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ABSTRACT 

 

Intelligent Tutoring Systems (ITS) have yet to reach training effectiveness levels rivaling those of human tutors, 

partially due to their inability to recognize and adapt to trainee cognitive and affective states.  While many studies 

have examined expensive sensor suites to capture physiological indicators of cognitive and affective states, the 

authors’ previous work presented an innovative conceptual framework for utilizing low-cost sensors to capture 

specific states in real-time. Such measures are expected to improve an ITS’s ability to automatically adapt to a 

trainee’s readiness to learn.  

 

The current set of two experiments aimed to develop real-time classifiers for six distinct affective and cognitive 

states (anger, fear, boredom, workload, engagement, distraction) utilizing low-cost, non-invasive 

(neuro)physiological and behavioral sensors. In the first experiment, participants completed a within-subjects, 

repeated-measures study in which the independent variable was task type - each task was designed to induce a 

subset of the targeted states. Dependent variables theorized to indicate targeted states included heart rate, postural 

sway, pupil diameter, and electroencephalography (EEG) band activity. Each metric was captured via low-cost 

sensor technology. Validated, ground-truth measures of targeted cognitive and affective states were captured via a 

10-channel EEG headset and associated algorithms, and a subjective emotional rating tool, respectively. Several 

challenges were encountered with the low-cost sensors, including limitations in sensitivity to physiological changes 

and reliability of data collection.  Small design and procedural changes were made for the second experiment, and 

good logistic regression classifiers for the affective states of boredom and fear were obtained.  Additionally, logistic 

model trees showed good generalization capability when validated as classifiers for the cognitive states. This paper 

presents study results, lessons learned and implications for future research. 
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INTRODUCTION 

 

Current intelligent tutoring systems (ITSs) strive to 

provide one function regardless of the domain: to 

maximize learning outcomes by tailoring 

instructional/training content to strengths and 

weaknesses associated with a given learner. The 

traditional approach to ITS implementation is assessing 

user interactions against performance-based models to 

determine deficiencies that require guidance or further 

instruction. Such approaches have been found to be 

effective in well-defined domains where 

misconceptions and deviations from desired 

performance are easily determined (Graesser et al.,  

2005; Stottler et al., 2001; VanLehn et al., 2005). 

However, ITSs that adapt solely based on performance 

ignore the influence that a learner’s affective and 

cognitive states have on learning and retention. For 

adaptive training systems to reach full potential, 

technologies need to be in place that track 

physiological and behavioral markers linked to 

affective and cognitive states shown to impact learning 

(see Carroll et al., 2011 for detailed list). This enables a 

system to monitor reactive tendencies to training 

stimuli and to determine an individual’s readiness to 

learn (Stevens, Galloway, and Berka, 2007). This 

information can then be used to inform adaptations to 

system elements intended for maintaining optimal 

learning states.    

 

Addressing this functional gap is not a new idea. The 

past decade has seen a number of studies examining 

sensor technologies for the purpose of informing state 

representations (Burleson and Picard, 2004), and 

remains a current thrust within the ITS and affective 

computing research communities (Calvo and D'Mello, 

2010). However, the inherent problem with work in 

this field is applying these tools on a large scale. 

Sensor technologies are often expensive, making the 

integration of such tools into existing ITS platforms 

unreasonable. To address this limitation, a conceptual 

framework for applying low-cost sensors to capture 

real-time physiological and behavioral markers for 

assessing state variables has been developed (Carroll et 

al., 2011). The goal of the current effort was to 

determine if correlations exist between low-cost sensor 

metrics and associated ground-truth measures of 

targeted cognitive and affective states, and to 

determine if such low-cost sensors could accurately 

and reliably measure distinct cognitive and affective 

states. This paper presents a series of studies evaluating 

the efficacy of utilizing low-cost sensor solutions for 

detecting trainee cognitive and affective states for use 

in informing state sensitive ITS student models. 

 

Three affective and three cognitive states were selected 

for inclusion in the studies based on 1) their impact on 

learning, and 2) their potential to be measured with 

low-cost (neuro)physiological and behavioral sensors. 

