Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

Improving Software Development Cost Estimation Models

Rodney Figaroa, Scott Nelson, Karen Arlene Minkiewicz, Bob Koury

Williams Charles Stroup
PEO STRI SAIC Price Systems
Orlando, FL Orlando, FL 32766 Mt. Laurel, NJ
Rodney Figaroa @us.army.mil Charles.f.stroup.jr@saic.com Arlene.minkiewicz@
Scott.h.nelson1l@us.army.mil Bob.Koury@
Karen.e.williams@us.army.mil Pricesystems.com
ABSTRACT

Program Executive Office Simulation, Training and Instrumentation (PEO STRI) is utilizing a new code counting
methodology to estimate future cost for software development products. In 2011, PEO STRI awarded two contracts in
support of the One Semi-Automated Forces (OneSAF) program valued at more than $90M. For the first time ever, a
requirement for the delivery of a Software Resources Report (SRR) was placed on each contract. The SRR is expected to
be used to obtain the estimated characteristics of a software product and its development process. The intent of the SRR
process is to collect objective measurable data commonly used by industry and Department of Defense (DoD) cost
analysts. These data are used to compile a repository of estimated software product sizes, schedules, and effort that
Government analysts can draw upon to build credible size, cost, and schedule estimates of future software-intensive
systems. Information to be acquired through these data will include descriptive information about the product and
developer and estimates of software product size, development schedule, peak staff, and direct labor hours. The paper will
describe the Government’s intent for use of the SRR, and describe the current state of this pilot program. The paper will
detail the processes, the tool, participants, OneSAF unique challenges, methodologies and data. In conclusion, we will
present the findings, lessons learned and recommendation for the future implementation of this product.

ABOUT THE AUTHORS

Rodney Figaroa is a Project Director at PEO STRI in Orlando, Fla. His primary responsibilities include overseeing the
successful capability development for OneSAF. He has over 6 years of project management and engineering experience in
the development, integration, testing, and fielding of simulation capabilities. He holds a B.S. in Computer Engineering
from the University of Central Florida and a M.S. in Business Administration (MBA) from Webster University.

Bob Koury is the PRICE Systems Chief Solution Architect for Army accounts. In this role, he is responsible for ensuring
that all Army customers have access to the cost estimating subject matter expertise necessary to be successful. Bob retired
from the Army as a Lieutenant Colonel after 22 years of distinguished service and spent 18 years in industry creating
Systems of Systems solutions for Texas Instruments, Raytheon and Lockheed. He holds a M.S. in Systems Management
from the University of Southern California and a M.A. in National Security and Strategic Studies from the United States
Naval War College.

Arlene F. Minkiewicz is the Chief Scientist at PRICE Systems, LLC with over 27 years of experience at PRICE building
cost models. She leads the cost research activity for TruePlanning, the suite of cost estimating products that PRICE
provides. She is widely published and speaks frequently on software related topics. She holds a B.S. in Electrical
Engineering from Lehigh University and an M.S. in Computer Science from Drexel University

Scott H. Nelson is a cross functional Operations Research Analyst supporting several programs including OneSAF at PEO
STRI in Orlando, Fla. His primary responsibilities include preparing cost estimates, analyzing Earned Value Management
reports and managing Integrated Baseline Reviews. Scott has worked in private industry at Ford Motor. He is a Certified
Public Accountant (CPA) and has over 20 years of expertise in Finance and Accounting functions. He holds a B.S. in
Accounting and Master in Business Administration (MBA) from Brigham Young University.

Charles Stroup is the Lead Systems Engineer for the OneSAF Production Contract. He has been a systems engineer on
the OneSAF program for the past ten years while working on the various SAIC contracts for OneSAF. He has more than
30 years of military simulation domain experience. He holds a B.S. in Aeronautical Science from Embry-Riddle
Aeronautical University, a M.A. in Business from Central Michigan University, and a M.S. in Computer Science from
West Chester University.

Karen Williams is the OneSAF Chief Engineer at PEO STRI in Orlando, Fla. She has more than twenty five years of
engineering experience in the development, integration, testing, and fielding of simulation capabilities. She holds a B.S. in
Physics from Jacksonville University and a M.S. in Industrial Engineering from the University of Central Florida.

