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ABSTRACT 

 

Personalization has often been described as the gold standard of training, but the research establishing a basis for 

personalization is limited.  In this paper, we report results from comparing six factors that appear in current theories 

about personalization:  generation; education; exposure to technology; knowledge pre-test; skill pre-test; and skill 

testing during training.  Participants in this study were randomly assigned to two groups, allowing us to evaluate the 

hypothesis that younger, more technically sophisticated students will benefit more from active, technology-based 

training.  One group studied traditional multimedia instruction (IMI) that explained the tasks; the second group 

received hands-on practice from an intelligent tutoring system (ITS).  Results from analysis of covariance indicated 

that differences in age, education, exposure to technology, initial knowledge, and initial skill were not strongly 

related to final performance, when training treatments were taken into account.  Skill testing during training proved 

somewhat more consistently related.  None of the treatment by covariate interactions, however, yielded a 

statistically significant effect, so there was no support for changing instructional methods based on any of the factors 

studied.  Instead, the hands-on practice provided by the ITS had a consistent, positive effect.  The practical 

implications for personalized training are discussed. 
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INTRODUCTION 

 

Every generation is different from the last.  Or so the 

saying goes.  But for the training community, the 

implications of that statement are not clear. 

 

For the generation born after the mid to late 1980s, 

whether you label them genM (Wallis, 2006), the Net 

Generation (Tapscott, 1998), or Digital Natives 

(Prensky, 2001a), most in the training community 

would agree that there are significant differences 

between their world and that of the previous one.  This 

generation has always had computers, cell phones, 

video games, and the Internet, and much of their “face-

to-face” has been replaced by Facebook, texting, and 

Twitter.  There is, however, virtually no agreement on 

what these differences mean in practice to training.  

Some have argued that their immersion in technology 

has produced distinct characteristics that are relevant 

for how they can be taught.  They are, the argument 

goes, technically sophisticated and proficient in 

multitasking; they learn best from active search and 

investigation; they believe learning should be fun; and 

they are dependent upon technology for acquiring 

knowledge and interacting with others (Oblinger & 

Oblinger, 2005, Prensky, 2001a, b).  Some have even 

suggested that their cumulative experiences may have 

changed the way they learn, perhaps even at the level 

of altering brain structure (Prensky, 2001a).  According 

to these views, traditional teaching methods, step-by-

step instruction, and antiquated technology will fail to 

intellectually challenge them and will only serve to 

alienate them.  Personalizing training based on age is 

seen as a necessity. 

 

This perspective, however, has come under 

considerable fire.  Many argue that the notion is too 

simplistic to be of value.  A number of studies have 

documented that there is considerable variation in 

technology usage among university and high school 

students, particularly when more advanced forms of 

technology are considered (Kvavik, Caruso & Morgan, 

2004; Kennedy, Krause, Judd, Churchward & Gray, 

2006; Oliver & Goerke, 2007).  Clearly, the 

implication that technology skills and experience will 

be universal among digital natives is not well 

supported by the data.  Some studies have even 

indicated that it is the 35-44 year olds who show the 

heaviest technology use (Bayne & Ross, 2007). 

 

Generally, these critiques fall short of providing 

contrary evidence; rather, they generally argue that 

other factors, such as the extent of technology use or 

education (Helsper & Eynon, 2010) may be as or more 

important than generation per se in determining the 

appropriate instructional approach.  In effect, they shift 

the focus for personalization from generation to 

differences in technical sophistication, education, or 

other factors.  Direct studies of the relationship 

between these student characteristics and instructional 

approach, however, are rare (Pashler, McDaniel, 

Rohrer & Bjork, 2009). 

 

This study directly addresses the hypothesis that 

younger and/or more technically sophisticated students 

will benefit from advanced training technologies.  It 

compares learning using traditional interactive 

multimedia instruction (IMI) to learning achieved 

when students are actively engaged in problem solving 

exercises and supported by a state-of-the-art intelligent 

tutoring system (ITS).  As the ITS involves active 

search and investigation of solution spaces, supported 

by expert knowledge on problem solving approaches 

and strategies, younger and more technically 

sophisticated students should be able to more fully 

leverage its capabilities.  The IMI, on the other hand, 

allows the students to study and review all of the 

knowledge at their own pace, characteristics that may, 

some argue, favor older or less technically 

sophisticated learners.  If this hypothesis holds, we 

would expect significant interactions between these 

student characteristics and the training approach that is 

used. 

