
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 1 of 10

Improving Software Development Cost Estimation Models

Rodney Figaroa, Scott Nelson, Karen

Williams
Charles Stroup

Arlene Minkiewicz, Bob Koury

PEO STRI SAIC Price Systems

Orlando, FL Orlando, FL 32766 Mt. Laurel, NJ

Rodney Figaroa @us.army.mil Charles.f.stroup.jr@saic.com Arlene.minkiewicz@

Scott.h.nelson1@us.army.mil

 Bob.Koury@

Karen.e.williams@us.army.mil

 Pricesystems.com

 ABSTRACT

Program Executive Office Simulation, Training and Instrumentation (PEO STRI) is utilizing a new code counting

methodology to estimate future cost for software development products. In 2011, PEO STRI awarded two contracts in

support of the One Semi-Automated Forces (OneSAF) program valued at more than $90M. For the first time ever, a

requirement for the delivery of a Software Resources Report (SRR) was placed on each contract. The SRR is expected to

be used to obtain the estimated characteristics of a software product and its development process. The intent of the SRR

process is to collect objective measurable data commonly used by industry and Department of Defense (DoD) cost

analysts. These data are used to compile a repository of estimated software product sizes, schedules, and effort that

Government analysts can draw upon to build credible size, cost, and schedule estimates of future software-intensive

systems. Information to be acquired through these data will include descriptive information about the product and

developer and estimates of software product size, development schedule, peak staff, and direct labor hours. The paper will

describe the Government‟s intent for use of the SRR, and describe the current state of this pilot program. The paper will

detail the processes, the tool, participants, OneSAF unique challenges, methodologies and data. In conclusion, we will

present the findings, lessons learned and recommendation for the future implementation of this product.

 ABOUT THE AUTHORS

Rodney Figaroa is a Project Director at PEO STRI in Orlando, Fla. His primary responsibilities include overseeing the

successful capability development for OneSAF. He has over 6 years of project management and engineering experience in

the development, integration, testing, and fielding of simulation capabilities. He holds a B.S. in Computer Engineering

from the University of Central Florida and a M.S. in Business Administration (MBA) from Webster University.

Bob Koury is the PRICE Systems Chief Solution Architect for Army accounts. In this role, he is responsible for ensuring

that all Army customers have access to the cost estimating subject matter expertise necessary to be successful. Bob retired

from the Army as a Lieutenant Colonel after 22 years of distinguished service and spent 18 years in industry creating

Systems of Systems solutions for Texas Instruments, Raytheon and Lockheed. He holds a M.S. in Systems Management

from the University of Southern California and a M.A. in National Security and Strategic Studies from the United States

Naval War College.

Arlene F. Minkiewicz is the Chief Scientist at PRICE Systems, LLC with over 27 years of experience at PRICE building

cost models. She leads the cost research activity for TruePlanning, the suite of cost estimating products that PRICE

provides. She is widely published and speaks frequently on software related topics. She holds a B.S. in Electrical

Engineering from Lehigh University and an M.S. in Computer Science from Drexel University

Scott H. Nelson is a cross functional Operations Research Analyst supporting several programs including OneSAF at PEO

STRI in Orlando, Fla. His primary responsibilities include preparing cost estimates, analyzing Earned Value Management

reports and managing Integrated Baseline Reviews. Scott has worked in private industry at Ford Motor. He is a Certified

Public Accountant (CPA) and has over 20 years of expertise in Finance and Accounting functions. He holds a B.S. in

Accounting and Master in Business Administration (MBA) from Brigham Young University.

Charles Stroup is the Lead Systems Engineer for the OneSAF Production Contract. He has been a systems engineer on

the OneSAF program for the past ten years while working on the various SAIC contracts for OneSAF. He has more than

30 years of military simulation domain experience. He holds a B.S. in Aeronautical Science from Embry-Riddle

Aeronautical University, a M.A. in Business from Central Michigan University, and a M.S. in Computer Science from

West Chester University.

