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ABSTRACT

Intelligent Tutoring Systems (ITS) have yet to reach training effectiveness levels rivaling those of human tutors,
partially due to their inability to recognize and adapt to trainee cognitive and affective states. While many studies
have examined expensive sensor suites to capture physiological indicators of cognitive and affective states, the
authors’ previous work presented an innovative conceptual framework for utilizing low-cost sensors to capture
specific states in real-time. Such measures are expected to improve an ITS’s ability to automatically adapt to a
trainee’s readiness to learn.

The current set of two experiments aimed to develop real-time classifiers for six distinct affective and cognitive
states (anger, fear, boredom, workload, engagement, distraction) utilizing low-cost, non-invasive
(neuro)physiological and behavioral sensors. In the first experiment, participants completed a within-subjects,
repeated-measures study in which the independent variable was task type - each task was designed to induce a
subset of the targeted states. Dependent variables theorized to indicate targeted states included heart rate, postural
sway, pupil diameter, and electroencephalography (EEG) band activity. Each metric was captured via low-cost
sensor technology. Validated, ground-truth measures of targeted cognitive and affective states were captured via a
10-channel EEG headset and associated algorithms, and a subjective emotional rating tool, respectively. Several
challenges were encountered with the low-cost sensors, including limitations in sensitivity to physiological changes
and reliability of data collection. Small design and procedural changes were made for the second experiment, and
good logistic regression classifiers for the affective states of boredom and fear were obtained. Additionally, logistic
model trees showed good generalization capability when validated as classifiers for the cognitive states. This paper
presents study results, lessons learned and implications for future research.
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INTRODUCTION

Current intelligent tutoring systems (ITSs) strive to
provide one function regardless of the domain: to
maximize learning  outcomes by  tailoring
instructional/training  content to  strengths and
weaknesses associated with a given learner. The
traditional approach to ITS implementation is assessing
user interactions against performance-based models to
determine deficiencies that require guidance or further
instruction. Such approaches have been found to be
effective in  well-defined domains  where
misconceptions and  deviations  from  desired
performance are easily determined (Graesser et al.,
2005; Stottler et al., 2001; VanLehn et al., 2005).
However, ITSs that adapt solely based on performance
ignore the influence that a learner’s affective and
cognitive states have on learning and retention. For
adaptive training systems to reach full potential,
technologies need to be in place that track
physiological and behavioral markers linked to
affective and cognitive states shown to impact learning
(see Carroll et al., 2011 for detailed list). This enables a
system to monitor reactive tendencies to training
stimuli and to determine an individual’s readiness to
learn (Stevens, Galloway, and Berka, 2007). This
information can then be used to inform adaptations to
system elements intended for maintaining optimal
learning states.

Addressing this functional gap is not a new idea. The
past decade has seen a number of studies examining
sensor technologies for the purpose of informing state
representations (Burleson and Picard, 2004), and
remains a current thrust within the ITS and affective
computing research communities (Calvo and D'Mello,
2010). However, the inherent problem with work in
this field is applying these tools on a large scale.
Sensor technologies are often expensive, making the
integration of such tools into existing ITS platforms
unreasonable. To address this limitation, a conceptual
framework for applying low-cost sensors to capture
real-time physiological and behavioral markers for
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assessing state variables has been developed (Carroll et
al.,, 2011). The goal of the current effort was to
determine if correlations exist between low-cost sensor
metrics and associated ground-truth measures of
targeted cognitive and affective states, and to
determine if such low-cost sensors could accurately
and reliably measure distinct cognitive and affective
states. This paper presents a series of studies evaluating
the efficacy of utilizing low-cost sensor solutions for
detecting trainee cognitive and affective states for use
in informing state sensitive ITS student models.

