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ABSTRACT

Personalization has often been described as the gold standard of training, but the research establishing a basis for
personalization is limited. In this paper, we report results from comparing six factors that appear in current theories
about personalization: generation; education; exposure to technology; knowledge pre-test; skill pre-test; and skill
testing during training. Participants in this study were randomly assigned to two groups, allowing us to evaluate the
hypothesis that younger, more technically sophisticated students will benefit more from active, technology-based
training. One group studied traditional multimedia instruction (IMI) that explained the tasks; the second group
received hands-on practice from an intelligent tutoring system (ITS). Results from analysis of covariance indicated
that differences in age, education, exposure to technology, initial knowledge, and initial skill were not strongly
related to final performance, when training treatments were taken into account. Skill testing during training proved
somewhat more consistently related. None of the treatment by covariate interactions, however, yielded a
statistically significant effect, so there was no support for changing instructional methods based on any of the factors
studied. Instead, the hands-on practice provided by the ITS had a consistent, positive effect. The practical
implications for personalized training are discussed.
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INTRODUCTION

Every generation is different from the last. Or so the
saying goes. But for the training community, the
implications of that statement are not clear.

For the generation born after the mid to late 1980s,
whether you label them genM (Wallis, 2006), the Net
Generation (Tapscott, 1998), or Digital Natives
(Prensky, 2001a), most in the training community
would agree that there are significant differences
between their world and that of the previous one. This
generation has always had computers, cell phones,
video games, and the Internet, and much of their “face-
to-face” has been replaced by Facebook, texting, and
Twitter. There is, however, virtually no agreement on
what these differences mean in practice to training.
Some have argued that their immersion in technology
has produced distinct characteristics that are relevant
for how they can be taught. They are, the argument
goes, technically sophisticated and proficient in
multitasking; they learn best from active search and
investigation; they believe learning should be fun; and
they are dependent upon technology for acquiring
knowledge and interacting with others (Oblinger &
Oblinger, 2005, Prensky, 2001a, b). Some have even
suggested that their cumulative experiences may have
changed the way they learn, perhaps even at the level
of altering brain structure (Prensky, 2001a). According
to these views, traditional teaching methods, step-by-
step instruction, and antiquated technology will fail to
intellectually challenge them and will only serve to
alienate them. Personalizing training based on age is
Seen as a necessity.

This  perspective, however, has come under
considerable fire. Many argue that the notion is too
simplistic to be of value. A number of studies have
documented that there is considerable variation in
technology usage among university and high school
students, particularly when more advanced forms of
technology are considered (Kvavik, Caruso & Morgan,
2004; Kennedy, Krause, Judd, Churchward & Gray,
2006; Oliver & Goerke, 2007). Clearly, the
implication that technology skills and experience will
be universal among digital natives is not well

2012 Paper No. 12186 Page 2 of 9

supported by the data. Some studies have even
indicated that it is the 35-44 year olds who show the
heaviest technology use (Bayne & Ross, 2007).

Generally, these critiques fall short of providing
contrary evidence; rather, they generally argue that
other factors, such as the extent of technology use or
education (Helsper & Eynon, 2010) may be as or more
important than generation per se in determining the
appropriate instructional approach. In effect, they shift
the focus for personalization from generation to
differences in technical sophistication, education, or
other factors. Direct studies of the relationship
between these student characteristics and instructional
approach, however, are rare (Pashler, McDaniel,
Rohrer & Bjork, 2009).

This study directly addresses the hypothesis that
younger and/or more technically sophisticated students
will benefit from advanced training technologies. It
compares learning using traditional interactive
multimedia instruction (IMI) to learning achieved
when students are actively engaged in problem solving
exercises and supported by a state-of-the-art intelligent
tutoring system (ITS). As the ITS involves active
search and investigation of solution spaces, supported
by expert knowledge on problem solving approaches
and strategies, younger and more technically
sophisticated students should be able to more fully
leverage its capabilities. The IMI, on the other hand,
allows the students to study and review all of the
knowledge at their own pace, characteristics that may,
some argue, favor older or less technically
sophisticated learners. If this hypothesis holds, we
would expect significant interactions between these
student characteristics and the training approach that is
used.