The affective states chosen were anger, fear, and 

boredom, which have all been found to have negative 

impacts on learning (e.g. McQuiggan et al., 2007; 

D’Mello et al., 2007), and which have been shown to 

be correlated with physiological data such as heart rate 

and posture (Lisetti and Nasoz, 2004; Woolf et al., 

2009). The cognitive states chosen were engagement, 

distraction, and workload. Engagement, which is 

related to information gathering, visual scanning and 

sustained attention (Berka et al., 2007), has been found 

to have positive impacts on learning (e.g. McQuiggan 

et al., 2007; Woolf et al., 2007), while the opposite is 

true of distraction (Froese, 2012). Distraction occurs 

when attention is withdrawn from processing 

information necessary to complete the primary task 

(Strayer et al., 2011), thus leading to decreased 

resources being focused appropriately to complete a 

task. Therefore, classifiers of engagement and 

distraction can be used to infer appropriate attention 

allocation. High workload, similar to distraction, has 

shown a negative impact on learning (Gonzalez, 2005). 

All three states (engagement, distraction, workload) 

have been previously measured with physiological data 

such as electroencephalography (EEG) and 

pupilometry metrics (e.g. Berka, 2007; Ahlstrom and 

Friedman-Bern, 2006).  
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For the current study, five low-cost sensors were 

selected based on the following requirements: 1) 

collects sensor data shown to be correlated with at least 

one of the six states, 2) provides ability to collect and 

access data in real-time, 3) minimally intrusive, and 4) 

costs less than $500. The sensors included in the study 

were a motion detector and chair with pressure sensors 

to capture postural sway, a heart rate monitor, an EEG 

headset with a single electrode located on the forehead 

above the left eye (the Fp1 electrode position), and an 

eye tracker to capture pupilometry. A full review of the 

theoretical justification for choosing the affective and 

cognitive states and the low-cost sensors can be found 

in Carroll et al. (2011). 

 

EXPERIMENTAL APPROACH 

 

Two experiments were completed to compare low-cost 

physiological sensor output to validated benchmark 

measures of affective and cognitive states. The 

intention of Experiment 1 was to develop classifiers of 

affective and cognitive states with civilians. 

Experiment 2 would then utilize these classifiers to 

validate each with a more relevant population (United 

States Military Academy Cadets). Both experiments 

were within-subjects repeated-measures designs in 

which all participants performed three types of tasks: 

1) a visual vigilance task, 2) video clip observation, 

and 3) Virtual Battlespace 2 (VBS2) scenario 

completion to induce variations in affective and 

cognitive state. 

 

The lessons learned from Experiment 1 resulted in 

redesign of data collection procedures and small 

changes to the experimental setup for Experiment 2. 

The purpose of Experiment 2 then became the same as 

Experiment 1 – to create classifiers of targeted 

affective and cognitive states with a cleaner set of data 

(and therefore with a higher possibility of developing 

generalizable classifiers of affective and cognitive 

state) and a more relevant population.   

 

EXPERIMENT 1 

 

The objective of Experiment 1 was to evaluate the 

ability to create real-time classifiers of targeted 

affective and cognitive states utilizing data from low 

cost sensors.  Validated stimuli to induce each targeted 

state were presented to participants while data was 

collected from both low-cost sensors and validated 

benchmark measures for comparison. By relating data 

resulting from the low-cost physiological sensors 

against validated benchmark measures, using logistic 

regression models, the effectiveness of low-cost 

sensors at detecting target affective and cognitive states 

was assessed.  Further, development of basic classifiers 

was attempted based on inputs from the low-cost 

sensors to model trainee affective and cognitive states. 

Logistic regression classification was the preferred 

classification tool for this study, given that logistic 

regression models are simple, easy to interpret, and 

well suited to learn relationships between variables 

expected to be correlated. 

 

Hypotheses 

 

The hypotheses for the experiment were as follows: 

1. Good classification models can be created for 

affective states using data from a series of low-cost 

sensors and logistic regression techniques. 