Three affective and three cognitive states were selected
for inclusion in the studies based on 1) their impact on
learning, and 2) their potential to be measured with
low-cost (neuro)physiological and behavioral sensors.
The affective states chosen were anger, fear, and
boredom, which have all been found to have negative
impacts on learning (e.g. McQuiggan et al., 2007;
D’Mello et al., 2007), and which have been shown to
be correlated with physiological data such as heart rate
and posture (Lisetti and Nasoz, 2004; Woolf et al.,
2009). The cognitive states chosen were engagement,
distraction, and workload. Engagement, which is
related to information gathering, visual scanning and
sustained attention (Berka et al., 2007), has been found
to have positive impacts on learning (e.g. McQuiggan
et al., 2007; Woolf et al., 2007), while the opposite is
true of distraction (Froese, 2012). Distraction occurs
when attention is withdrawn from processing
information necessary to complete the primary task
(Strayer et al., 2011), thus leading to decreased
resources being focused appropriately to complete a
task. Therefore, classifiers of engagement and
distraction can be used to infer appropriate attention
allocation. High workload, similar to distraction, has
shown a negative impact on learning (Gonzalez, 2005).
All three states (engagement, distraction, workload)
have been previously measured with physiological data
such as electroencephalography  (EEG) and
pupilometry metrics (e.g. Berka, 2007; Ahlstrom and
Friedman-Bern, 2006).
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For the current study, five low-cost sensors were
selected based on the following requirements: 1)
collects sensor data shown to be correlated with at least
one of the six states, 2) provides ability to collect and
access data in real-time, 3) minimally intrusive, and 4)
costs less than $500. The sensors included in the study
were a motion detector and chair with pressure sensors
to capture postural sway, a heart rate monitor, an EEG
headset with a single electrode located on the forehead
above the left eye (the Fp, electrode position), and an
eye tracker to capture pupilometry. A full review of the
theoretical justification for choosing the affective and
cognitive states and the low-cost sensors can be found
in Carroll et al. (2011).

EXPERIMENTAL APPROACH

Two experiments were completed to compare low-cost
physiological sensor output to validated benchmark
measures of affective and cognitive states. The
intention of Experiment 1 was to develop classifiers of
affective and cognitive states with civilians.
Experiment 2 would then utilize these classifiers to
validate each with a more relevant population (United
States Military Academy Cadets). Both experiments
were within-subjects repeated-measures designs in
which all participants performed three types of tasks:
1) a visual vigilance task, 2) video clip observation,
and 3) Virtual Battlespace 2 (VBS2) scenario
completion to induce variations in affective and
cognitive state.

The lessons learned from Experiment 1 resulted in
redesign of data collection procedures and small
changes to the experimental setup for Experiment 2.
The purpose of Experiment 2 then became the same as
Experiment 1 — to create classifiers of targeted
affective and cognitive states with a cleaner set of data
(and therefore with a higher possibility of developing
generalizable classifiers of affective and cognitive
state) and a more relevant population.

EXPERIMENT 1

The objective of Experiment 1 was to evaluate the
ability to create real-time classifiers of targeted
affective and cognitive states utilizing data from low
cost sensors. Validated stimuli to induce each targeted
state were presented to participants while data was
collected from both low-cost sensors and validated
benchmark measures for comparison. By relating data
resulting from the low-cost physiological sensors
against validated benchmark measures, using logistic
regression models, the effectiveness of low-cost
sensors at detecting target affective and cognitive states
was assessed. Further, development of basic classifiers
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was attempted based on inputs from the low-cost
sensors to model trainee affective and cognitive states.
Logistic regression classification was the preferred
classification tool for this study, given that logistic
regression models are simple, easy to interpret, and
well suited to learn relationships between variables
expected to be correlated.

Hypotheses

The hypotheses for the experiment were as follows:

1. Good classification models can be created for
affective states using data from a series of low-cost
sensors and logistic regression techniques.

2. Good classification models can be created for
cognitive states using data from a series of low-
cost sensors and logistic regression techniques.

Method

Participants

Twenty-five people ranging in age from 19-34 (mean =
25) years participated in the study. Fifteen were male,
ten were female, and all but 1 were civilians (the non-
civilian had only three months of military experience).

Tasks

Visual Vigilance Task: This task was a three-minute
vigilance task in which the user had to press the space
key every two seconds with a visual reminder. Video
Clip Observation: Participants viewed three video
clips validated to induce various affective states: 1) a
65-second excerpt from the Warner Brothers film All
the President’s Men, previously validated to induce a
neutral affective state, 2) a 236-second excerpt from
the 20th Century Fox movie My Bodyguard, previously
validated to induce anger, and 3) a 208-second excerpt
from the Falcon Films movie Halloween, previously
validated to induce fear (Hewig et al., 2005). VBS2
Scenarios: In the VBS2 simulation scenarios, the
overall goal of the participant was to search and
eliminate enemy threats in an urban environment (e.g.,
a building or street). To accomplish this, the
participant was required to enter a building and move
rapidly along a hallway while covering the entire area
with their weapon to maintain security. As people
were encountered, they were to be quickly evaluated
and engaged if hostile (anyone holding a weapon was
considered hostile). As participants crossed the
threshold of a room doorway that had not been cleared,
they performed immediate target engagement of any
enemies detected. Each of the four VBS2 scenarios
contained an Emotion Induction Technique (EIT; see
Table 1), designed to induce either anger or fear in
participants, as well as high and low states of
distraction, engagement, and workload.
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Table 1. Descriptions of Emotion induction Techniques (EITs) within scenarios.