Traditional instructional design, on the other hand,
makes a different prediction. Traditional design does
consider student background, but generally limits this
analysis to the required knowledge, skills, and abilities
(KSAs) the population may lack. Approaches to
instruction are then based on this analysis of the KSAs
to be covered and the strengths of different approaches
relative to this gap. The best suited methods are
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optimal given the state of the learners and the nature of
the task to be taught. Personalization occurs, then, by
adjusting the use of an instructional approach rather
than by implementing different approaches for
different student populations. As we will see in the
section that follows, traditional design would
recommend the use of an ITS to train the task selected
for this study.

THE TRAINING TASK AND TRAINING
TREATMENTS

For this study, the task we trained was that of
coordinating and directing an in-stride breach of a
minefield as the commander of a mechanized infantry-
tank team. Although the in-stride breaching tactic is
relatively well defined, it is cognitively complex. It
requires initial planning and continuing, time-critical
problem solving as the scenario unfolds. Abilities to
assess situations, to evaluate alternatives, and to
coordinate actions are critical. Additionally, formative
studies supported the premise that the skill was
cognitively complex. High rates of error, particularly
errors of omission, were common initially, as the
problem-solving skill built through practice (Biddle,
Perrin, Dargue, Pike, & Marvin, 2006).

ITSs have been designed specifically to train
cognitively complex, ill-structured problems, and when
they are coupled with cognitive task analysis methods,
they can be used to build problem-representation and
problem-solving abilities (Hall, Gott, & Pokorny,
1995).  These capabilities of the ITS will be
instrumental to providing training for the selected task.
Consequently, if traditional design practices are
predictive, we would expect the interaction of student
characteristics and training treatment to be relatively
unimportant, compared to the use of the ITS for
training these problem-solving abilities.

Skill learning was demonstrated in the Marine Air
Ground Task Force XXI (MAGTF XXI) simulation.
MAGTF XXI is a real-time, High Level Architecture
(HLA) conformant, tactical simulation built for the
U.S. Marine Corps. It was developed by MAK
Technologies under the Program Manager Training
Systems (PM TRASYS) Tactical Decision-making
Simulation (TDS) program to facilitate expeditionary
warfare training.
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Interactive Multimedia Instruction

The IMI used in this study covered all of the in-stride
breaching tactics and the MAGTF XXI interface. The
instruction included descriptions, photographs, and
graphics of the equipment; annotated screen shots and
narrated video clips of the MAGTF simulation displays
and commands, and annotated screen shots illustrating
breaching operations and tactics. As part of the
instruction, participants were then given a knowledge
test. The knowledge test consisted of 63 multiple-
choice or matching questions. The tests were scored
and returned to the participants with corrections, so
they could review their performance and improve their
understanding of the breaching tactics and simulation
displays and controls.

Intelligent Tutoring System (ITS)

An Intelligent Tutoring System (ITS) lesson was the
second training treatment. Commonly, ITSs are made
up of three primary components — a student model, an
expert model, and an instructional (or tutor) model,
with a user interface to provide a skill practice
environment.  The instructional model applies the
chosen instructional strategy, including selecting the
problems to be solved. The expert model contains
solutions for problems within the training domain,
while the student model represents the ITS’ estimate of
what the student understands and the areas where this
individual needs more practice. Beyond this generic,
three-component architecture, however, there is
considerable variation in how these capabilities are
built. Figure 1 overviews our implementation of the
ITS.