2012 Paper No. 12222 Page 1 of 10

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

Improving Software Development Cost Estimation Models

Rodney Figaroa, Scott Nelson, Karen

Arlene Minkiewicz, Bob Koury

Williams Charles Stroup
PEO STRI SAIC Price Systems
Orlando, FL Orlando, FL 32766 Mt. Laurel, NJ
Rodney.Figaroa @us.army.mil Charles.f.stroup.jr@saic.com Arlene.minkiewicz@
Scott.h.nelsonl@us.army.mil Bob.koury@

Karen.e.williams@us.army.mil

BACKGROUND

Working within the directives of the Deputy
Assistant Secretary of the Army Cost and Economics
Office (DASA-CE), Program Executive Office for
Simulation, Training and Instrumentation (PEO
STRI) typically applies a growth factor to software
cost estimates when local, calibrated historical
databases are not available to be used as the basis for
estimating a future software development effort. As
a result, software development estimates can be
overstated by as much as 30-60%, negatively
impacting the ability to obtain approval for execution
of the project in a timely and affordable manner. In
preparation of these estimates, a significant amount
of time is expended by PEO STRI team members to
develop and justify software cost estimates. While
processes for capturing software development costs
exist, the lack of a standardized process and system
for collection of this data leads to a large reliance on
Subject Matter Experts (SMES) to provide subjective
estimates of future development costs.

Acquisition Category (ACAT) | programs (valued at
greater than $365 million RDT&E) require a periodic
Software Resources Data Report (SRDR) to be
delivered by the prime contractor. The SRDR
contains various details on actual Software Lines of
Code (SLOC), programming languages, commercial
or government off-the-shelf (COTS/GOTYS)
applications, external interfaces, requirements, peak
staff, and direct labor hours. This data is used to
compile a repository of software product sizes,
schedules and effort that Government analysts can
draw upon to build credible size, cost, and schedule
estimates of future software-intensive systems. The
intent is for PEO STRI to create a document similar
to the SRDR that would accommodate reporting by
smaller programs (i.e. ACAT Il). PEO STRI selected
the ACAT Il One Semi-Automated Forces (OneSAF)
program to serve as the pilot for implementing this
new reporting requirement.

2012 Paper No. 12222 Page 2 of 10

Pricesystems.com

OneSAF

OneSAF is a composable, next generation Computer
Generated Forces simulation that represents a full
range of operations, systems, and control processes
from an individual combatant and platform to brigade
level. It includes a variable level of fidelity that
supports all Modeling and Simulation domains by
accurately and effectively representing the specific
activities of ground, air, sea, and space warfare
(engagement and maneuver); Command, Control,
Communications, Computers, and Intelligence
activities; and combat support/combat service support
missions as described in Figure 1. It employs
appropriate representations of the physical
environment and its effect on simulated activities and
behaviors.

MVR 5
- — - Stimulate
< 7 M
Fires D’;T::;';’:G::”" IL @
s 4
- § 1
= 1
Log o T
o8 rl",z L p AlR|[
sz — M= "|c[D
2 Largo Scale A M
Comms i ¥ Rl A ol
(Sim Center)
F
* [A
R
Y b
COE/Threats)

s (S) B

P4
AVN HPC/Cloud

Third Party Open Source
Development

Figure 1. OneSAF Mission

The OneSAF program is currently in the production
and support phase of the life cycle with ongoing
implementation of Pre-Planned Product
Improvements (P3l) as prioritized by the US Army
Training and Doctrine Command OneSAF Project
Office. Through approved P3l efforts, capability
enhancements are continuously being developed and
integrated into the software baseline resulting in, as a
minimum, yearly version releases. OneSAF is
fielded to multiple Army users as well as other
Department of Defense agencies, industry, academia,

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

and Foreign Military Sales cases. Concurrent with
P31 enhancements, customer requirements, user
feedback and needs are continuously addressed by
way of Change Requests and Engineering Change
Proposals to assure maximum utilization of the
system throughout the growing user community.