Scen | EIT Presentation time Details Expected Induced States
-ario
1 Limiting visual Throughout scenario Visibility reduced with | Fear, anger, workload
perception (fog) dense fog; impaired
ability to see enemies
2 Increasing Throughout scenario 6-7 enemies per room Fear, anger, workload,
enemies as opposed to 1-3 in engagement
other scenarios
3 Annoying sound | First 45 seconds of Car alarm sound Anger, workload, distraction
scenario playing
4 Equipment When participant reaches | Weapon malfunctions Anger, fear, workload,
malfunction a physical marker in during room clearing distraction
simulated room
Apparatus placed between a computer and the user, it can detect

Participants used a standard flat screen monitor,
keyboard, and mouse throughout the experiment.
Ground-truth affective states were measured using
EmoPro™, an electronic emotional profiling tool that
has been validated to accurately measure participants’
emotions (Champney and Stanney, 2007). EmoPro™ is
a subjective assessment tool by which individuals
indicate which emotions they felt during an experience
by selecting emoticons representing a number of
distinct emotional expressions. Each emoticon is
designed to represent one particular emotion by
utilizing human expression cues. Ground-truth
cognitive state was assessed using ABM’s B-Alert™
X-10 EEG headset. The associated B-Alert™ analysis
software includes EEG indices of workload,
engagement, distraction, and drowsiness (Johnson, et
al., 2011).

A variety of non-invasive, low-cost sensors were used
in the study. The NeuroSky MindSet EEG headset
collects EEG data from a single-point dry electrode that
sits on the forehead above the left eye, in the Fy
electrode position. The associated MindSet Research
Tools software provides data on a user’s Delta, Theta,
Alpha, Beta, and Gamma brainwave band power levels,
as well as classifiers of Attention and Meditation. The
band power levels are output as follows: Delta: 1-3Hz;
Theta: 4-7Hz; Alphal: 8-9Hz; Alpha2: 10-12Hz; Betal:
13-17Hz; Beta2: 18-30Hz; Gammal: 31-40Hz;
Gammaz2: 41-50Hz. The Zephyr HXM™ BT heart rate
sensor comes in the form of a strap that is worn around
the chest against the skin. It allows for real-time
collection of data on a personal computer through a
Bluetooth connection. Data collection includes heart
rate in beats per minute. The Vernier Go!Motion
motion detector uses ultrasound technology to collect
position, velocity, and acceleration data of moving
objects in real-time through a USB port. When it is
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changes in posture when the user leans forward or sits
back in the chair. The chair participants sat in contained
eight Phidget pressure sensors (four in the seat, four in
the back) to collect pressure data in real time through a
USB port, allowing for real-time determination of
changes in posture. Finally, a low-cost eye tracker was
developed in house for this effort. The hardware of the
eye-tracker was composed of a Thorlab DCC1545M
monochrome camera with a TVR0614 %2” C Mount 6-
15mm F1.4 manual iris lens and an Opteka HD2 37mm
R72 720 nm infrared X-Ray IR filter, as well as two
IR010 Night Vision IR lights. This hardware was used
with the ITU Gaze Tracker open source gaze tracking
application to collect pupilometry data. All sensors
were sampled synchronously at a common rate of 40
Hz.

In addition to the physiological and behavioral data
collected by the sensors, a variety of surveys were
administered, including: 1) a demographics
questionnaire, 2) the Computer Game Immersion
Questionnaire, which determines a participant’s
tendency to become immersed when playing a
computer game, 3) the Life Orientation Test — Revised
(LOT-R), which measures trait optimism/pessimism
(Scheier, Carver, & Bridges, 1994), 4) the Self-
Assessment Manikin (SAM; Lang, 1985), which
measures mood in terms of pleasure, arousal, and
dominance, and 5) the Neuroticism-Extroversion-
Openness  Personality  Inventory (NEO-PI), a
personality questionnaire based on the Big Five
personality dimensions (Schinka et al., 1997).