2. Good classification models can be created for 

cognitive states using data from a series of low-

cost sensors and logistic regression techniques. 

 

Method 

 

Participants  

Twenty-five people ranging in age from 19-34 (mean = 

25) years participated in the study. Fifteen were male, 

ten were female, and all but 1 were civilians (the non-

civilian had only three months of military experience). 

 

Tasks 

Visual Vigilance Task: This task was a three-minute 

vigilance task in which the user had to press the space 

key every two seconds with a visual reminder. Video 

Clip Observation: Participants viewed three video 

clips validated to induce various affective states: 1) a 

65-second excerpt from the Warner Brothers film All 

the President’s Men, previously validated to induce a 

neutral affective state, 2) a 236-second excerpt from 

the 20th Century Fox movie My Bodyguard, previously 

validated to induce anger, and 3) a 208-second excerpt 

from the Falcon Films movie Halloween, previously 

validated to induce fear (Hewig et al., 2005). VBS2 

Scenarios: In the VBS2 simulation scenarios, the 

overall goal of the participant was to search and 

eliminate enemy threats in an urban environment (e.g., 

a building or street).  To accomplish this, the 

participant was required to enter a building and move 

rapidly along a hallway while covering the entire area 

with their weapon to maintain security.  As people 

were encountered, they were to be quickly evaluated 

and engaged if hostile (anyone holding a weapon was 

considered hostile). As participants crossed the 

threshold of a room doorway that had not been cleared, 

they performed immediate target engagement of any 

enemies detected. Each of the four VBS2 scenarios 

contained an Emotion Induction Technique (EIT; see 

Table 1), designed to induce either anger or fear in 

participants, as well as high and low states of 

distraction, engagement, and workload. 
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Table 1. Descriptions of Emotion induction Techniques (EITs) within scenarios. 

 

Scen

-ario 

EIT Presentation time  Details Expected Induced States 

1 Limiting visual 

perception (fog) 

Throughout scenario Visibility reduced with 

dense fog; impaired 

ability to see enemies 

Fear, anger, workload  

2 Increasing 

enemies 

Throughout scenario 6-7 enemies per room 

as opposed to 1-3 in 

other scenarios 

Fear, anger, workload, 

engagement 

3 Annoying sound First 45 seconds of 

scenario 

Car alarm sound 

playing  

Anger, workload, distraction 

4 Equipment 

malfunction 

When participant reaches 

a physical marker in 

simulated room 

Weapon malfunctions 

during room clearing 

Anger, fear,  workload, 

distraction 

 

Apparatus 

Participants used a standard flat screen monitor, 

keyboard, and mouse throughout the experiment. 

Ground-truth affective states were measured using 

EmoPro™, an electronic emotional profiling tool that 

has been validated to accurately measure participants’ 

emotions (Champney and Stanney, 2007). EmoPro™ is 

a subjective assessment tool by which individuals 

indicate which emotions they felt during an experience 

by selecting emoticons representing a number of 

distinct emotional expressions. Each emoticon is 

designed to represent one particular emotion by 

utilizing human expression cues. Ground-truth 

cognitive state was assessed using ABM’s B-Alert™ 

X-10 EEG headset. The associated B-Alert™ analysis 

software includes EEG indices of workload, 

engagement, distraction, and drowsiness (Johnson, et 

al., 2011).  

 

A variety of non-invasive, low-cost sensors were used 

in the study. The NeuroSky MindSet EEG headset 

collects EEG data from a single-point dry electrode that 

sits on the forehead above the left eye, in the Fp1 

electrode position. The associated MindSet Research 

Tools software provides data on a user’s Delta, Theta, 

Alpha, Beta, and Gamma brainwave band power levels, 

as well as classifiers of Attention and Meditation. The 

band power levels are output as follows: Delta: 1-3Hz; 

Theta: 4-7Hz; Alpha1: 8-9Hz; Alpha2: 10-12Hz; Beta1: 

13-17Hz; Beta2: 18-30Hz; Gamma1: 31-40Hz; 