 

Traditional instructional design, on the other hand, 

makes a different prediction.  Traditional design does 

consider student background, but generally limits this 

analysis to the required knowledge, skills, and abilities 

(KSAs) the population may lack.  Approaches to 

instruction are then based on this analysis of the KSAs 

to be covered and the strengths of different approaches 

relative to this gap.  The best suited methods are 
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optimal given the state of the learners and the nature of 

the task to be taught.  Personalization occurs, then, by 

adjusting the use of an instructional approach rather 

than by implementing different approaches for 

different student populations.  As we will see in the 

section that follows, traditional design would 

recommend the use of an ITS to train the task selected 

for this study. 

 

THE TRAINING TASK AND TRAINING 

TREATMENTS 

 

For this study, the task we trained was that of 

coordinating and directing an in-stride breach of a 

minefield as the commander of a mechanized infantry-

tank team.  Although the in-stride breaching tactic is 

relatively well defined, it is cognitively complex.  It 

requires initial planning and continuing, time-critical 

problem solving as the scenario unfolds. Abilities to 

assess situations, to evaluate alternatives, and to 

coordinate actions are critical.  Additionally, formative 

studies supported the premise that the skill was 

cognitively complex.  High rates of error, particularly 

errors of omission, were common initially, as the 

problem-solving skill built through practice (Biddle, 

Perrin, Dargue, Pike, & Marvin, 2006). 

 

ITSs have been designed specifically to train 

cognitively complex, ill-structured problems, and when 

they are coupled with cognitive task analysis methods, 

they can be used to build problem-representation and 

problem-solving abilities (Hall, Gott, & Pokorny, 

1995).  These capabilities of the ITS will be 

instrumental to providing training for the selected task.  

Consequently, if traditional design practices are 

predictive, we would expect the interaction of student 

characteristics and training treatment to be relatively 

unimportant, compared to the use of the ITS for 

training these problem-solving abilities. 

 

Skill learning was demonstrated in the Marine Air 

Ground Task Force XXI (MAGTF XXI) simulation.  

MAGTF XXI is a real-time, High Level Architecture 

(HLA) conformant, tactical simulation built for the 

U.S. Marine Corps.  It was developed by MAK 

Technologies under the Program Manager Training 

Systems (PM TRASYS) Tactical Decision-making 

Simulation (TDS) program to facilitate expeditionary 

warfare training. 

 

Interactive Multimedia Instruction 

 

The IMI used in this study covered all of the in-stride 

breaching tactics and the MAGTF XXI interface.  The 

instruction included descriptions, photographs, and 

graphics of the equipment; annotated screen shots and 

narrated video clips of the MAGTF simulation displays 

and commands, and annotated screen shots illustrating 

breaching operations and tactics.  As part of the 

instruction, participants were then given a knowledge 

test.  The knowledge test consisted of 63 multiple-

choice or matching questions.  The tests were scored 

and returned to the participants with corrections, so 

they could review their performance and improve their 

understanding of the breaching tactics and simulation 

displays and controls. 

 

Intelligent Tutoring System (ITS) 

 

An Intelligent Tutoring System (ITS) lesson was the 

second training treatment.  Commonly, ITSs are made 

up of three primary components – a student model, an 

expert model, and an instructional (or tutor) model, 

with a user interface to provide a skill practice 

environment.  The instructional model applies the 

chosen instructional strategy, including selecting the 

problems to be solved.  The expert model contains 

solutions for problems within the training domain, 

while the student model represents the ITS’ estimate of 

what the student understands and the areas where this 

individual needs more practice.  Beyond this generic, 

three-component architecture, however, there is 

considerable variation in how these capabilities are 

built.  Figure 1 overviews our implementation of the 

ITS. 

 

Our student model implements a profile of dynamically 

maintained variables, with each variable corresponding 

to one learning objective.  These variables are 

estimated as weighted averages over a specified 

number of observations.  As a result, changes due to 

learning are reflected across exercises, as the average 

increases with correct performance, or decreases as 

errors are made.  The amount that scores are changed is 

adjusted according to the degree to which the action 

reflects mastery of the learning objective and the 

degree to which the ITS provided guidance in selecting 

the action.  These updates are also applied to every 

learning objective that is implicated by a given action. 
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Figure 1.  Specific Implementations in the ITS 

 

 

 

With student requests for assistance or student errors, 

our instructional model responds with information on 

problem-solving strategies and/or problem 

representation derived from cognitive task analysis.  