Procedure

Upon arrival, participants received a brief overview of
the study and were asked to complete informed consent
and surveys. Participants then donned the ABM
headset, and filled out the paper-based questionnaires
for demographics, immersion, optimism/pessimism,
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mood, and personality. Next, participants completed the
EEG baseline task, and then donned the Zephyr heart
rate sensor around their chest, under their shirt. The
NeuroSky EEG headset was then placed on their head.
The participants sat in the pressure sensor chair in front
of a display, motion detector, and eye tracker, and
completed a calibration session with the eye tracking
system. Adjustments were made to all sensors as
needed until continuous data collection was attained.

Once all sensors were in place and successfully
collecting data, students performed the series of tasks
outlined above to induce variations in cognitive and
affective state. First, participants performed a three-
minute vigilance task on a personal computer, which
consisted of pressing the space bar every time a red
circle appeared on the screen. Participants completed an
EmoPro™ evaluation just before and just after this task.
Next, participants observed three video clips,
completing an EmoPro™ evaluation just after each
video clip. Next, experimenters described the VBS2
task in detail and had participants go through training to
familiarize them with how to interface with the
software. Participants were then asked to complete a
trial scenario to gain an understanding of what would
be expected of them during the experimental task. Next,
participants completed a total of four scenarios, all with
EITs and with 3-6 critical events per scenario.
Following each critical event within a scenario,
participants were prompted to complete an EmoPro™
evaluation to indicate their emotional state during the
event. Upon completion of the VBS2 scenarios,
participants received a short debriefing.

Data Analysis

Data from the eye-tracking and the chair pressure
sensors were not considered during analysis due to
reliability issues. The eye tracking data (i.e.,
pupilometry) was confounded by participant movement
(stationary eye tracker could not distinguish differences
between changes in pupil and changes in distance from
sensor) and lighting adjustments (lights turned off
during movie clips to increase engagement). The chair
pressure sensor data showed extremely low levels of
variability, and therefore provided little opportunity to
impact any model. It was later determined that the chair
sensors tended to detach from their original locations
after some use, and thus provided unreliable data.

The remaining low-cost sensor data were aggregated to
obtain averages of each metric on a second-by-second
basis. To account for inter-individual differences, the
heart rate sensor data from each participant was
normalized by subtracting the average of resting heart
rate captured during the vigilance task. Subsequently,
for each metric, a rate of change variable was created to
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represent the difference between consecutive values in
time. The rate of change of the variables was expected
to be relevant for modeling the targeted affective and
cognitive states.

In the case of data for affective state classification,
considering the multiple one-second observations for
each event as independent vectors did not provide
consistent patterns for any affective attribute.
Subsequently, an approach similar to that followed in
Picard et al. (2001) was implemented, in which a single
vector of aggregated data was obtained from the one-
second observations across each event. Three
aggregated attributes were created for each sensor for
each event: 1) the average of the original variables
(Alphal, Alpha2, etc), 2) the average of the
corresponding rate of change variables (AlphalDiff,
Alpha2Diff), and 3) the standard deviation of the
original variables (AlphalDev, Alpha2Dev, etc). This
second level of aggregation provided a single
description vector for each event, and was expected to
diminish the negative impact of any abnormal sensor
data.

The data analysis was conducted using the free
statistical language R  (http://www.r-project.org/).
Based on the correlations between some of the sensors
and the different states previously reported in literature,
the logistic regression model was selected. Each
ground-truth state was converted into a binary response
variable by applying a threshold-based procedure that
removed the observations associated with state values
lying near the corresponding middle point. For
EmoPro™ affective self-report values, which ranged
from 0 to 5 (0 being absence of the emotion, 5 being
intense feeling of the emotion), observations
corresponding to values 1 and 2 were disregarded. For
cognitive values, which took values in the interval
[0,1], observations with state values between 0.3 and
0.7 were also removed from the training data.