Karen Williams is the OneSAF Chief Engineer at PEO STRI in Orlando, Fla. She has more than twenty five years of

engineering experience in the development, integration, testing, and fielding of simulation capabilities. She holds a B.S. in

Physics from Jacksonville University and a M.S. in Industrial Engineering from the University of Central Florida.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 2 of 10

Improving Software Development Cost Estimation Models

Rodney Figaroa, Scott Nelson, Karen

Williams
Charles Stroup

Arlene Minkiewicz, Bob Koury

PEO STRI SAIC Price Systems

Orlando, FL Orlando, FL 32766 Mt. Laurel, NJ

Rodney.Figaroa @us.army.mil Charles.f.stroup.jr@saic.com Arlene.minkiewicz@

Scott.h.nelson1@us.army.mil Bob.koury@

Karen.e.williams@us.army.mil Pricesystems.com

BACKGROUND

Working within the directives of the Deputy

Assistant Secretary of the Army Cost and Economics

Office (DASA-CE), Program Executive Office for

Simulation, Training and Instrumentation (PEO

STRI) typically applies a growth factor to software

cost estimates when local, calibrated historical

databases are not available to be used as the basis for

estimating a future software development effort. As

a result, software development estimates can be

overstated by as much as 30-60%, negatively

impacting the ability to obtain approval for execution

of the project in a timely and affordable manner. In

preparation of these estimates, a significant amount

of time is expended by PEO STRI team members to

develop and justify software cost estimates. While

processes for capturing software development costs

exist, the lack of a standardized process and system

for collection of this data leads to a large reliance on

Subject Matter Experts (SMEs) to provide subjective

estimates of future development costs.

Acquisition Category (ACAT) I programs (valued at

greater than $365 million RDT&E) require a periodic

Software Resources Data Report (SRDR) to be

delivered by the prime contractor. The SRDR

contains various details on actual Software Lines of

Code (SLOC), programming languages, commercial

or government off-the-shelf (COTS/GOTS)

applications, external interfaces, requirements, peak

staff, and direct labor hours. This data is used to

compile a repository of software product sizes,

schedules and effort that Government analysts can

draw upon to build credible size, cost, and schedule

estimates of future software-intensive systems. The

intent is for PEO STRI to create a document similar

to the SRDR that would accommodate reporting by

smaller programs (i.e. ACAT II). PEO STRI selected

the ACAT II One Semi-Automated Forces (OneSAF)

program to serve as the pilot for implementing this

new reporting requirement.

OneSAF

OneSAF is a composable, next generation Computer

Generated Forces simulation that represents a full

range of operations, systems, and control processes

from an individual combatant and platform to brigade

level. It includes a variable level of fidelity that

supports all Modeling and Simulation domains by

accurately and effectively representing the specific

activities of ground, air, sea, and space warfare

(engagement and maneuver); Command, Control,

Communications, Computers, and Intelligence

activities; and combat support/combat service support

missions as described in Figure 1. It employs

appropriate representations of the physical

environment and its effect on simulated activities and

behaviors.

Figure 1. OneSAF Mission

The OneSAF program is currently in the production

and support phase of the life cycle with ongoing

implementation of Pre-Planned Product

Improvements (P3I) as prioritized by the US Army

Training and Doctrine Command OneSAF Project

Office. Through approved P3I efforts, capability

enhancements are continuously being developed and

integrated into the software baseline resulting in, as a

minimum, yearly version releases. OneSAF is

fielded to multiple Army users as well as other

Department of Defense agencies, industry, academia,

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 3 of 10

and Foreign Military Sales cases. Concurrent with

P3I enhancements, customer requirements, user

feedback and needs are continuously addressed by

way of Change Requests and Engineering Change

Proposals to assure maximum utilization of the

system throughout the growing user community.