The specificity of the information increases as 

additional requests are made or additional errors occur.  

The instructional model is also tasked with selecting 

follow-on exercises.  By examining current student 

model scores, the instructional model identifies 

exercises that represent the next step in skill 

development or that are needed to clarify learning 

needs diagnoses (see Perrin, Buck, Dargue, Biddle, 

Stull & Armstrong, 2007 for additional detail). 

 

Our implementation of the expert model is based on the 

cognitive task analysis technique known as PARI, for 

Precursor, Action, Results, and Interpretation (Hall, 

Gott, & Pokorny, 1995).  Although PARI was 

developed for the analysis of maintenance 

troubleshooting tasks, it is based on a more general 

view of problem-solving as search through a problem 

space (Newell & Simon, 1972).  PARI includes 

standard procedures that can be used to identify 

representative problem sets for ITS exercises.  It also 

provides methods to elicit detailed information from 

experts on how they represent a given state of a 

solution (what issues have been resolved and what 

issues remain), optimal and alternative paths to a 

solution, and their strategies for selecting actions at 

each step along those paths.  Our expert model directly 

encodes these solution paths.  For each path, the model 

also encodes the expert’s summary of the situation 

(representation of the problem) and the rationales for 

the possible next steps (see Figure 2).  Additional detail 

on our ITS architecture and implementation can be 

found in Perrin (2009). 

 
Figure 2.  Optimal and Alternative Decision Paths 

in the Expert Model 

 

METHOD 

 

Participants 

 

Twenty-four Boeing employees volunteered for the 

study.  The group was composed of 20 males and 4 

females.  Six had prior military experience, but 

individuals with previous experience with infantry-tank 

task force operations were disqualified from 

participation. 

 

Procedure 

 

Participants first read and signed an informed consent 

form.  It described their rights to anonymity and to 

withdraw at any time, as well as the general features of 

the study.  Next, they completed a brief demographic 

questionnaire that included questions on age, 

education, and the frequency of computer game use.  

Age was recorded as an integer value.  Education was 

coded into 5 categories; the groups and the number of 

participants in each were as follows: 

 

Expert Model  

 Provides multiple 
levels of feedback  

 Provides problem 
solving scenarios 
based on 
performance 

Student Model 
 Profile of variables corresponding 

to Learning Objectives 

 Calculated as moving average 

 Communicated to LMS with 
SCORM 

 Based on cognitive task analysis 

 Represents problem-solving as 
search 

 Encodes problem representations 
and solution strategies  

Instructional Model  
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1. High school degree - 1 

2. Some college - 4 

3. College degree - 8 

4. Some graduate school - 3 

5. Graduate school degree – 8 

 

We use the frequency of computer and video game use 

as an indicant of technical sophistication.  This 

measure is commonly used and has significant 

similarities to the technology that was used to assess 

skill learning.  Computer and video game use was 

coded into 4 categories; the groups and the number of 

participants in each were as follows: 

 

1. No or extremely limited use - 12 

2. One to three hours per month - 2 

3. One to six hours per week - 6 

4. One or more hours per day – 4 

 

All participants then received Interactive Multimedia 

Instruction (IMI) that covered the in-stride breaching 

tactics and the MAGTF XXI interface, to give them a 

basis for initial, baseline performance.  Next, each 

participant used the MAGTF XXI simulation to 

conduct the initial phases of an in-stride breach.  Each 

scenario ended when the units were positioned for the 

breach and when fire to suppress the opposing force 

and mask your units’ movements was established.  The 

scenarios were limited to these steps so that they would 

be short enough to allow multiple trials.  Participants 

were given 10 minutes to complete these actions.  To 

this point, all participants had received the same 

instructions and training; this initial trial established a 

performance baseline.  After it, the participants were 

randomly assigned to one of two training treatments as 

follows. 

 

IMI Review 

 

Under this training approach, participants were given 

20 minutes to conduct a self-directed review of the 

IMI.  The IMI review allowed them to focus on any 

aspects of the breaching tactics or the simulation 

controls and displays that they wished, based on 

problems they had experienced during the baseline 

trial.  This review was followed with another test, 

which was scored and returned to provide feedback, as 

before.  This test had the same questions as the first, 

but in a different order. 

 

Following the self-directed review and test, participants 

in the IMI Control group conducted a second in-stride 

breach using MAGTF XXI.  This trial was followed 

with a final round of self-directed IMI review, 

knowledge testing with feedback, and an in-stride 

breach using MAGTF XXI.  Thus, overall, each 

participant conducted three breaching operations, the 

first providing a baseline followed by two test trials.  