In order to assess the performance of the corresponding
logistic regression classifiers, three runs of a 10-fold
cross-validation procedure were executed for each
model, and their corresponding Receiver Operating
Characteristic (ROC) curves were plotted. The overall
quality of each classifier was assessed by averaging the
areas under its ROC curves (AUC values; Fawcett,
2006).  bmubht fo elur a sA, excellent classifiers are
those having AUC values between 0.9 and 1. Classifiers
with AUC values from 0.8 to 0.9 are typically
considered good, and those having AUC values from
0.7 to 0.8 are considered fair.
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Results

The forward/backward stepwise logistic regression
models corresponding to the three affective states (data
taken from all participants) were significant at the 0.001
level, and multiple sensors significantly contributed to
each model (Error! Reference source not found.).
However, these models behaved almost like random
classifiers when evaluated on observations that were
not used for training; i.e., their corresponding AUC
values were very near to 0.5. This disagreement
between statistical significance of a model and its
classification quality is due to the different goals
pursued by classical model fitting and building
generalizable classifiers.

It was hypothesized that the difficulty in finding logistic
regression models for the affective states could be due
to high variability between participants. To explore this
possibility, the Partitioning Around Medoids (PAM)
robust clustering algorithm (Kaufman and Rousseeuw,
1987) was applied to the first five principal components
of the data from the demographics questionnaires (we
selected the minimum number of principal components
giving us a cumulative proportion of variance greater
than 70%). PAM effectively separated the group of
participants into two subgroups. Only the data set for
Anger had enough variability within those subgroups to
allow for a separate logistic regression analysis on each
of them. A significant logistic regression model was
obtained for one of the two subgroups. The model,
described in Table 3, included only heart rate, which
was negatively correlated to anger. It showed a
noticeable deviation from a random classifier when
validated using 10-fold cross-validation (Figure 1
shows the corresponding ROC curves). Its average
AUC value was 0.6792, which is close to what is
typically considered a fair classifier (ROC curves with
steeper slopes and therefore higher AUC values are
desirable). This result suggested that heart rate obtained
from a low-cost sensor could be useful in predicting the
presence of anger in a subset of the participants.
Furthermore, the fact that clustering facilitated
development of this promising result implied that a
much more homogeneous group of participants, or a
personalized approach, could lead to the development
of successful models using low-cost sensors.

The forward/backward stepwise logistic regression
models corresponding to each cognitive state for each
participant were also statistically significant, but the
significant attributes and the signs of the corresponding
coefficients were not consistent across for any two
participants across all participants. As expected from
these results, a 10-fold cross-validation of stepwise
logistic regression models obtained from all participants
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combined resulted in very poor classification
performance. As such, it was not possible to obtain
good logistic regression classifiers capable of modeling
the data from all participants, either for affective or
cognitive states.

LESSONS LEARNED FROM EXPERIMENT 1

The results from Experiment 1 yielded little in the way
of generalizable classifiers, however much knowledge
was gleaned about working with the low-cost sensors in
an experimental setting.

Some of the lessons learned stemmed from the amount
of components in the experimental testbed, including
both hardware and software. In Experiment 1, the
stationary eye tracker was unreliable in tracking
pupilometry given free fore/aft movement of the
participant (which was captured via posture sensors). A
low-cost head-mounted eye tracker was developed and
utilized in Experiment 2 to eliminate this issue. Further,
with the heart rate monitor in Experiment 1, the chest
strap did not have good conductance, resulting in heart
rate values of zero. It was determined that this was due
to a lack of moisture on the sensor (as it is designed to
be used during workouts that result in perspiration).
Thus, during Experiment 2, water was used to wet the
pads of the chest strap that sat against the skin to
improve the connection and minimize data loss.

Also during Experiment 1, heart rate during the
vigilance task was used to normalize participant’s data.
To improve the baseline data capture, a task was
included in Experiment 2 in which the participant just
stared at a blank screen for 30 seconds during which
they were asked to just relax and try not to move. They
were told explicitly that the purpose of the task was just
to collect baseline data from the sensors.

Another challenge was the time required to ensure good
data collection from the low-cost sensors. Due to
continued need to troubleshoot sensors throughout
Experiment 1 (sometimes between each task), the
experiment ran longer than expected, and exceeded the
strict time constraints imposed in Experiment 2 due to
the scheduling conflicts associated with West Point
Cadets. To address this issue, the stimuli found in the
first study to induce the greatest variability in both
cognitive and affective states, the VBS2 scenarios, were
moved in the script to the beginning of the experimental
session, right after the baseline task. Therefore, if time
ran out, only the movies and/or vigilance task would
not be completed.