Gamma2: 41-50Hz. The Zephyr HxM™ BT heart rate 

sensor comes in the form of a strap that is worn around 

the chest against the skin. It allows for real-time 

collection of data on a personal computer through a 

Bluetooth connection.  Data collection includes heart 

rate in beats per minute. The Vernier Go!Motion 

motion detector uses ultrasound technology to collect 

position, velocity, and acceleration data of moving 

objects in real-time through a USB port. When it is 

placed between a computer and the user, it can detect 

changes in posture when the user leans forward or sits 

back in the chair. The chair participants sat in contained 

eight Phidget pressure sensors (four in the seat, four in 

the back) to collect pressure data in real time through a 

USB port, allowing for real-time determination of 

changes in posture. Finally, a low-cost eye tracker was 

developed in house for this effort. The hardware of the 

eye-tracker was composed of a Thorlab DCC1545M 

monochrome camera with a TVR0614 ½” C Mount 6-

15mm F1.4 manual iris lens and an Opteka HD2 37mm 

R72 720 nm infrared X-Ray IR filter, as well as two 

IR010 Night Vision IR lights. This hardware was used 

with the ITU Gaze Tracker open source gaze tracking 

application to collect pupilometry data. All sensors 

were sampled synchronously at a common rate of 40 

Hz. 

 

In addition to the physiological and behavioral data 

collected by the sensors, a variety of surveys were 

administered, including: 1) a demographics 

questionnaire, 2) the Computer Game Immersion 

Questionnaire, which determines a participant’s 

tendency to become immersed when playing a 

computer game, 3) the Life Orientation Test – Revised 

(LOT-R), which measures trait optimism/pessimism 

(Scheier, Carver, & Bridges, 1994), 4) the Self-

Assessment Manikin (SAM; Lang, 1985), which 

measures mood in terms of pleasure, arousal, and 

dominance, and 5) the Neuroticism-Extroversion-

Openness Personality Inventory (NEO-PI), a 

personality questionnaire based on the Big Five 

personality dimensions (Schinka et al., 1997). 

 

Procedure 

Upon arrival, participants received a brief overview of 

the study and were asked to complete informed consent 

and surveys. Participants then donned the ABM 

headset, and filled out the paper-based questionnaires 

for demographics, immersion, optimism/pessimism, 
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mood, and personality. Next, participants completed the 

EEG baseline task, and then donned the Zephyr heart 

rate sensor around their chest, under their shirt. The 

NeuroSky EEG headset was then placed on their head. 

The participants sat in the pressure sensor chair in front 

of a display, motion detector, and eye tracker, and 

completed a calibration session with the eye tracking 

system. Adjustments were made to all sensors as 

needed until continuous data collection was attained.  

 

Once all sensors were in place and successfully 

collecting data, students performed the series of tasks 

outlined above to induce variations in cognitive and 

affective state. First, participants performed a three-

minute vigilance task on a personal computer, which 

consisted of pressing the space bar every time a red 

circle appeared on the screen. Participants completed an 

EmoPro™ evaluation just before and just after this task. 

Next, participants observed three video clips, 

completing an EmoPro™ evaluation just after each 

video clip. Next, experimenters described the VBS2 

task in detail and had participants go through training to 

familiarize them with how to interface with the 

software. Participants were then asked to complete a 

trial scenario to gain an understanding of what would 

be expected of them during the experimental task. Next, 

participants completed a total of four scenarios, all with 

EITs and with 3-6 critical events per scenario. 

Following each critical event within a scenario, 

participants were prompted to complete an EmoPro™ 

evaluation to indicate their emotional state during the 

event. Upon completion of the VBS2 scenarios, 

participants received a short debriefing. 

 

Data Analysis 

Data from the eye-tracking and the chair pressure 

sensors were not considered during analysis due to 

reliability issues. The eye tracking data (i.e., 

pupilometry) was confounded by participant movement 

(stationary eye tracker could not distinguish differences 

between changes in pupil and changes in distance from 

sensor) and lighting adjustments (lights turned off 

during movie clips to increase engagement). The chair 

pressure sensor data showed extremely low levels of 

variability, and therefore provided little opportunity to 

impact any model. It was later determined that the chair 

sensors tended to detach from their original locations 

after some use, and thus provided unreliable data. 