OneSAF, as a software only program, was selected as

the prime candidate for implementing, demonstrating,

improving, and expanding the utility of code

counting tools used to generate a standardized SRDR

like report called a Software Resources Report

(SRR). OneSAF consists of more than 6 million

traditional SLOC and is continuously being revised,

expanded and improved as capability and user

community needs are addressed. Version 1 of the

software was officially released on Sept 29, 2006,

with more than 50 subsequent major and minor

releases addressing domestic, domestic minus and

international communities and requirements. Version

6.0 is scheduled for December 2012. Two new

OneSAF contracts were awarded in 2011; one for

OneSAF Integration, Interoperability and Support

(I2S) to Cole Engineering Services Inc (CESI). and

the other for software Production to Science

Applications International Corporation (SAIC). With

the timely renewal of these contracts, a requirement

for delivery of a SRR was placed onto these

contracts.

PROCESS

Figure 2 provides an overview of the process that

evolved. The top layer of Secretary and Department

of the Army level organizations represent the

ultimate consumers of the data. It is the intent of PEO

STRI to use the data collected as part of a budget

approach which uses historical data to calculate

defendable cost estimates. The middle layer of

organizations is internal to PEO STRI and represents

the data users. The Chief for Financial Management

will initially use the data as direct inputs into the cost

estimating software to calculate budget submission.

In the future, the data may be adapted to create new

cost estimating relationships or as a means to validate

EVM metrics reported.

The lower section of Figure 2 provides an overview

of the process flow specific to this paper. The

OneSAF Program Office, OneSAF developers, PEO

STRI Cost Division and PRICE Systems L.L.C

worked as an Integrated Product Team (IPT) to

develop the process and mature the tools for

executing the collection and application of the

software development resource data. The Program

Office provided access to the software development

contractors and overall guidance regarding the

collection of the OneSAF data. PEO STRI Cost

Division guided the process development strategy.

PRICE Systems L.L.C. contributed cost estimating

subject matter expertise and recommended the tools

for the developers to use to produce the data. The

team ultimately created a repeatable data collection

process by modifying an open source SLOC counting

application, creating a Data Dictionary and refining

the original SRR form to be used in the collection of

data.

Figure 2. Defendable Cost Estimate Process

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 4 of 10

Frequency of Reporting

One of the first things the IPT addressed was the

frequency of data collection and reporting. The

Government originally placed a monthly reporting

requirement on the contracts. Continued discussions

about collection and reporting highlighted that a

monthly report cycle had no real value and just

increased costs to deliver a Contract Data

Requirements List (CDRL). OneSAF conducts

software development in blocks of time that are

called „builds‟. A typical build consists of 10-12

weeks of software development activity from

requirements analysis through integration and test.

During any build cycle, there are any numbers of new

capability development, system integration, test and

release activities occurring in parallel. The

integration of capabilities back into the main

OneSAF baseline typically does not occur during the

same build because they all vary in size and

complexity. For that reason, the IPT determined that

the SRR report be build based and that the reporting

scheme be software capability based. This reporting

pattern offered traceability of SLOC and labor hours

across builds and through the implementation,

integration, test and release lifecycle for each

capability. Figure 3 offers a graphical depiction of

the what, when and how this nuance is captured in

the report. At the end of each build, the contractors

will collect SLOC and labor hours data per newly

developed capability and integration activities for

each software capability. The data reported for the

integration activity will only include associated labor

hours for performing this task and any SLOC

changes to enable the integration back into the main

baseline. The integration effort will not report the

SLOC associated with the development phase. This

allows for segregation of the code effort in a way that

can determine productivity levels during all phases.

Cost collection on any software capability is not

considered complete until it is officially released.

When the capability set for the next release is defined

and the software baseline frozen, the program

executes a version release cycle. The labor hours and

SLOC changes necessary during this release cycle to

enable a version release is captured and reported per

capability into the SRR report. This last portion of

the report is referred to as the final software build.