Another challenge was in trying to make the testbed
immersive in order to induce the targeted affective and
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cognitive states, while still meeting the assessment
requirements. Due to the lack of validated, objective,
unobtrusive methods to assess affective state, it was
necessary to stop the participant at certain intervals to
obtain self-report affective state assessment using
EmoPro™. During the simulation scenarios, this was
done by having the scenario automatically pause for the
participant to complete EmoPro™ after each predefined
scenario event. Each time the scenario paused, the
immersion was broken, with the risk that emotions may
not be felt as intensely throughout the scenario as they
could be if scenario interaction went uninterrupted. On
the other hand, it is critical that enough events are
completed to get the maximum amount of data. It can
be difficult to balance these competing requirements.
To compensate for some of the loss of immersion,
Experiment 2 incorporated small changes to the VBS2
scenarios in order to try to increase emotional intensity
within each event, such as moving the enemy into a
position within a room where they could not be seen
from the doorway. Therefore, a number of changes to
the experimental protocol were made as outlined above
to reduce data variability and data loss in Experiment 2.

EXPERIMENT 2
Method

Experiment 2 was conducted at the United States
Military Academy. Due to the strict time constraints of
Cadets, the study was run in two parts: Part 1 took
approximately one hour, and included performing the
baseline procedure for EEG and completing all
questionnaires; Part 2 took approximately two hours
and consisted of donning the neurophysiological
sensors, and then performing the baseline task, VBS2
scenarios, vigilance task, and observing the three movie
clips.

Participants

A power analysis similar to that done in the first
experiment was conducted, and it was determined that a
minimum of 18 participant was necessary. Twenty
participants completed the entire experiment, all West
Point Cadets with active duty experience (including
their time at West Point) ranging from 9-44 months
(average of 15.45 months). Majority of participants
were first-year cadets enrolled in the Behavioral
Sciences and Leadership (BS&L) department’s General
Psychology (PL100) course. Ages ranged from 18-23
years, with an average of 19 years.

Data Analysis

Due to the improvements to the experimental setup,
reliability and quality of the sensor data were greatly
improved and data from all sensors was able to be
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included in this analysis. The data from the different
sensors were processed in the same manner as for
Experiment 1, except that for the chair sensors and
pupil diameter, for which only their averages were
included in the training datasets (i.e., no standard
deviation and rate of change were calculated for them).
This was due to low data variability of the chair sensors
in short periods of time and the need to remove about
15% of pupilometry data that was clearly out of range.

Results

Hotelling T? tests were run on the datasets
corresponding to the affective states to determine
whether there were statistically significant differences
between the means of sensor data corresponding to the
presence of emotion versus the absence of it. The tests
first failed to run because of multi-collinearity issues.
Multi-collinearity diagnostics based on the inflation of
variances (Fox and Monette, 1992) detected that many
EEG bands from the Neurosky MindSet were highly
correlated with other attributes in the data. Those
attributes were removed from the input to the T? tests.
We were able to reject the hypothesis of equal means in
the cases of Boredom and Fear at 0.001 significance
level. However, that null hypothesis could not be
rejected for Anger (p = 0.3645).

The analysis then focused on finding accurate logistic
regression classifiers for the three affective states.
Additionally, logistic model trees (LMTs) were
explored as a classification appraoch. The LMT
algorithm produces decision trees that contain logistic
regression functions at their leaves (Landwehr et al.,
2005); with the simplest LMT classifier being a single
node containing a logistic regression model per class.
LMT provides the capability of dealing with non-linear
relationships in the data while still offering a model that
is easy to interpret. The LMT algorithm from the
"RWeka" R package was employed to obtain the LMT
models.

As in the first experiment, the classification accuracy of
the models was evaluated through the average AUC
values from 10-fold cross-validation, although this time
10 runs of the cross-validation procedure were
executed. The standard deviations of the AUC values
were also calculated. None of the logistic regression
models (on all variables and also using stepwise
regression) showed a good or even fair generalization
capability. However, the LMT models obtained for
Boredom and Fear showed good generalization
capability. The model for Boredom showed an average
AUC value equal to 0.79 with 0.008 standard deviation
(Figure 1). The model for Fear had an average AUC
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value equal to 0.83 with 0.012 standard deviation
(Figure 2).
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Figure 1. ROC curves for LMT model of Boredom.
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Figure 2. ROC curves for LMT model of Fear.