 

The remaining low-cost sensor data were aggregated to 

obtain averages of each metric on a second-by-second 

basis. To account for inter-individual differences, the 

heart rate sensor data from each participant was 

normalized by subtracting the average of resting heart 

rate captured during the vigilance task.  Subsequently, 

for each metric, a rate of change variable was created to 

represent the difference between consecutive values in 

time. The rate of change of the variables was expected 

to be relevant for modeling the targeted affective and 

cognitive states. 

 

In the case of data for affective state classification, 

considering the multiple one-second observations for 

each event as independent vectors did not provide 

consistent patterns for any affective attribute. 

Subsequently, an approach similar to that followed in 

Picard et al. (2001) was implemented, in which a single 

vector of aggregated data was obtained from the one-

second observations across each event. Three 

aggregated attributes were created for each sensor for 

each event: 1) the average of the original variables 

(Alpha1, Alpha2, etc), 2) the average of the 

corresponding rate of change variables (Alpha1Diff, 

Alpha2Diff), and 3) the standard deviation of the 

original variables (Alpha1Dev, Alpha2Dev, etc). This 

second level of aggregation provided a single 

description vector for each event, and was expected to 

diminish the negative impact of any abnormal sensor 

data. 

 

The data analysis was conducted using the free 

statistical language R (http://www.r-project.org/). 

Based on the correlations between some of the sensors 

and the different states previously reported in literature, 

the logistic regression model was selected. Each 

ground-truth state was converted into a binary response 

variable by applying a threshold-based procedure that 

removed the observations associated with state values 

lying near the corresponding middle point. For 

EmoPro
TM 

affective self-report values, which ranged 

from 0 to 5 (0 being absence of the emotion, 5 being 

intense feeling of the emotion), observations 

corresponding to values 1 and 2 were disregarded. For 

cognitive values, which took values in the interval 

[0,1], observations with state values between 0.3 and 

0.7 were also removed from the training data.  

 

In order to assess the performance of the corresponding 

logistic regression classifiers, three runs of a 10-fold 

cross-validation procedure were executed for each 

model, and their corresponding Receiver Operating 

Characteristic (ROC) curves were plotted. The overall 

quality of each classifier was assessed by averaging the 

areas under its ROC curves (AUC values; Fawcett, 

2006). bmuht fo elur a sA, excellent classifiers are 

those having AUC values between 0.9 and 1. Classifiers 

with AUC values from 0.8 to 0.9 are typically 

considered good, and those having AUC values from 

0.7 to 0.8 are considered fair. 
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Results 

 

The forward/backward stepwise logistic regression 

models corresponding to the three affective states (data 

taken from all participants) were significant at the 0.001 

level, and multiple sensors significantly contributed to 

each model (Error! Reference source not found.). 

However, these models behaved almost like random 

classifiers when evaluated on observations that were 

not used for training; i.e., their corresponding AUC 

values were very near to 0.5. This disagreement 

between statistical significance of a model and its 

classification quality is due to the different goals 

pursued by classical model fitting and building 

generalizable classifiers. 

 

It was hypothesized that the difficulty in finding logistic 

regression models for the affective states could be due 

to high variability between participants. To explore this 

possibility, the Partitioning Around Medoids (PAM) 

robust clustering algorithm (Kaufman and Rousseeuw, 

1987) was applied to the first five principal components 

of the data from the demographics questionnaires (we 

selected the minimum number of principal components 

giving us a cumulative proportion of variance greater 

than 70%). PAM effectively separated the group of 

participants into two subgroups. Only the data set for 

Anger had enough variability within those subgroups to 

allow for a separate logistic regression analysis on each 

of them. A significant logistic regression model was 

obtained for one of the two subgroups. The model, 

described in Table 3, included only heart rate, which 

was negatively correlated to anger. It showed a 

noticeable deviation from a random classifier when 

validated using 10-fold cross-validation (Figure 1 

shows the corresponding ROC curves). Its average 

AUC value was 0.6792, which is close to what is 

typically considered a fair classifier (ROC curves with 

steeper slopes and therefore higher AUC values are 

desirable). This result suggested that heart rate obtained 

from a low-cost sensor could be useful in predicting the 

presence of anger in a subset of the participants. 