OneSAF, as a software only program, was selected as
the prime candidate for implementing, demonstrating,
improving, and expanding the utility of code
counting tools used to generate a standardized SRDR
like report called a Software Resources Report
(SRR). OneSAF consists of more than 6 million
traditional SLOC and is continuously being revised,
expanded and improved as capability and user
community needs are addressed. Version 1 of the
software was officially released on Sept 29, 2006,
with more than 50 subsequent major and minor
releases addressing domestic, domestic minus and
international communities and requirements. Version
6.0 is scheduled for December 2012. Two new
OneSAF contracts were awarded in 2011; one for
OneSAF Integration, Interoperability and Support
(12S) to Cole Engineering Services Inc (CESI). and
the other for software Production to Science
Applications International Corporation (SAIC). With
the timely renewal of these contracts, a requirement
for delivery of a SRR was placed onto these
contracts.

PROCESS
Figure 2 provides an overview of the process that

evolved. The top layer of Secretary and Department
of the Army level organizations represent the

Department of the Arm

Plans, Programs, and

Pre-
Contract

Development

G-‘ol PM ConSim
S 2 ..

ProductManager Metrics

Assoclate Director
Contracting Operations

Key and Notes

: Prime
Formt = :
. i -) Contractor

2012 Paper No. 12222 Page 3 of 10

Principal Military Deputy
Resources Chief Integration Officer

Historically Informed Capability Based Estimating

Figure 2. Defendable Cost Estimate Process

ultimate consumers of the data. It is the intent of PEO
STRI to use the data collected as part of a budget
approach which uses historical data to calculate
defendable cost estimates. The middle layer of
organizations is internal to PEO STRI and represents
the data users. The Chief for Financial Management
will initially use the data as direct inputs into the cost
estimating software to calculate budget submission.
In the future, the data may be adapted to create new
cost estimating relationships or as a means to validate
EVM metrics reported.

The lower section of Figure 2 provides an overview
of the process flow specific to this paper. The
OneSAF Program Office, OneSAF developers, PEO
STRI Cost Division and PRICE Systems L.L.C
worked as an Integrated Product Team (IPT) to
develop the process and mature the tools for
executing the collection and application of the
software development resource data. The Program
Office provided access to the software development
contractors and overall guidance regarding the
collection of the OneSAF data. PEO STRI Cost
Division guided the process development strategy.
PRICE Systems L.L.C. contributed cost estimating
subject matter expertise and recommended the tools
for the developers to use to produce the data. The
team ultimately created a repeatable data collection
process by modifying an open source SLOC counting
application, creating a Data Dictionary and refining
the original SRR form to be used in the collection of
data.

DASA (Cost & Economics)
Acquisition Costing &
Cost Revi Board

: : BUdgeuns

Estimates tao
B e complete
Productivity

Dats Calibration &
Model Validation
Process
Models

Data Validation Proces:

Monthly
CDRL / CPR Historical Cost
Reports Database

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

Frequency of Reporting

One of the first things the IPT addressed was the
frequency of data collection and reporting. The
Government originally placed a monthly reporting
requirement on the contracts. Continued discussions
about collection and reporting highlighted that a
monthly report cycle had no real value and just
increased costs to deliver a Contract Data
Requirements List (CDRL). OneSAF conducts
software development in blocks of time that are
called ‘builds’. A typical build consists of 10-12
weeks of software development activity from
requirements analysis through integration and test.
During any build cycle, there are any numbers of new
capability development, system integration, test and
release activities occurring in parallel. The
integration of capabilities back into the main
OneSAF baseline typically does not occur during the
same build because they all vary in size and
complexity. For that reason, the IPT determined that
the SRR report be build based and that the reporting
scheme be software capability based. This reporting
pattern offered traceability of SLOC and labor hours
across builds and through the implementation,
integration, test and release lifecycle for each
capability. Figure 3 offers a graphical depiction of
the what, when and how this nuance is captured in
the report. At the end of each build, the contractors
will collect SLOC and labor hours data per newly
developed capability and integration activities for
each software capability. The data reported for the
integration activity will only include associated labor
hours for performing this task and any SLOC
changes to enable the integration back into the main
baseline. The integration effort will not report the
SLOC associated with the development phase. This
allows for segregation of the code effort in a way that
can determine productivity levels during all phases.
Cost collection on any software capability is not
considered complete until it is officially released.
When the capability set for the next release is defined
and the software baseline frozen, the program
executes a version release cycle. The labor hours and
SLOC changes necessary during this release cycle to
enable a version release is captured and reported per
capability into the SRR report. This last portion of
the report is referred to as the final software build.
Upon receipt of the final Software Build for each
annual release, a Release Report will be developed
that captures cost and capability per OneSAF release.
With this approach, the database would ultimately
contain all of the information necessary to make
estimates based on capability.