Each scenario was identical, so improvement in 

performance would represent a combination of study of 

the declarative knowledge in the IMI, knowledge 

testing feedback, and practice on the simulation. 

 

It is also noteworthy that the IMI was created prior to 

this study, in support of a separate project (see Biddle, 

Perrin, Dargue, Pike, & Marvin, 2006).  It was 

developed by a subject matter expert in the field who 

had extensive background and experience in training.  

As it is an independent product, designed originally for 

the objective of fully preparing students to perform the 

tactic in MAGTF XXI, concerns that these materials 

were given little emphasis, should be reduced. 

 

Intelligent Tutoring System 

 

Following the baseline trial, participants in this group 

studied an ITS lesson built using the architecture 

described previously.  The ITS lesson did not repeat 

the declarative knowledge covered in the IMI.  Rather, 

it presented a mission that required an in-stride breach 

that was similar to, but different from one used in the 

test trials.  It required that the participants select an 

action to implement.  It provided hints on the next 

actions, based on the expert’s preferred solution 

strategy, when the student asked for assistance.  It also 

provided feedback on the student’s actions, including 

the impact on problem resolution and the optimal 

action, if it was different from what the student had 

selected.  The ITS required the students to apply their 

knowledge of the MAGTF XXI interface and 

breaching tactics.  For example, the IMI described how 

to use light vegetation and terrain features to help mask 

the movement of units.  It also provided screen shots 

and interpretations of terrain displays.  The ITS lesson, 

on the other hand, reached points in problem solutions 

where a unit needed to be moved, and asked the student 

to select a route.  That selection, of course, depends 

upon the student applying his/her knowledge of terrain 

masking (see Figure 3). 
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Figure 3.  Selecting Routes in the ITS 

 

After completing the ITS lesson, this group conducted 

a second in-stride breach using MAGTF XXI.  This 

trial was followed with a final round of ITS study and a 

final in-stride breach.  Similar to the control 

participants, each participant in the ITS group 

conducted three breaching operations, with one 

providing a baseline and two test trials. 

 

The average time students took to study the ITS lesson 

was about 20 minutes the first time and about 15 

minutes the second time.  These study times were 

approximately the same as the time the control 

participants spent reviewing the IMI and their 

knowledge test results.  Overall, the study times 

between the groups were approximately equal. 

 

Data and Analysis 

 

Measures of skill acquisition were provided by a set of 

automated performance assessment algorithms that had 

been designed and built for a previous project (see 

Biddle, Perrin, Dargue, Pike, & Marvin, 2006).  For the 

scenarios used in this study, the automated assessment 

algorithms could detect and evaluate 21 distinct student 

actions.  These actions, in turn, defined performance 

for 6 in-stride breaching tasks, as follows: 

 

1. Establish Support by Fire:  Assign and 

position units to provide support by fire for 

the breaching units. 

2. Coordinate Movement:  Coordinate arrival 

times of the support by fire units. 

3. Position for Breach:  Assign assets and 

position them to perform or support the 

breach. 

4. Identify safe route:  Establish route that 

minimizes exposure to hostile fire by taking 

advantage of the terrain and likely enemy 

force positions. 

5. Control Suppressing Fire:  Select the location 

and frequency for suppressing fire. 

6. Control Obscuring Fire:  Select the location 

and frequency of fire to help obscure your unit 

movements. 

 

Scores on these tasks were the proportions of correct 

actions to the total number of opportunities achieved 

during each trial.  Use of the automated performance 

assessment capabilities of this system is noteworthy as 

it eliminates experimenter bias as a possible threat to 

the internal validity of the study.  Simply put, 

experimenter expectations could not influence final 

performance data, if those data are automatically 

generated by the system. 

 

Previous analyses of these performance data indicated 

that learning occurred for 4 of the 6 measures.  

Specifically, the first 4 measures listed above showed 

significant trials effects.  Measures for the other two 

tasks, dealing with the control of suppressing or 

obscuring fire, indicated that this skill was performed 

accurately in the baseline trial and so, changed little 

over trials (Perrin, Buck, & Gehr, 2010).  

Consequently, we limited our analysis for this paper to 

the first 4 performance measures, where personalizing 

the training could possibly affect the efficiency of skill 

acquisition. 