Upon receipt of the final Software Build for each

annual release, a Release Report will be developed

that captures cost and capability per OneSAF release.

With this approach, the database would ultimately

contain all of the information necessary to make

estimates based on capability.

Figure 3. Report Structure to Capture Effort by

Capability

Software Cost Estimating and Reporting Tools

The TruePlanning Software Tool was selected to be

the primary cost estimating tool. The intent was to

ensure that the data collected would be easily used as

input in the tool but also support the use of other

commercial tools. The selected tool is a cost

estimation framework that houses cost estimation

models for hardware, software and systems as

pictured in Figure 4. This framework encompasses

most of the capabilities that are necessary or useful to

cost estimators in the preparation, analysis and

presentation of their cost estimates while the

estimation models contain the Cost Estimating

Relationships (CERs) and logic to perform estimates

of effort, cost and schedule for a particular project.

The framework provides the user interface for the

cost models, creating input sheets and worksheet sets

based on the activities, resources and inputs defined

in the cost model. The framework contains the

mechanism for output of the cost model results

through tables and charts in a variety of user

specified formats. It also contains a set of utilities

providing capabilities common to many cost models

such as the application of escalation rates and other

economic factors, the application of cost schedule

impact when schedules are constrained or stretched,

and a cost risk analysis tool. The tool has evolved

over time and improved to estimate the design, code

and test implications of object orientation, model new

software technologies and estimate using metrics in

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 5 of 10

addition to source lines of code. Additionally, it

includes new ways to measure reuse and properly

estimate all of the costs associated with building

software that uses COTS components.

The tool‟s software model is activity based. This

means that the model uses the language of cost

objects (products or services being developed or

delivered), activities, resources and cost drivers. The

cost objects are Software Components and Software

COTS. Software Components represent any piece of

software that is being developed in-house. Software

COTS represent any piece of software that comes

from an outside source (bought or furnished) that is

to be integrated with other pieces of a system. The

organization is such that the costs and effort

estimated for each cost object are broken down and

presented by activity and resource categories – so the

user gains an understanding of how each activity and

resource fits into the context of the entire project.

Each cost object has a group of cost drivers for which

the user must enter values. These values are then

applied to relationships that indicate how variances in

this input impact the productivity on each of the cost

objects activities. The Tool assigns a baseline

productivity factor for each activity based on industry

standard data. Productivity adjusters are applied to

the baseline and then the adjusted productivity is

applied to each activity for a particular project. The

same process is used to determine how the activity

requirement is spread throughout the resources.

For the software estimation model, the major cost

drivers include software size, functional complexity,

operating platform, and characteristics of the

development team and organization. Software size is

typically measured in SLOC and is strongly

correlated to cost. Functional complexity is

associated with the types of functionality the software

is intended to deliver based on the assumption that

some functionality is easier to design, code and test

than other functionality. For example, real time

command and control software is more complex than

software that performs simple data manipulation.

Clearly, the experience and knowledge of the

development team will be a significant cost driver,

but it‟s also important to note that organizational

culture and practices will likewise impact software

development costs. Another factor with significant

impact on cost is the platform or environment in

which the software will operate. For example,

avionics software requires more rigor throughout the

development process than software performing office

automation.

Figure 4. Cost Estimating Tool

Collection Tool

It became apparent that there was a need for a

standardized collection tool. The standardized tool

would allow for consistency in code counts from one

software development Build to the next and from one

program to the next. A very important component to

the success of this pilot effort is that the contractors

need the ability to perform consistent code counts in

a reasonable amount of time. Thus, an important

success factor was the automation of the process as

much as possible. The original plan was to use the

freely available code counting tool developed by the

University of Southern California Center for

Software Excellence (USC-CSE) called the Unified

Code Count (UCC). This tool implements popular

code counting standards published by the Software

Engineering Institute (SEI) and adapted by the

Constructive Cost Model (COCOMO). This tool

counts both logical and physical lines of code and

performs code counts of 21 software languages. In

addition to counting code, the tool has source

differencing capabilities. This makes it possible to

count, compare and collect logical differentials

between two version of the source code of a software

product. This fact was key to automating the ability

to identify new, deleted, changed and unchanged

code from build to build.