2012 Paper No. 12222 Page 4 of 10

Build X Build X+1 Build X+2

Capability
Development

Capability Capability
Development Development

1.n 1.n 1.n
Integration Integration Integration
Capability Dev Capability Dev Capability Dev
Build X-1 Build X Build X+1

Release Effort

Report

Report

SRR Includes
*SLOC changes
* Associated labor hours

Figure 3. Report Structure to Capture Effort by
Capability

Software Cost Estimating and Reporting Tools

The TruePlanning Software Tool was selected to be
the primary cost estimating tool. The intent was to
ensure that the data collected would be easily used as
input in the tool but also support the use of other
commercial tools. The selected tool is a cost
estimation framework that houses cost estimation
models for hardware, software and systems as
pictured in Figure 4. This framework encompasses
most of the capabilities that are necessary or useful to
cost estimators in the preparation, analysis and
presentation of their cost estimates while the
estimation models contain the Cost Estimating
Relationships (CERSs) and logic to perform estimates
of effort, cost and schedule for a particular project.
The framework provides the user interface for the
cost models, creating input sheets and worksheet sets
based on the activities, resources and inputs defined
in the cost model. The framework contains the
mechanism for output of the cost model results
through tables and charts in a variety of user
specified formats. It also contains a set of utilities
providing capabilities common to many cost models
such as the application of escalation rates and other
economic factors, the application of cost schedule
impact when schedules are constrained or stretched,
and a cost risk analysis tool. The tool has evolved
over time and improved to estimate the design, code
and test implications of object orientation, model new
software technologies and estimate using metrics in

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

addition to source lines of code. Additionally, it
includes new ways to measure reuse and properly
estimate all of the costs associated with building
software that uses COTS components.

The tool’s software model is activity based. This
means that the model uses the language of cost
objects (products or services being developed or
delivered), activities, resources and cost drivers. The
cost objects are Software Components and Software
COTS. Software Components represent any piece of
software that is being developed in-house. Software
COTS represent any piece of software that comes
from an outside source (bought or furnished) that is
to be integrated with other pieces of a system. The
organization is such that the costs and effort
estimated for each cost object are broken down and
presented by activity and resource categories — so the
user gains an understanding of how each activity and
resource fits into the context of the entire project.

Each cost object has a group of cost drivers for which
the user must enter values. These values are then
applied to relationships that indicate how variances in
this input impact the productivity on each of the cost
objects activities. The Tool assigns a baseline
productivity factor for each activity based on industry
standard data. Productivity adjusters are applied to
the baseline and then the adjusted productivity is
applied to each activity for a particular project. The
same process is used to determine how the activity
requirement is spread throughout the resources.

For the software estimation model, the major cost
drivers include software size, functional complexity,
operating platform, and characteristics of the
development team and organization. Software size is
typically measured in SLOC and is strongly
correlated to cost. Functional complexity is
associated with the types of functionality the software
is intended to deliver based on the assumption that
some functionality is easier to design, code and test
than other functionality. For example, real time
command and control software is more complex than
software that performs simple data manipulation.
Clearly, the experience and knowledge of the
development team will be a significant cost driver,
but it’s also important to note that organizational
culture and practices will likewise impact software
development costs. Another factor with significant
impact on cost is the platform or environment in
which the software will operate. For example,
avionics software requires more rigor throughout the
development process than software performing office
automation.

2012 Paper No. 12222 Page 5 of 10

Cost Object Name

Ready Connected to: (local) 3 TruePlanningAdmin NOM

Figure 4. Cost Estimating Tool

Collection Tool

It became apparent that there was a need for a
standardized collection tool. The standardized tool
would allow for consistency in code counts from one
software development Build to the next and from one
program to the next. A very important component to
the success of this pilot effort is that the contractors
need the ability to perform consistent code counts in
a reasonable amount of time. Thus, an important
success factor was the automation of the process as
much as possible. The original plan was to use the
freely available code counting tool developed by the
University of Southern California Center for
Software Excellence (USC-CSE) called the Unified
Code Count (UCC). This tool implements popular
code counting standards published by the Software
Engineering Institute (SEI) and adapted by the
Constructive Cost Model (COCOMO). This tool
counts both logical and physical lines of code and
performs code counts of 21 software languages. In
addition to counting code, the tool has source
differencing capabilities. This makes it possible to
count, compare and collect logical differentials
between two version of the source code of a software
product. This fact was key to automating the ability
to identify new, deleted, changed and unchanged
code from build to build.