Our student model implements a profile of dynamically
maintained variables, with each variable corresponding
to one learning objective.  These variables are
estimated as weighted averages over a specified
number of observations. As a result, changes due to
learning are reflected across exercises, as the average
increases with correct performance, or decreases as
errors are made. The amount that scores are changed is
adjusted according to the degree to which the action
reflects mastery of the learning objective and the
degree to which the ITS provided guidance in selecting
the action. These updates are also applied to every
learning objective that is implicated by a given action.
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Figure 1. Specific Implementations in the ITS

With student requests for assistance or student errors,
our instructional model responds with information on
problem-solving strategies and/or problem
representation derived from cognitive task analysis.
The specificity of the information increases as
additional requests are made or additional errors occur.
The instructional model is also tasked with selecting
follow-on exercises. By examining current student
model scores, the instructional model identifies
exercises that represent the next step in skill
development or that are needed to clarify learning
needs diagnoses (see Perrin, Buck, Dargue, Biddle,
Stull & Armstrong, 2007 for additional detail).

Our implementation of the expert model is based on the
cognitive task analysis technique known as PARI, for
Precursor, Action, Results, and Interpretation (Hall,
Gott, & Pokorny, 1995). Although PARI was
developed for the analysis of maintenance
troubleshooting tasks, it is based on a more general
view of problem-solving as search through a problem
space (Newell & Simon, 1972). PARI includes
standard procedures that can be used to identify
representative problem sets for ITS exercises. It also
provides methods to elicit detailed information from
experts on how they represent a given state of a
solution (what issues have been resolved and what
issues remain), optimal and alternative paths to a
solution, and their strategies for selecting actions at
each step along those paths. Our expert model directly
encodes these solution paths. For each path, the model
also encodes the expert’s summary of the situation
(representation of the problem) and the rationales for
the possible next steps (see Figure 2). Additional detail
on our ITS architecture and implementation can be
found in Perrin (2009).
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Start Mission

Figure 2. Optimal and Alternative Decision Paths
in the Expert Model

METHOD
Participants

Twenty-four Boeing employees volunteered for the
study. The group was composed of 20 males and 4
females.  Six had prior military experience, but
individuals with previous experience with infantry-tank
task force operations were disqualified from
participation.

Procedure

Participants first read and signed an informed consent
form. It described their rights to anonymity and to
withdraw at any time, as well as the general features of
the study. Next, they completed a brief demographic
questionnaire that included questions on age,
education, and the frequency of computer game use.
Age was recorded as an integer value. Education was
coded into 5 categories; the groups and the number of
participants in each were as follows:
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High school degree - 1
Some college - 4

College degree - 8

Some graduate school - 3
Graduate school degree — 8

akrwbdE

We use the frequency of computer and video game use
as an indicant of technical sophistication.  This
measure is commonly used and has significant
similarities to the technology that was used to assess
skill learning. Computer and video game use was
coded into 4 categories; the groups and the number of
participants in each were as follows:

No or extremely limited use - 12
One to three hours per month - 2
One to six hours per week - 6
One or more hours per day — 4

ropnE

All participants then received Interactive Multimedia
Instruction (IMI) that covered the in-stride breaching
tactics and the MAGTF XXI interface, to give them a
basis for initial, baseline performance. Next, each
participant used the MAGTF XXI simulation to
conduct the initial phases of an in-stride breach. Each
scenario ended when the units were positioned for the
breach and when fire to suppress the opposing force
and mask your units’ movements was established. The
scenarios were limited to these steps so that they would
be short enough to allow multiple trials. Participants
were given 10 minutes to complete these actions. To
this point, all participants had received the same
instructions and training; this initial trial established a
performance baseline. After it, the participants were
randomly assigned to one of two training treatments as
follows.

IMI Review

Under this training approach, participants were given
20 minutes to conduct a self-directed review of the
IMI. The IMI review allowed them to focus on any
aspects of the breaching tactics or the simulation
controls and displays that they wished, based on
problems they had experienced during the baseline
trial. This review was followed with another test,
which was scored and returned to provide feedback, as
before. This test had the same questions as the first,
but in a different order.

Following the self-directed review and test, participants
in the IMI Control group conducted a second in-stride
breach using MAGTF XXI. This trial was followed
with a final round of self-directed IMI review,
knowledge testing with feedback, and an in-stride
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breach using MAGTF XXI. Thus, overall, each
participant conducted three breaching operations, the
first providing a baseline followed by two test trials.
Each scenario was identical, so improvement in
performance would represent a combination of study of
the declarative knowledge in the IMI, knowledge
testing feedback, and practice on the simulation.