The code counting tool counts both physical and

logical lines of code. A physical line of code is just

what it sounds like – one single line of code on the

page or screen. A logical line of code represents one

single command to the compiler. Many

programming languages are flexible enough in their

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 6 of 10

syntax that it is unwise to assume that each physical

line of code represents a single command to the

compiler. Additionally, the cost estimating

relationships in the software model are based on an

analysis of projects with logical line of code counts.

For these reasons, the decision was made to count

logical rather than physical lines.

The deployment of the UCC tool was not completely

smooth. Because one end goal is the ability to

determine effort at a capability level, it was important

to find a way to align code counts with the specific

capabilities being delivered with each build. An

Excel based Code Count Wrapper (CCW) was

created for the tool that allows users to perform

differential analyses between two code bases. The

CCW allows users to configure the types of files

being examined, the directories of the two code

bases, the depth to start within those directories, as

well as configuration parameters that allow users to

control the size of the runs of the tool and the ability

to exclude specific directories from examination.

The CCW also addressed the concern for the code

count tool to process the large OneSAF codebase.

The solution was to have the CCW identify all

directories that contain files of the types selected, and

then run the counter tool multiple times feeding off

of the selected directories with each run of the tool

being based on a CCW pre-configured total file size

per run. Once the runs have been completed, the

CCW gathers the results from the multiple runs and

produces a report in Excel with the result broken out

by language.

Characterization of the Code

OneSAF „code‟ consists of a large amount of Excel

and CSV type files. Originally it was believed that it

was unnecessary to count these files as they were not

technically traditional code and appeared to be

merely data entry elements. However, it became

evident that these files were indeed an important part

of the work products that were being delivered which

required significant investment of time and effort on

the part of the contractors. For this reason, they

became an important part of the cost/effort history of

the project to capture.

The collection tool currently does not have the

capability of performing line-by-line analysis of the

modification /work performed on .csv and .xls files.

Furthermore, there is no means to align these counts

with skill level or labor hours; therefore the focus

was placed on the magnitude and direction of the

overall size of each file during the scanning. To

offset any margin of error injected by this

methodology, both .xls and .csv files are to be treated

as “non-executable code” and weighted differently

than executable code files. The team developed

functionality in the CCW to count the change in

number of rows (xls) and/or lines (csv). Each type of

data file (xls, csv) is recorded as a summary number

which represents the aggregation of both added and

deleted data records. This is recorded as a separate

capability in the product size reporting section of the

SRR.

The tool calculates an amount of effort consumed by

each resource for each activity. The amount of

consumption of effort is based on a study of

productivity for a predetermined work package size.

The consumption of labor hours for each activity for

a standard work package has been validated in the

past using historical data. However, there is a

continuing need to revalidate as code methods, tools,

and processes change/improve. One key to the

success of this data collection effort is to collect, in a

methodical manner, the data necessary to link labor

hours to activities to SLOC. The number of work

packages is determined by dividing the total code

count by the standard work package size:

Number of Work Packages = Total Effort

Size (Count)/Work Package Size

Non executable code is added to the total effort size

at the rate of 33%. For example, if the non-

executable code is 1000 lines, the tool adds 333 lines

to the total effort size automatically as part of the

count. Therefore the number reported by the tool in

the summary line will already have been factored

accordingly, or reduced by 67%.