The code counting tool counts both physical and
logical lines of code. A physical line of code is just
what it sounds like — one single line of code on the
page or screen. A logical line of code represents one
single command to the compiler. Many
programming languages are flexible enough in their

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

syntax that it is unwise to assume that each physical
line of code represents a single command to the
compiler. Additionally, the cost estimating
relationships in the software model are based on an
analysis of projects with logical line of code counts.
For these reasons, the decision was made to count
logical rather than physical lines.

The deployment of the UCC tool was not completely
smooth. Because one end goal is the ability to
determine effort at a capability level, it was important
to find a way to align code counts with the specific
capabilities being delivered with each build. An
Excel based Code Count Wrapper (CCW) was
created for the tool that allows users to perform
differential analyses between two code bases. The
CCW allows users to configure the types of files
being examined, the directories of the two code
bases, the depth to start within those directories, as
well as configuration parameters that allow users to
control the size of the runs of the tool and the ability
to exclude specific directories from examination.
The CCW also addressed the concern for the code
count tool to process the large OneSAF codebase.
The solution was to have the CCW identify all
directories that contain files of the types selected, and
then run the counter tool multiple times feeding off
of the selected directories with each run of the tool
being based on a CCW pre-configured total file size
per run. Once the runs have been completed, the
CCW gathers the results from the multiple runs and
produces a report in Excel with the result broken out
by language.

Characterization of the Code

OneSAF ‘code’ consists of a large amount of Excel
and CSV type files. Originally it was believed that it
was unnecessary to count these files as they were not
technically traditional code and appeared to be
merely data entry elements. However, it became
evident that these files were indeed an important part
of the work products that were being delivered which
required significant investment of time and effort on
the part of the contractors. For this reason, they
became an important part of the cost/effort history of
the project to capture.

The collection tool currently does not have the
capability of performing line-by-line analysis of the
modification /work performed on .csv and .xls files.
Furthermore, there is no means to align these counts
with skill level or labor hours; therefore the focus
was placed on the magnitude and direction of the
overall size of each file during the scanning. To
offset any margin of error injected by this

2012 Paper No. 12222 Page 6 of 10

methodology, both .xls and .csv files are to be treated
as “non-executable code” and weighted differently
than executable code files. The team developed
functionality in the CCW to count the change in
number of rows (xIs) and/or lines (csv). Each type of
data file (xls, csv) is recorded as a summary number
which represents the aggregation of both added and
deleted data records. This is recorded as a separate
capability in the product size reporting section of the
SRR.

The tool calculates an amount of effort consumed by
each resource for each activity. The amount of
consumption of effort is based on a study of
productivity for a predetermined work package size.
The consumption of labor hours for each activity for
a standard work package has been validated in the
past using historical data. However, there is a
continuing need to revalidate as code methods, tools,
and processes change/improve. One key to the
success of this data collection effort is to collect, in a
methodical manner, the data necessary to link labor
hours to activities to SLOC. The number of work
packages is determined by dividing the total code
count by the standard work package size:

Number of Work Packages = Total Effort
Size (Count)/Work Package Size

Non executable code is added to the total effort size
at the rate of 33%. For example, if the non-
executable code is 1000 lines, the tool adds 333 lines
to the total effort size automatically as part of the
count. Therefore the number reported by the tool in
the summary line will already have been factored
accordingly, or reduced by 67%.

Software Resources Report

The detailed reporting requirements for the SRR were
refined as an output of the IPT. The final revised
SRR was enhanced to address specific OneSAF
nuances as related to Development Organization,
Development Description, Activity & Resource
Mapping, Requirements Reporting and Product Size
Reporting. Although these nuances were OneSAF
specific, the team determined that they were a worst
case situation which facilitated the creation of a set of
tools, and processes which would meet most
collection requirements. Table 1 highlights what and
where this new information is to be addressed within
the report. The SRR form was initially designed to
meet the vision of how an agile software
development program should report its development
status in terms of SLOC and labor hours. After
several working sessions and numerous emails, the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

form as it exists today provides a template for
reporting on the breadth of software development
program types from waterfall to agile, and does so in
a way that provides meaningful data.