Curiously, each resulting LMT model consisted of a
single logistic regression model, suggesting that the
LMT algorithm is particularly efficient at finding
logistic regression models that favor generalization over
statistical significance, thus avoiding overfitting. This is
due to the LogitBoost algorithm (Friedman, Hastie, &
Tibshirani, 2000) used in LMT to fit the logistic
regression models at the nodes of the tree. Table 2
provides the attributes that were factors in the LMT
models for the affective states and the associated
sensors. These results suggest that data obtained from
these low-cost sensors could be useful to predict the
presence of boredom and fear in learners. Statistical
significance values are not provided for the LMT
logistic regression models; contrary to classic logistic
regression, statistical significance is not important to
the LMT learning algorithm.

Based on the results from the first experiment, it was
expected that a classifier could be obtained for the
Anger state. Unfortunately, it was not possible to obtain
even a fair classifier for that state using the two models
considered. This result agrees with the Hotelling T? test
results. It was hypothesized that the lack of significance
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for difference of means in the case of Anger could be
due to the presence of outlier observations, so the

Table 2. Factors in Affective State LMT Models

Affective | Low- Attribute Coeff.Sign
State Cost
Sensor
(Intercept) -
Alpha2 +
Gamma -
Gamma2Diff -
EEG BetaDiff -
BetaDev +
Boredom Beta2Diff T
AttentionDev +
Heart HeartDiff -
Rate  ["HeartDev +
Monitor
Distance | MotionDev +
Sensor
(Intercept) -
Gammaz2Dev -
EEG Beta2Dev +
Delta -
Fear Attention -
Distance | Motion +
Sensor
Chair ChairSensor6 -
Seat  ["ChairSensor? n
Sensors

multivariate robust outlier detection method proposed
in Filzmoser et al. (2005) was applied to the Anger data
set, and observations labeled as outliers were removed.
The T? test was repeated on the reduced Anger data set.
The p-value obtained was equal to 0.0662, which still
did not allow for rejection of the null hypothesis at 0.05
or lower significance level. A logistic regression model
was obtained from the reduced Anger data set using the
LMT algorithm. A 10-fold cross-validation of that
model showed that it was an almost random classifier
(average AUC = 0.58). As a final attempt to obtain a
good classifier for Anger, a clustering approach similar
to the one used in the first experiment was applied. A
PAM clustering of the demographic data using the first
5 principal components (which gave us up to 75% of
variance) found two groups of participants. One of the
groups consisted only of three participants, which did
not provide enough data for fitting a model to its
corresponding dataset. In the case of the other group, a
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stepwise logistic regression model that included the
Delta and BetaDiff attributes turned out to be
significant at 0.01 alpha level. However, its
corresponding average AUC value was 0.48, which
denotes a random classifier. Cross-validation of the
LMT model on this data also gave a very poor average
AUC value: 0.60.

Only those participants that completed the whole
experiment and had a good benchmark EEG baseline
and data files (10 participants in total) were considered
for the analysis of the cognitive states. This was not a
limitation for the analysis, given that ground-truth
values for cognitive classifiers were collected every
second for about 2 hours for each participant during the
experiment. Consequently, a large amount of training
data was available from those 10 participants.
Following an approach similar to that used for the
affective states, the logistic regression models were
cross-validated on the cognitive data sets from all 10
participants combined. None of the logistic regression
models showed a good or even fair generalization
capability. However, exploratory 10-fold cross-
validations of the LMT models on all attributes showed
good generalization capability.

The LMT models obtained from all the training data on
all the attributes consisted of highly complex decision
trees. Too much complexity in machine learning
models is typically associated to overfitting the training
data, which might lead to poor classification
performance on new data. The complexity of the LMT
models pointed to the need of finding subsets of
relevant features for each cognitive state, in order to
obtain simpler LMT models, while still keeping similar
or better generalization capability (AUC values). The
feature selection techniques provided by the Boruta R
package (Kursa and Rudnicki, 2010) and the
standardized coefficients from Linear Discriminant
Analysis (LDA) (Rencher and Scott, 1990) were
therefore employed. The mean and standard deviation
of AUC values were obtained from 5 cross-validation
runs on up to the first 10 variables selected by Boruta
and LDA, separately. Based on these results from the
feature selection techniques, LMT models were trained
on several combinations of the most relevant variables
and models achieving both good AUC values and low
model complexity were selected. Table 3 provides the
attributes that were factors in the LMT models for the
cognitive states and the associated sensors. The average
AUC values and their standard deviations were
calculated through 10 runs of 10-fold cross-validations.
The average AUC for Distraction was 0.81, with 0.010
standard deviation. The average AUC for Engagement
was 0.80, with 0.004 standard deviation. The average
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AUC for Workload was 0.82, with 0.008 standard
deviation.