 

Six measures were used as covariants in an analysis of 

covariance (ANCOVA).  These variables included the 

student characteristics discussed previously 

(generation, education, technology exposure) and 

variables related to adjusting the amount of time spent 

in training (i.e., pre-tests on knowledge and skill, tests 

embedded with training).  The statistical analysis tested 

for treatment and covariant main effects and for 

treatment by covariant interactions.  As noted 

previously, significant covariant by treatment 

interactions will support theories that hold that training 

approaches should change with age, education, or 

technical sophistication.  Significant treatment main 

effects, on the other hand, support more traditional 

design approaches, which advocate adjusting the time 

spent using the selected approach. 

 

It is important to remember that there are two different 

ways that the measures we are discussing can be used 

to personalize training.  The individual difference 

variables (generation, education, and technology 

exposure) and pre-test results (knowledge and skill), if 

the interactions are significant, can be used to select an 

optional method of training delivery based on their 

value.  The performance measures (knowledge and 
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skill pre-test, and in-training performance) if the main 

effect is significant, can be used to adjust the amount of 

training that is delivered.  For example, poor mid-

course performance might signal the need for 

remediation content to be presented. 

 

RESULTS 

 

The results from the ANCOVA are summarized in 

Figure 4. 

 

For the four performance measures that showed 

learning, two were rather consistently affected by the 

training treatment – Identify Safe Route and 

Coordinate Movement.  For these two performance 

measures, 10 of the 12 analyses yielded significant 

main effects of training treatment.  One additional 

ANCOVA involving the Establish Support by Fire 

measure also yielded a significant training treatment 

main effect.  These results largely parallel those 

reported previously (Perrin, Buck & Gehr, 2010), and 

reflect the increase in final performance of the group 

that was provided ITS-based training. 

 

For the covariants related to student characteristics 

(generation, education, technology exposure), main 

effects were rare.  Neither Education nor Exposure to 

Technology yielded any significant main effects.  Age, 

on the other hand, produced one significant main 

effect.  Final performance of the Coordinate Movement 

skill was significantly related to age, with older 

students performing more poorly than younger 

students. 

 

For the covariants related to learning performance, the 

Knowledge Pretest and the Skill Pretest each produced 

one significant main effect, while the In-Training 

Performance covariant yielded two significant main 

effects.  Three of the four main effects involved the 

Establish Support by Fire skill, with each covariate (the 

two pre-tests and the embedded test) showing a 

positive relationship; that is, higher test scores on the 

covariants were associated with higher final 

performance scores.  The remaining main effect 

involved the Coordinate Movement skill and the In-

Training Performance covariate, with the relationship 

also being positive, i.e., higher covariant scores were 

associated with high final skill scores. 

 

  Analysis of Covariance Summary 

Personalization 
Factor 

Performance Measure 
Training 

Treatment 
Covariate Interaction   

 
Generation 

Establish Support by Fire    

Identify Safe Route F=15.511, p<.001   

Coordinate Movement F=5.931, p<.05 F=4.620, p<.05  

Position for Breach    

 
Education 

Establish Support by Fire    

Identify Safe Route F=12.680, p<.01   

Coordinate Movement F=4.419, p<.05   

Position for Breach    

 
Technology 

Exposure 

Establish Support by Fire    

Identify Safe Route F=11.076, p<.01   

Coordinate Movement    

Position for Breach    

 
Knowledge  

Pre-Test 

Establish Support by Fire  F=10.081, p<.01  

Identify Safe Route F=14.281, p<.01   

Coordinate Movement F=5.082, p<.05   

Position for Breach    

 
Skill Pre-Test 

Establish Support by Fire  F=5.123, p<.05  

Identify Safe Route F=12.414, p<.01   

Coordinate Movement F=4.821, p<.05   

Position for Breach    

 
In-Training 

Performance 

Establish Support by Fire F=5.882, p<.05 F=22.081, p<.001  

Identify Safe Route F=5.123, p<.05   

Coordinate Movement  F=6.431, p<.05  

Position for Breach    

Figure 4.  ANCOVA Results 
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Finally, none of the covariant by training treatment 

interactions reached statistical significance. 

 

DISCUSSION AND CONCLUSIONS 

 

For the cognitively complex, problem-solving task that 

we studied, there was no support for personalizing 

training by changing instructional methods, but 

tailoring the training by adjusting the emphasis on the 

selected approaches was indicated in some cases.  Let 

us consider this positive result first. 