Table 1. SRR Data

ACTIVITY DESCRIPTORS

Development *SoftwareProcess Maturity
Organization *Operating Environmental Reliability
*Design, Code, & Test Integration
*Multi-Site Development

Development “Application Types
Description *%s of Product Size
*COTS/GOTS/Handover
*Integration Effort

*Glue Code Language

Activity & *Organization Names
Resource *Map to Development Activity
Mapping *Map to Maintenance Activity

*Resource Characterization
*Hours / Staffing

Requirements *Total Requirements

Reporting New Requirements

*Total External Interface Rqmts
*New External Interface Rqmts
*Requiremnents Volatility

Product Size Capability Name
Reporting *Software Language
*Source Lines of Code (SLOC)

Findings

As of the date of this paper, the initial set of data has
been formally delivered for OneSAF Build 28
activities and is currently being analyzed to verify the
validity of the data and determine additional changes
that may be required for the collection strategy.

The Build report covered activities over the ten week
period from 5 March 2012 through 11 May 2012.
The type of software development and maintenance
activities for the Build included: development of
approximately fifteen new from-scratch capabilities;
integration of capabilities from internal co-developer
teams; integration of two external co-developer
handovers (one small and one large); and the
correction of approximately 200 software issues.

Table 2, Initial Data, provides the results of running
the code count tool on the OneSAF baseline
comparing the start of Build 28 to the end of Build
28. The code count was performed on the 16
languages listed.

2012 Paper No. 12222 Page 7 of 10

Table 2. Initial Data

Language New Deleted | Modified | Unmodified
Code Code Code Code
Bash 2903 0 2 6531
C-Shell 0 0 0 64
C# 0 0 0 50590
C++ 229,156 | 1,401 685 2651149
CSS 224 0 0 20078
HITML 4,332 302 0 8047245
Java 53,665 | 18,661 10,811 2352195
Perl 0 0 0 5378
PHP 0 0 0 10463
Python 131,662 [0 0 83050
SQL 0 0 0 32185
Visual Basic [0 0 0 237880
XML 75,073 | 228,074 | 7,419 11654153
VB Script 0 0 0 10
X1S File 103,763 [204 0 469783
CSV file 10,676 | 59 0 279205
Totals 608.844 | 248,701 | 18,917 25,929,967

The results obtained from the code count tool must be
coupled with the additional information provided in
the SRR report in order to understand and provide
context to the data. For example, the 25M count
above includes non-executable code which is
typically not counted. Additionally, the increase in
Python and C++ (actually C) code is the result of
adding COTS software for use in a new OneSAF
capability and is not developmental code. The
increase in the XLS file count and the decrease in
XML file count is due in part from the conversion of
OneSAF data between those file formats. This
context needs to be captured in the database for
future analysis.

The team plans to adjust the data collection strategy
as needed in order to obtain useful data for future use.
For this initial set of data the code count was
performed on the complete code base exported from
the Subversion configuration management tool. As
the team is able to analyze the data more, it may be
decided that portions of the code base should be
excluded from the code count in order to provide
more meaningful results. The CCW tool supports
this by providing the capability to exclude directories
from examination.

The CCW tool itself was found to be relatively easy
to use once it was configured and the source code to
be counted was obtained. The team worked through
a number of issues in order to be in position to run
the code count and submit the SRR data for Build 28,
some of which are described in the Lessons Learned
section. It should also be noted that the use of CCW
and UCC allowed for broader language coverage than
done previously on the OneSAF program, which

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

focused on the primary developmental languages of
Java and C++.

LESSONS LEARNED

The IPT worked together for six months; defining,
refining and conducting test runs on sample data to
achieve this first delivery of data. The following
lessons learned are offered as insight as the process
matures to meet the intended requirement.

Software Cost Estimating and Reporting Tools

The cost estimating and reporting tools went through
multiple iterations. Versions that were created and
working in the test laboratory were then tripped up by
configuration issues in the contractor’s facility.
Initially the tools took a long time to run, six to eight
hours, depending on the number of new, modified or
changed lines of code. Performance fixes have since
reduced the run time to about two and a half hours.
In spite of this performance improvement, the code
collection tool monopolizes Excel for the complete
two and half hours. No other work can be done on
Excel while the program is executing.