It is also noteworthy that the IMI was created prior to
this study, in support of a separate project (see Biddle,
Perrin, Dargue, Pike, & Marvin, 2006). It was
developed by a subject matter expert in the field who
had extensive background and experience in training.
As it is an independent product, designed originally for
the objective of fully preparing students to perform the
tactic in MAGTF XXI, concerns that these materials
were given little emphasis, should be reduced.

Intelligent Tutoring System

Following the baseline trial, participants in this group
studied an ITS lesson built using the architecture
described previously. The ITS lesson did not repeat
the declarative knowledge covered in the IMI. Rather,
it presented a mission that required an in-stride breach
that was similar to, but different from one used in the
test trials. It required that the participants select an
action to implement. It provided hints on the next
actions, based on the expert’s preferred solution
strategy, when the student asked for assistance. It also
provided feedback on the student’s actions, including
the impact on problem resolution and the optimal
action, if it was different from what the student had
selected. The ITS required the students to apply their
knowledge of the MAGTF XXI interface and
breaching tactics. For example, the IMI described how
to use light vegetation and terrain features to help mask
the movement of units. It also provided screen shots
and interpretations of terrain displays. The ITS lesson,
on the other hand, reached points in problem solutions
where a unit needed to be moved, and asked the student
to select a route. That selection, of course, depends
upon the student applying his/her knowledge of terrain
masking (see Figure 3).
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Figure 3. Selecting Routes in the ITS

After completing the ITS lesson, this group conducted
a second in-stride breach using MAGTF XXI. This
trial was followed with a final round of ITS study and a
final in-stride breach. Similar to the control
participants, each participant in the ITS group
conducted three breaching operations, with one
providing a baseline and two test trials.

The average time students took to study the ITS lesson
was about 20 minutes the first time and about 15
minutes the second time. These study times were
approximately the same as the time the control
participants spent reviewing the IMI and their
knowledge test results. Overall, the study times
between the groups were approximately equal.

Data and Analysis

Measures of skill acquisition were provided by a set of
automated performance assessment algorithms that had
been designed and built for a previous project (see
Biddle, Perrin, Dargue, Pike, & Marvin, 2006). For the
scenarios used in this study, the automated assessment
algorithms could detect and evaluate 21 distinct student
actions. These actions, in turn, defined performance
for 6 in-stride breaching tasks, as follows:

1. Establish Support by Fire:  Assign and
position units to provide support by fire for
the breaching units.

2. Coordinate Movement: Coordinate arrival
times of the support by fire units.

3. Position for Breach:  Assign assets and
position them to perform or support the
breach.

4. ldentify safe route: Establish route that
minimizes exposure to hostile fire by taking
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advantage of the terrain and likely enemy
force positions.

5. Control Suppressing Fire: Select the location
and frequency for suppressing fire.

6. Control Obscuring Fire: Select the location
and frequency of fire to help obscure your unit
movements.

Scores on these tasks were the proportions of correct
actions to the total number of opportunities achieved
during each trial. Use of the automated performance
assessment capabilities of this system is noteworthy as
it eliminates experimenter bias as a possible threat to
the internal validity of the study. Simply put,
experimenter expectations could not influence final
performance data, if those data are automatically
generated by the system.

Previous analyses of these performance data indicated
that learning occurred for 4 of the 6 measures.
Specifically, the first 4 measures listed above showed
significant trials effects. Measures for the other two
tasks, dealing with the control of suppressing or
obscuring fire, indicated that this skill was performed
accurately in the baseline trial and so, changed little
over trials (Perrin, Buck, & Gehr, 2010).
Consequently, we limited our analysis for this paper to
the first 4 performance measures, where personalizing
the training could possibly affect the efficiency of skill
acquisition.

