Technologies that are capable of 

capturing human motion and 3-D dynamic shapes of a 

subject during motion are not yet ready for practical 

use.  Data that can be readily used for 3-D activity 

replication are not currently available. Alternatively, a 

motion capture system can be used to capture markers 

on the body during motion and a 3-D body scanner can 

be used to capture the body shape in a pose.  Based on 

the body scan data and motion capture data, animation 

techniques can be used to build a digital model to 

replicate a human activity in 3-D space.  

 

In this paper, open-source software was used for 

activity replication. MeshLab 

(http://meshlab.sourceforge.net/) was used to process 

3-D scan data, OpenSim was used to derive skeleton 

models and the associated joint angles from motion 

capture data, and Blender was used to create an 

animation model that integrated body shape and 

motion.  Human subject testing for data collection on 

human activities was conducted in the 3-D Human 

Signatures Laboratory (3DHSL) at the Air Force 

Research Laboratory (AFRL). The data collected 

included scans and mocap data.   

 

The body scan data acquired consists of a large number 

of data points (vertices) (typically a half-million or 

more) and may contain holes and large openings. The 

data were processed so that it could be used for the 

modeling. MeshLab was used to clean-up the data and 

to fill holes.  Smoothing and approximation functions 

in MeshLab were implemented to reduce the total 

number of faces for each subject scan to 50,000 and to 

create meshes of the body shape required for the 

modeling.  OpenSim was used to derive a skeleton 

model from mocap data (TRC file) and to calculate the 

joint angles for the skeleton. The skeleton model and 

associated joint angles were put in a Bio-vision 

Hierarchical (BVH) file. Both the body surface mesh 

data and the BVH file were imported into Blender. 

Blender was used to integrate the shape with the 

motion and to create an animation model that replicates 

an activity.  Figure 9 shows the models created for four 

activities (jogging, limping, shooting, and walking) at a 

particular frame. Note that activity replication can be 

done using commercial modeling tools (e.g., Autodesk 

3dsMax and Maya).  

 

Creation 

 

Activity creation involves motion creation and 

dynamic shape creation. While some methods have 

been developed for motion creation, many issues 

remain. Creating a dynamic shape for any pose or 

activity is still a challenging task. Alternatively, in the 

following example, by matching body shape data with 

mocap data, two activities (diving-rolling and running-

ducking) were created using body scan data and mocap 

data collected from different subjects. The mocap data 

for the two activities were derived from the Carnegie 

Mellon University (CMU) mocap database 

(http://mocap.cs.cmu.edu/). Using the lengths of major 

segments as the search criteria, the body shape data 

were derived from the CAESAR (Civilian American 

and European Surface Anthropometry Resource) 

database (Robinette et al., 1999). Then, 3-D animation 

models were created using Blender which fuses the 

shape and motion information together and deforms the 

body shape in accordance with body motion , as shown 

in Figure 10.  

 

 
Figure 9. Replication of a subject in four activities: 

limping, jogging, shooting, and walking.   

  
(a) Diving-rolling           (b) Running-ducking  

Figure 10.  Activity creation using body scan data and 

mocap data from different subjects. 

 

CONCLUSIONS 

 

Biofidelity is a critical factor when human activity 

M&S is used in a virtual reality or training system that 

is human centered. In order to attain high biofidelity, a 

concerted effort for accurate human shape and motion 

data collection, motion analysis, and shape modeling 

must be undertaken. Based on subject tests and data 

collection, human activities can be replicated in 3-D 

space with fairly high biofidelity. The data-driven 

human activity models can be incorporated into highly 

fidelic 3-D scenario models to provide natural and 

realistic exposure and experience to trainees/users. 

However, it is not feasible to collect data for every 

http://meshlab.sourceforge.net/
http://mocap.cs.cmu.edu/
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subject and for every activity. Therefore, it is necessary 

to develop technologies for creating activities. Activity 

creation relies on dynamic shape modeling and motion 

creation, for which further investigations are needed to 

overcome remaining technical obstacles.  
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