Language Types

In addition to the enhancement of the UCC tool to
address .xlIs and .csv type files, the tool still does not
address how to count terrain database code in any
way. To date, OneSAF contains more than forty
terrain databases and associated visualization files
that are not being included in the cost collection
process. Great effort is expended to generate, modify
and debug these terrain databases. Generation of
these databases requires the use of Digital Terrain
Elevation Data (DTED), Vector Map (VMAP) and
Ultra High Resolution Building (UHRB)
specifications. Both DTED and VMAP come in a
variety of levels of details, and the use of higher
fidelity data often correlates with more effort being
expended to generate and verify OneSAF models can
reason off the database feature data. At the macro
level, the team is still working on finding a
relationship between DTED and VMAP level used,
complexity of urban areas (in terms of UHRBS),
number of feature data (roads, rivers, etc) and the size
of the database (in terms of geotiles) to be able to
estimate resourcing requirements for the generation
of a database and develop an equivalence algorithm
to be able to compare terrain database development
to code development.

2012 Paper No. 12222 Page 8 of 10

Subversion Issues

The OneSAF program uses Subversion, abbreviated
SVN, as its configuration management tool. Most of
the time, SVN executes all of its commands
flawlessly. However, issues with SVN have surfaced
when executing the Switch Command. The Switch
command allows the user to “update” a checkout
from one branch to another and is not changing to a
new revision number entirely as expected. The
Switch command ignores a directory that should have
been updated. Because of this, a more brute force
method of checking out both the beginning and end
points of a development branch has been
implemented, which can take as long as an hour and a
half per checkout. OneSAF typically has 10 — 14
development branches for each development cycle
adding as much as 35 hours to the SLOC counting
effort.

Characterization of Data in the SRR

The SRR narrative that provides context and
explanation of the code count results is important to
the overall understanding of the data and necessary
for future use. The initial SRR has been provided but
it is unclear if the narrative will meet the needs of the
intended users of the data. The team should continue
to refine the information provided as the intended
uses for the data is further understood.

Mapping Development Activities to SRR
Standardized Software Activity

The SRR data is collected on a set of standard
software activities. ~ The program development
activities, as defined in the Contractor Work
Breakdown Structure (CWBS), need to be mapped to
that standardized set. The mapping was for the most
part straightforward and aligns well with industry
standard software development. However, there are a
few activities outside of main software development,
such as overall system/software architecture, system
analysis and design, information assurance, and
development environment support that do not map
directly to the SRR standardized software activities.
The effort for these activities is being mapped in the
Project Management and Control activity along with
program management office effort. Future revisions
of the SRR Data Item Description (DID) should add
additional activities or include more guidance on
suggested mapping to ensure all programs provide
consistent data.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

FUTURE WORK

Data is just data until we process it and turn it into
useful information. The specific goals of the team
are to create a situation where actual products can be
referenced as the basis of project estimates and to be
able to understand cost on a per capability basis so
that informed tradeoffs can be made when there is
insufficient funding for all the requirements. The
SRR is designed to collect the data necessary to
continuously validate the work package to effort
relationship. This linkage will greatly improve the
quality, accuracy, and defensibility of future cost
estimates. The SRR facilitates the collection of
characteristics of a software product and its
development process. The team proposes the
following next steps be taken to achieve the full
vision.

Creation of a Benchmark Database

Although the DID and SRR were designed with a
specific cost estimating tool as the target user of the
data collected, the team always included the
requirement to provide data to multiple cost and
program management tools for a variety of uses. The
data collected and housed in the relational database
will be used to create a benchmark database for cost
estimation. The definition of the data and the manner
in which the SRR was structured anticipated the
creation of a relational database as the warehouse for
the primary software data. Specifically the team tried
to design the collection process to allow multiple
tools to link labor hours to effort (SLOC) to
capability. Other data elements such as team
maturity as measured by CMMI level, personnel
experience, development site characteristics,
capability name/category, etc. are collected in order
to allow classification and retrieval of data from the
database in forms required by multiple tools and
users. This database could then be used to develop a
benchmark database extract for the tool input values
for ACEIT, or the creation of a new cost estimating
relationship. The Software Effort Database is the
focal point for the application of the data collected.