Software Resources Report

The detailed reporting requirements for the SRR were

refined as an output of the IPT. The final revised

SRR was enhanced to address specific OneSAF

nuances as related to Development Organization,

Development Description, Activity & Resource

Mapping, Requirements Reporting and Product Size

Reporting. Although these nuances were OneSAF

specific, the team determined that they were a worst

case situation which facilitated the creation of a set of

tools, and processes which would meet most

collection requirements. Table 1 highlights what and

where this new information is to be addressed within

the report. The SRR form was initially designed to

meet the vision of how an agile software

development program should report its development

status in terms of SLOC and labor hours. After

several working sessions and numerous emails, the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 7 of 10

form as it exists today provides a template for

reporting on the breadth of software development

program types from waterfall to agile, and does so in

a way that provides meaningful data.

Table 1. SRR Data

Findings

As of the date of this paper, the initial set of data has

been formally delivered for OneSAF Build 28

activities and is currently being analyzed to verify the

validity of the data and determine additional changes

that may be required for the collection strategy.

The Build report covered activities over the ten week

period from 5 March 2012 through 11 May 2012.

The type of software development and maintenance

activities for the Build included: development of

approximately fifteen new from-scratch capabilities;

integration of capabilities from internal co-developer

teams; integration of two external co-developer

handovers (one small and one large); and the

correction of approximately 200 software issues.

Table 2, Initial Data, provides the results of running

the code count tool on the OneSAF baseline

comparing the start of Build 28 to the end of Build

28. The code count was performed on the 16

languages listed.

Table 2. Initial Data

The results obtained from the code count tool must be

coupled with the additional information provided in

the SRR report in order to understand and provide

context to the data. For example, the 25M count

above includes non-executable code which is

typically not counted. Additionally, the increase in

Python and C++ (actually C) code is the result of

adding COTS software for use in a new OneSAF

capability and is not developmental code. The

increase in the XLS file count and the decrease in

XML file count is due in part from the conversion of

OneSAF data between those file formats. This

context needs to be captured in the database for

future analysis.

The team plans to adjust the data collection strategy

as needed in order to obtain useful data for future use.

For this initial set of data the code count was

performed on the complete code base exported from

the Subversion configuration management tool. As

the team is able to analyze the data more, it may be

decided that portions of the code base should be

excluded from the code count in order to provide

more meaningful results. The CCW tool supports

this by providing the capability to exclude directories

from examination.

The CCW tool itself was found to be relatively easy

to use once it was configured and the source code to

be counted was obtained. The team worked through

a number of issues in order to be in position to run

the code count and submit the SRR data for Build 28,

some of which are described in the Lessons Learned

section. It should also be noted that the use of CCW

and UCC allowed for broader language coverage than

done previously on the OneSAF program, which

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 8 of 10

focused on the primary developmental languages of

Java and C++.

LESSONS LEARNED

The IPT worked together for six months; defining,

refining and conducting test runs on sample data to

achieve this first delivery of data. The following

lessons learned are offered as insight as the process

matures to meet the intended requirement.

Software Cost Estimating and Reporting Tools

The cost estimating and reporting tools went through

multiple iterations. Versions that were created and

working in the test laboratory were then tripped up by

configuration issues in the contractor‟s facility.

Initially the tools took a long time to run, six to eight

hours, depending on the number of new, modified or

changed lines of code. Performance fixes have since

reduced the run time to about two and a half hours.

In spite of this performance improvement, the code

collection tool monopolizes Excel for the complete

two and half hours. No other work can be done on

Excel while the program is executing.

Language Types

In addition to the enhancement of the UCC tool to

address .xls and .csv type files, the tool still does not

address how to count terrain database code in any

way. To date, OneSAF contains more than forty

terrain databases and associated visualization files

that are not being included in the cost collection

process. Great effort is expended to generate, modify

and debug these terrain databases. Generation of

these databases requires the use of Digital Terrain

Elevation Data (DTED), Vector Map (VMAP) and

Ultra High Resolution Building (UHRB)

specifications. Both DTED and VMAP come in a

variety of levels of details, and the use of higher

fidelity data often correlates with more effort being

expended to generate and verify OneSAF models can

reason off the database feature data. At the macro

level, the team is still working on finding a

relationship between DTED and VMAP level used,

complexity of urban areas (in terms of UHRBs),

number of feature data (roads, rivers, etc) and the size

of the database (in terms of geotiles) to be able to

estimate resourcing requirements for the generation

of a database and develop an equivalence algorithm

to be able to compare terrain database development

to code development.