 

Of the student characteristics evaluated, only age 

yielded a significant effect.  In this case, younger 

students’ final performance on one measure 

(movement coordination) was superior, on average, to 

that of the older students.  These results are, by and 

large, consistent with the research on age.  In general 

terms, verbal abilities stay relatively constant over the 

years, while performance abilities (e.g., problem 

solving) tend to decline (Salthouse, 1992).  In practice, 

however, these differences are often minimized, and 

may even be reversed, due to the accumulated 

knowledge and experience of older workers (e.g., Chi, 

1978; Kail & Park, 1990).  For this study, one could 

argue that personalizing the training by increasing the 

exposure to the Coordinate Movement skill for older 

students might have produced more consistent 

outcomes.  Assuming that all older students require 

more time, however, might not be the most effective 

personalization strategy, especially as there are more 

direct indicants of this need.  The In-training 

Performance measure also produced a main effect with 

the Coordinate Movement skill.  As the correlation 

between this within training measure and final 

performance was 0.54, and the correlation between age 

and performance was only 0.34, personalizing on the 

within-training scores should yield more focused and 

efficient personalization. 

 

The covariants reflecting learning performance (the 

knowledge and skill pre-tests and the within training 

tests) provided a more consistent basis for 

personalization, compared to the student 

characteristics.  Each of the learning performance 

factors showed a significant relationship to one or more 

of the final measures of task skill.  Final performance 

on one task in particular, Establish Support by Fire, 

was associated with each of these covariants.  

Presumably, the emphasis given to this task in training 

could have been readily personalized by monitoring 

one or more of these covariants.  By monitoring these 

measures, students who scored high in skill and 

knowledge could be given scenarios that started with 

the units in position, reducing unnecessary repetition 

and decreasing overall training time without a loss of 

proficiency. 

 

Our results also suggest, not surprisingly, that 

performance measures that were closer in time to the 

final skill assessment tended to be stronger and more 

consistent predictors of final skill, and thus, a better 

basis for personalization.  The knowledge and skill pre-

tests yielded significant effects on one task 

performance measure each, while the within training 

performance covariant yielded two significant effects 

and a third approached statistical significance.  

Essentially, this result reflects the fact that the best 

predictor, and so, the preferable means to achieve 

personalization is a previous assessment of the same 

skill in the same environment. 

 

These results also suggest that there can be substantial 

variation in when skills become predictable, and 

therefore, personalization strategies can be applied.  As 

noted, previous analyses (Perrin, Buck, & Gehr, 2010) 

showed that performance on each of the four skills 

improved significantly over the course of training.  Of 

these, one skill seemed readily predictable with pre-test 

data, either on knowledge or on skill, or using within 

training performance data.  Two more skills were 

generally predictable during the course of practice.  

The fourth, however, was not significantly associated 

with any of these covariants.  The most likely 

explanation of this result seems to be that this skill was 

still developing.  Where the within training 

performance measure correlated with final performance 

at levels of 0.54 or greater for the three other tasks, the 

correlation of within training to final performance was 

only 0.25 for the fourth task.  Additionally, in terms of 

the general sequence of events in the training scenarios, 

this task is mostly performed in the latter phases, and 

so, would logically be the last to receive a student’s 

focused attention. 

 

One of the key hypotheses addressed by this study was 

that students of differing generations, education, or 

exposures to technology should be trained using 

different methods.  This study yielded no support for 

this hypothesis.  Our intelligent tutoring system (ITS) 

lessons involved immersion into problem-solving 

situations and collaborative learning supported by an 

expert, problem-solving model.  As such, this high 

technology, active investigation of problem-solving 

techniques should have been preferred by younger or 

more technically sophisticated students, according to 

the corresponding theories.  In fact, students trained 

with these ITS lessons produced the highest level of 

final performance, without regard to their generation, 

educational background, or exposure to technology. 
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Presumably, aspects of the skill to be learned and 

where the students were in the acquisition of the skill 

were more important than the characteristics of the 

students.  Simply put, the “right” training approach was 

right for everyone.  In her summary of the research on 

another factor that has been suggested for training 

personalization, that of “learning styles”, Clark (2010) 

draws a similar conclusion.  She calls the notion of 

personalizing training based on the student’s preferred 

learning style one of the more pervasive myths of 

training.  While it may be premature to consider 

personalizing the training approach based on differing 

generations, education, or exposures to technology a 

myth, this study provides data to suggest that the effect 

is, at a minimum, not as pervasive and/or as strong as 

some have argued.  And perhaps it is indeed just 

another training fad that further research will soon 

dispel. 
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