Six measures were used as covariants in an analysis of
covariance (ANCOVA). These variables included the
student characteristics discussed previously
(generation, education, technology exposure) and
variables related to adjusting the amount of time spent
in training (i.e., pre-tests on knowledge and skill, tests
embedded with training). The statistical analysis tested
for treatment and covariant main effects and for
treatment by covariant interactions. As noted
previously, significant covariant by treatment
interactions will support theories that hold that training
approaches should change with age, education, or
technical sophistication.  Significant treatment main
effects, on the other hand, support more traditional
design approaches, which advocate adjusting the time
spent using the selected approach.

It is important to remember that there are two different
ways that the measures we are discussing can be used
to personalize training. The individual difference
variables (generation, education, and technology
exposure) and pre-test results (knowledge and skill), if
the interactions are significant, can be used to select an
optional method of training delivery based on their
value. The performance measures (knowledge and
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skill pre-test, and in-training performance) if the main
effect is significant, can be used to adjust the amount of
training that is delivered. For example, poor mid-
course performance might signal the need for
remediation content to be presented.

RESULTS

The results from the ANCOVA are summarized in
Figure 4.

For the four performance measures that showed
learning, two were rather consistently affected by the
training treatment — Identify Safe Route and
Coordinate Movement. For these two performance
measures, 10 of the 12 analyses yielded significant
main effects of training treatment. One additional
ANCOVA involving the Establish Support by Fire
measure also yielded a significant training treatment
main effect. These results largely parallel those
reported previously (Perrin, Buck & Gehr, 2010), and
reflect the increase in final performance of the group
that was provided ITS-based training.

For the covariants related to student characteristics
(generation, education, technology exposure), main
effects were rare. Neither Education nor Exposure to
Technology yielded any significant main effects. Age,
on the other hand, produced one significant main
effect. Final performance of the Coordinate Movement
skill was significantly related to age, with older
students performing more poorly than younger
students.

For the covariants related to learning performance, the
Knowledge Pretest and the Skill Pretest each produced
one significant main effect, while the In-Training
Performance covariant yielded two significant main
effects. Three of the four main effects involved the
Establish Support by Fire skill, with each covariate (the
two pre-tests and the embedded test) showing a
positive relationship; that is, higher test scores on the
covariants were associated with higher final
performance scores. The remaining main effect
involved the Coordinate Movement skill and the In-
Training Performance covariate, with the relationship
also being positive, i.e., higher covariant scores were
associated with high final skill scores.

Analysis of Covariance Summary
Personalization Performance Measure Training Covariate Interaction
Factor Treatment
Establish Support by Fire
Generation | Identify Safe Route F=15.511, p<.001
Coordinate Movement F=5.931, p<.05 F=4.620, p<.05
Position for Breach
Establish Support by Fire
Education | Identify Safe Route F=12.680, p<.01
Coordinate Movement F=4.419, p<.05
Position for Breach
Establish Support by Fire
Technology | Identify Safe Route F=11.076, p<.01
Exposure | Coordinate Movement
Position for Breach
Establish Support by Fire F=10.081, p<.01
Knowledge | Identify Safe Route F=14.281, p<.01
Pre-Test | Coordinate Movement F=5.082, p<.05
Position for Breach
Establish Support by Fire F=5.123, p<.05
Skill Pre-Test | Identify Safe Route F=12.414, p<.01
Coordinate Movement F=4.821, p<.05
Position for Breach
Establish Support by Fire F=5.882, p<.05 F=22.081, p<.001
In-Training | Identify Safe Route F=5.123, p<.05
Performance | Coordinate Movement F=6.431, p<.05
Position for Breach

Figure 4.
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ANCOVA Results
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Finally, none of the covariant by training treatment
interactions reached statistical significance.

DISCUSSION AND CONCLUSIONS

For the cognitively complex, problem-solving task that
we studied, there was no support for personalizing
training by changing instructional methods, but
tailoring the training by adjusting the emphasis on the
selected approaches was indicated in some cases. Let
us consider this positive result first.