Subversion Issues

The OneSAF program uses Subversion, abbreviated

SVN, as its configuration management tool. Most of

the time, SVN executes all of its commands

flawlessly. However, issues with SVN have surfaced

when executing the Switch Command. The Switch

command allows the user to “update” a checkout

from one branch to another and is not changing to a

new revision number entirely as expected. The

Switch command ignores a directory that should have

been updated. Because of this, a more brute force

method of checking out both the beginning and end

points of a development branch has been

implemented, which can take as long as an hour and a

half per checkout. OneSAF typically has 10 – 14

development branches for each development cycle

adding as much as 35 hours to the SLOC counting

effort.

Characterization of Data in the SRR

The SRR narrative that provides context and

explanation of the code count results is important to

the overall understanding of the data and necessary

for future use. The initial SRR has been provided but

it is unclear if the narrative will meet the needs of the

intended users of the data. The team should continue

to refine the information provided as the intended

uses for the data is further understood.

Mapping Development Activities to SRR

Standardized Software Activity

The SRR data is collected on a set of standard

software activities. The program development

activities, as defined in the Contractor Work

Breakdown Structure (CWBS), need to be mapped to

that standardized set. The mapping was for the most

part straightforward and aligns well with industry

standard software development. However, there are a

few activities outside of main software development,

such as overall system/software architecture, system

analysis and design, information assurance, and

development environment support that do not map

directly to the SRR standardized software activities.

The effort for these activities is being mapped in the

Project Management and Control activity along with

program management office effort. Future revisions

of the SRR Data Item Description (DID) should add

additional activities or include more guidance on

suggested mapping to ensure all programs provide

consistent data.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 9 of 10

FUTURE WORK

Data is just data until we process it and turn it into

useful information. The specific goals of the team

are to create a situation where actual products can be

referenced as the basis of project estimates and to be

able to understand cost on a per capability basis so

that informed tradeoffs can be made when there is

insufficient funding for all the requirements. The

SRR is designed to collect the data necessary to

continuously validate the work package to effort

relationship. This linkage will greatly improve the

quality, accuracy, and defensibility of future cost

estimates. The SRR facilitates the collection of

characteristics of a software product and its

development process. The team proposes the

following next steps be taken to achieve the full

vision.

Creation of a Benchmark Database

Although the DID and SRR were designed with a

specific cost estimating tool as the target user of the

data collected, the team always included the

requirement to provide data to multiple cost and

program management tools for a variety of uses. The

data collected and housed in the relational database

will be used to create a benchmark database for cost

estimation. The definition of the data and the manner

in which the SRR was structured anticipated the

creation of a relational database as the warehouse for

the primary software data. Specifically the team tried

to design the collection process to allow multiple

tools to link labor hours to effort (SLOC) to

capability. Other data elements such as team

maturity as measured by CMMI level, personnel

experience, development site characteristics,

capability name/category, etc. are collected in order

to allow classification and retrieval of data from the

database in forms required by multiple tools and

users. This database could then be used to develop a

benchmark database extract for the tool input values

for ACEIT, or the creation of a new cost estimating

relationship. The Software Effort Database is the

focal point for the application of the data collected.

One could create data objects in the actual tool

framework. Data objects are similar to cost objects

except they contain no CERs. All of the data

elements collected are inputs and the effort values are

then translated to the appropriate outputs. As a

simple example, if the SRR was collecting only New

Size, Deleted Size, Design Effort and Programming

Effort, then the data object would have as inputs New

Size, Deleted Size, Design Effort and Programming

Effort. The activities of the data object would be

Design and Programming and the values input for

Design Effort and Programming Effort would be

throughput to the outputs on a „run‟ of the data

object. The data object could apply to entire projects,

individual capabilities or both. The benefit of storing

the data in a framework based database is that all the

utilities and features designed for analysis and

presentation would be instantly available.