Table 3. Factors in Cognitive State LMT Models

Cognitive .
State Low-Cost Sensor Attribute
Heart Rate Monitor | Heart Rate
Distraction
Chair Seat Sensors All 4 Seat
Sensors
Heart Rate Monitor | Heart Rate
Engagement | Chair Seat Sensors All 4 Seat
Sensors
Distance Sensor Motion
Distance Sensor Motion
Workload
Chair Seat Sensors All 4 Seat
Sensors

CONCLUSIONS AND FUTURE RESEARCH

These experiments evaluated low-cost sensors for
utilization in classifying cognitive and affective states,
with results providing preliminary evidence of their
utility in computer-based training environments. Good
classification models based on data from low-cost
sensors have been developed for the affective states of
fear and boredom, and the three cognitive states
considered in this study.

A classifier for Anger could not be learned by the two
models considered in this study. Several techniques
suggested that our dataset for Anger did not provide
enough differences between the presence and the
absence of that affective state: (1) Hotelling T? tests
were not able to reject the equal means hypothesis; (2)
removing outliers did not facilitate learning a good
classifier; and (3) building a classifier from a subset of
participants that shared similar demographics did not
provide a good classification accuracy.

Based on the models obtained, some of our hypotheses
were partially or completely met. Regarding the
affective states, the final logistic regression models
obtained from LMT showed that heart rate and posture
measures were factors in the model of Boredom, and
posture sensors were factors in the Fear model. As
expected, posture sensors were factors in the
engagement model, but unexpectedly also contributed
to the distraction and workload models, and heart rate
was an unanticipated factor in the distraction and
engagement models. However, low-cost EEG attributes
factored into both affective state models, but none of
the cognitive state models. Also, pupil diameter did not
play a factor in any of the models. These results were
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surprising, given the amount of literature support for
using EEG and pupilometry metrics to measure
cognitive states. This may lend evidence to the poor
reliability of the low-cost sensors. The fact that the
NeuroSky EEG had a single electrode and that the eye-
tracking sensor was noisy could be reasons for the lack
of correlation. It is important to recall that about 15% of
the pupil diameter data had to be removed and more
noisy observations might have remained in the datasets.

Given that the cutoff values to be used with the models
depend not only on classification accuracy but also on
the risks associated to each type of classification error
(false positives and false negatives), conclusive cutoff
values are not provided here. However, assuming the
same risk for both types of classification error, the best
cutoff values for each model seem to be around the
following numbers: Boredom: 0.2; Fear: 0.2;
Distraction: 0.2; Engagement: 0.3; Workload: 0.8.

Future steps will include integrating the sensors and
models into the Generalized Intelligent Framework for
Tutors (GIFT; Sottilare, et al., 2011), a domain-agnostic
ITS architecture. To complete integration, sensor-
specific interfaces will need to be developed to capture
raw sensor data for processing and eventual
classification of either a cognitive or affective state with
a high degree of accuracy. Once candidate sensors have
been integrated into the GIFT (Sottilare, et al., 2011) a
series of assessments can begin. As noted in the
lessons-learned section of this paper, there may be
significant incompatibilities between sensors in a given
sensor-state group, and the most accurate sensors may
not be the most practical (e.g., a sensor with low
usability for a given task). So while this particular
research has been instrumental in narrowing the field of
sensors, significant research lies ahead to determine the
smallest compatible set of sensors to predict each
cognitive and affective state.

Overall, this research provides evidence to support the
theory that, with the help of low-cost sensors, ITSs can
begin to rival the effectiveness of human tutors by
diagnosing affective and cognitive states that contribute
to a decrease in readiness to learn. Future work must
also determine appropriate learning strategies to
implement during periods of low readiness to learn and
how to implement them. Furthermore, as sensor
technology improves, sensors will be less invasive, will
cost less, and will become more accurate. Subsequently,
classifiers of more affective states can be developed,
and those already developed will become more reliable.
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