Of the student characteristics evaluated, only age
yielded a significant effect. In this case, younger
students’ final performance on one measure
(movement coordination) was superior, on average, to
that of the older students. These results are, by and
large, consistent with the research on age. In general
terms, verbal abilities stay relatively constant over the
years, while performance abilities (e.g., problem
solving) tend to decline (Salthouse, 1992). In practice,
however, these differences are often minimized, and
may even be reversed, due to the accumulated
knowledge and experience of older workers (e.g., Chi,
1978; Kail & Park, 1990). For this study, one could
argue that personalizing the training by increasing the
exposure to the Coordinate Movement skill for older
students might have produced more consistent
outcomes. Assuming that all older students require
more time, however, might not be the most effective
personalization strategy, especially as there are more
direct indicants of this need. The In-training
Performance measure also produced a main effect with
the Coordinate Movement skill. As the correlation
between this within training measure and final
performance was 0.54, and the correlation between age
and performance was only 0.34, personalizing on the
within-training scores should yield more focused and
efficient personalization.

The covariants reflecting learning performance (the
knowledge and skill pre-tests and the within training
tests) provided a more consistent basis for
personalization, compared to the student
characteristics. Each of the learning performance
factors showed a significant relationship to one or more
of the final measures of task skill. Final performance
on one task in particular, Establish Support by Fire,
was associated with each of these covariants.
Presumably, the emphasis given to this task in training
could have been readily personalized by monitoring
one or more of these covariants. By monitoring these
measures, students who scored high in skill and
knowledge could be given scenarios that started with
the units in position, reducing unnecessary repetition
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and decreasing overall training time without a loss of
proficiency.

Our results also suggest, not surprisingly, that
performance measures that were closer in time to the
final skill assessment tended to be stronger and more
consistent predictors of final skill, and thus, a better
basis for personalization. The knowledge and skill pre-
tests vyielded significant effects on one task
performance measure each, while the within training
performance covariant yielded two significant effects
and a third approached statistical significance.
Essentially, this result reflects the fact that the best
predictor, and so, the preferable means to achieve
personalization is a previous assessment of the same
skill in the same environment.

These results also suggest that there can be substantial
variation in when skills become predictable, and
therefore, personalization strategies can be applied. As
noted, previous analyses (Perrin, Buck, & Gehr, 2010)
showed that performance on each of the four skills
improved significantly over the course of training. Of
these, one skill seemed readily predictable with pre-test
data, either on knowledge or on skill, or using within
training performance data. Two more skills were
generally predictable during the course of practice.
The fourth, however, was not significantly associated
with any of these covariants. The most likely
explanation of this result seems to be that this skill was
still  developing. Where the within training
performance measure correlated with final performance
at levels of 0.54 or greater for the three other tasks, the
correlation of within training to final performance was
only 0.25 for the fourth task. Additionally, in terms of
the general sequence of events in the training scenarios,
this task is mostly performed in the latter phases, and
so, would logically be the last to receive a student’s
focused attention.

One of the key hypotheses addressed by this study was
that students of differing generations, education, or
exposures to technology should be trained using
different methods. This study yielded no support for
this hypothesis. Our intelligent tutoring system (ITS)
lessons involved immersion into problem-solving
situations and collaborative learning supported by an
expert, problem-solving model. As such, this high
technology, active investigation of problem-solving
techniques should have been preferred by younger or
more technically sophisticated students, according to
the corresponding theories. In fact, students trained
with these ITS lessons produced the highest level of
final performance, without regard to their generation,
educational background, or exposure to technology.
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Presumably, aspects of the skill to be learned and
where the students were in the acquisition of the skill
were more important than the characteristics of the
students. Simply put, the “right” training approach was
right for everyone. In her summary of the research on
another factor that has been suggested for training
personalization, that of “learning styles”, Clark (2010)
draws a similar conclusion. She calls the notion of
personalizing training based on the student’s preferred
learning style one of the more pervasive myths of
training. While it may be premature to consider
personalizing the training approach based on differing
generations, education, or exposures to technology a
myth, this study provides data to suggest that the effect
is, at a minimum, not as pervasive and/or as strong as
some have argued. And perhaps it is indeed just
another training fad that further research will soon
dispel.
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