One could create data objects in the actual tool
framework. Data objects are similar to cost objects
except they contain no CERs. All of the data
elements collected are inputs and the effort values are
then translated to the appropriate outputs. As a
simple example, if the SRR was collecting only New
Size, Deleted Size, Design Effort and Programming
Effort, then the data object would have as inputs New
Size, Deleted Size, Design Effort and Programming
Effort. The activities of the data object would be

2012 Paper No. 12222 Page 9 of 10

Design and Programming and the values input for
Design Effort and Programming Effort would be
throughput to the outputs on a ‘run’ of the data
object. The data object could apply to entire projects,
individual capabilities or both. The benefit of storing
the data in a framework based database is that all the
utilities and features designed for analysis and
presentation would be instantly available.

Calibration of the Tool

The data should be used to calibrate the tool itself.
The tool has been developed using data from many
industries and many projects. This makes it a very
general purpose model. The many possible input
parameters contribute significantly to tailoring the
model to a specific organization’s or projects
particulars but calibration takes it a step further. The
tool can be thought of as a meta model or a model for
a model. Consider a model of the general form
“a*X"b, if the calibration affects both the coefficient
and the exponent, then the model becomes
completely tailorable to an organization through the
calibration of the input parameter that affects both
coefficient and exponent. The Organizational
Productivity input is intended to model the efficiency
with which an organization delivers software. The
process of calibration basically requires running the
model in ‘reverse’ with the effort as an input and the
Organizational Productivity as output. The
calibration process is automated through the Excel
Solution. As each release is calibrated over time, the
results should converge to a steady state value. This
value can then be used to estimate future projects.

CERs

The data could be used to create custom CERs
implemented in the framework. Once several
releases of data have been collected, analysis can be
performed. Because the Data Dictionary and the
SRR are being used by all parties to collect data, the
data should already be normalized (apples to apples
format across releases and contractors). Trend lines
can be used to identify cost drivers and regression
analysis can be performed to determine likely cost
estimating relationships. This analysis could take
place at the project or the capability level — a
determination to be made after several iterations of
data have been collected and analyzed. Once CERs
are developed, they can be implemented as custom
cost objects within the tool. As future iterations of
data are collected, they can be used to validate that
the CERs are still appropriate or to refine the cost
estimating relationships to reflect changing
development conditions.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

CONCLUSION

The intent of the SRR process is to collect objective
measurable data commonly used by industry and
Department of Defense (DoD) cost analysts. These
data are used to compile a repository of estimated
software product sizes, schedules, and effort by
capability. This repository will enable Government
analysts to build credible size, cost, and schedule
estimates of future software-intensive systems. Much
time and effort has gone into creating a process and
set of tools for data collection in order to ensure that
data collection is relatively easy to do and not too
time consuming. The team has also invested time
and effort to create processes and tools that are not
unigue to the OneSAF program, or even PEO STRI.
The goal is that they should be generally applicable
to programs across the Army and the DoD with
relatively little need for tailoring and customization.

While the pilot is still in its infancy, a great deal has
been accomplished. Data collection has been added
as a requirement of the contract, highlighting the
Government’s understanding of the importance of
historical data to future projects. An agreement has
been reached between all parties as to what data
should be collected, how it is to be collected, and
how often that data collection should occur. Tools
and processes have been developed, tested, reworked,
and put into place to facilitate the first formal data
collection on Build 28.

2012 Paper No. 12222 Page 10 of 10

The entire team has collaborated closely in an
environment of cooperation and dedication to the
success of the project to create a tool that automates a
process for consistent collection of software size
measures. The tool has evolved throughout the
project. Requirements have evolved relating to what
did and didn’t need to be counted. No doubt issues
will continue to arise as new, previously
unconsidered, situations arise. PEO STRI is
continuing with this pilot project and all parties
remain committed.

ACKNOWLEDGEMENTS

The authors would like thank Mr. Vidal Acevedo for
his enduring patience and insight throughout this
process and Mr. Howard (Sam) Felder for his valued
input on this paper.

REFERENCES

Army Regulation 5-11, Management of Army
Models and Simulations

Department of the Army Pamphlet 5-11

California, U. 0. (n.d.). USC Center for Systems and
Software Engineering. Retrieved June 14, 2012, from
Center for Systems and Software Engineering Code
Count: http://sunset.usc.edu/research/ CODECOUNT/