Calibration of the Tool

The data should be used to calibrate the tool itself.

The tool has been developed using data from many

industries and many projects. This makes it a very

general purpose model. The many possible input

parameters contribute significantly to tailoring the

model to a specific organization‟s or projects

particulars but calibration takes it a step further. The

tool can be thought of as a meta model or a model for

a model. Consider a model of the general form

“a*X^b, if the calibration affects both the coefficient

and the exponent, then the model becomes

completely tailorable to an organization through the

calibration of the input parameter that affects both

coefficient and exponent. The Organizational

Productivity input is intended to model the efficiency

with which an organization delivers software. The

process of calibration basically requires running the

model in „reverse‟ with the effort as an input and the

Organizational Productivity as output. The

calibration process is automated through the Excel

Solution. As each release is calibrated over time, the

results should converge to a steady state value. This

value can then be used to estimate future projects.

CERs

The data could be used to create custom CERs

implemented in the framework. Once several

releases of data have been collected, analysis can be

performed. Because the Data Dictionary and the

SRR are being used by all parties to collect data, the

data should already be normalized (apples to apples

format across releases and contractors). Trend lines

can be used to identify cost drivers and regression

analysis can be performed to determine likely cost

estimating relationships. This analysis could take

place at the project or the capability level – a

determination to be made after several iterations of

data have been collected and analyzed. Once CERs

are developed, they can be implemented as custom

cost objects within the tool. As future iterations of

data are collected, they can be used to validate that

the CERs are still appropriate or to refine the cost

estimating relationships to reflect changing

development conditions.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12222 Page 10 of 10

CONCLUSION

The intent of the SRR process is to collect objective

measurable data commonly used by industry and

Department of Defense (DoD) cost analysts. These

data are used to compile a repository of estimated

software product sizes, schedules, and effort by

capability. This repository will enable Government

analysts to build credible size, cost, and schedule

estimates of future software-intensive systems. Much

time and effort has gone into creating a process and

set of tools for data collection in order to ensure that

data collection is relatively easy to do and not too

time consuming. The team has also invested time

and effort to create processes and tools that are not

unique to the OneSAF program, or even PEO STRI.

The goal is that they should be generally applicable

to programs across the Army and the DoD with

relatively little need for tailoring and customization.

While the pilot is still in its infancy, a great deal has

been accomplished. Data collection has been added

as a requirement of the contract, highlighting the

Government‟s understanding of the importance of

historical data to future projects. An agreement has

been reached between all parties as to what data

should be collected, how it is to be collected, and

how often that data collection should occur. Tools

and processes have been developed, tested, reworked,

and put into place to facilitate the first formal data

collection on Build 28.

The entire team has collaborated closely in an

environment of cooperation and dedication to the

success of the project to create a tool that automates a

process for consistent collection of software size

measures. The tool has evolved throughout the

project. Requirements have evolved relating to what

did and didn‟t need to be counted. No doubt issues

will continue to arise as new, previously

unconsidered, situations arise. PEO STRI is

continuing with this pilot project and all parties

remain committed.

ACKNOWLEDGEMENTS

The authors would like thank Mr. Vidal Acevedo for

his enduring patience and insight throughout this

process and Mr. Howard (Sam) Felder for his valued

input on this paper.

REFERENCES

Army Regulation 5-11, Management of Army

Models and Simulations

Department of the Army Pamphlet 5-11

California, U. o. (n.d.). USC Center for Systems and

Software Engineering. Retrieved June 14, 2012, from

Center for Systems and Software Engineering Code

Count: http://sunset.usc.edu/research/CODECOUNT/