Furthermore, the fact that clustering facilitated 

development of this promising result implied that a 

much more homogeneous group of participants, or a 

personalized approach, could lead to the development 

of successful models using low-cost sensors. 

 

The forward/backward stepwise logistic regression 

models corresponding to each cognitive state for each 

participant were also statistically significant, but the 

significant attributes and the signs of the corresponding 

coefficients were not consistent across for any two 

participants across all participants. As expected from 

these results, a 10-fold cross-validation of stepwise 

logistic regression models obtained from all participants 

combined resulted in very poor classification 

performance. As such, it was not possible to obtain 

good logistic regression classifiers capable of modeling 

the data from all participants, either for affective or 

cognitive states. 

 

LESSONS LEARNED FROM EXPERIMENT 1 

 

The results from Experiment 1 yielded little in the way 

of generalizable classifiers, however much knowledge 

was gleaned about working with the low-cost sensors in 

an experimental setting.  

 

Some of the lessons learned stemmed from the amount 

of components in the experimental testbed, including 

both hardware and software. In Experiment 1, the 

stationary eye tracker was unreliable in tracking 

pupilometry given free fore/aft movement of the 

participant (which was captured via posture sensors). A 

low-cost head-mounted eye tracker was developed and 

utilized in Experiment 2 to eliminate this issue. Further, 

with the heart rate monitor in Experiment 1, the chest 

strap did not have good conductance, resulting in heart 

rate values of zero. It was determined that this was due 

to a lack of moisture on the sensor (as it is designed to 

be used during workouts that result in perspiration). 

Thus, during Experiment 2, water was used to wet the 

pads of the chest strap that sat against the skin to 

improve the connection and minimize data loss. 

 

Also during Experiment 1, heart rate during the 

vigilance task was used to normalize participant’s data. 

To improve the baseline data capture, a task was 

included in Experiment 2 in which the participant just 

stared at a blank screen for 30 seconds during which 

they were asked to just relax and try not to move. They 

were told explicitly that the purpose of the task was just 

to collect baseline data from the sensors. 

 

Another challenge was the time required to ensure good 

data collection from the low-cost sensors. Due to 

continued need to troubleshoot sensors throughout 

Experiment 1 (sometimes between each task), the 

experiment ran longer than expected, and exceeded the 

strict time constraints imposed in Experiment 2 due to 

the scheduling conflicts associated with West Point 

Cadets. To address this issue, the stimuli found in the 

first study to induce the greatest variability in both 

cognitive and affective states, the VBS2 scenarios, were 

moved in the script to the beginning of the experimental 

session, right after the baseline task. Therefore, if time 

ran out, only the movies and/or vigilance task would 

not be completed. 

 

Another challenge was in trying to make the testbed 

immersive in order to induce the targeted affective and 
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cognitive states, while still meeting the assessment 

requirements. Due to the lack of validated, objective, 

unobtrusive methods to assess affective state, it was 

necessary to stop the participant at certain intervals to 

obtain self-report affective state assessment using 

EmoPro™. During the simulation scenarios, this was 

done by having the scenario automatically pause for the 

participant to complete EmoPro™ after each predefined 

scenario event. Each time the scenario paused, the 

immersion was broken, with the risk that emotions may 

not be felt as intensely throughout the scenario as they 

could be if scenario interaction went uninterrupted. On 

the other hand, it is critical that enough events are 

completed to get the maximum amount of data. It can 

be difficult to balance these competing requirements. 

To compensate for some of the loss of immersion, 

Experiment 2 incorporated small changes to the VBS2 

scenarios in order to try to increase emotional intensity 

within each event, such as moving the enemy into a 

position within a room where they could not be seen 

from the doorway. Therefore, a number of changes to 

the experimental protocol were made as outlined above 

to reduce data variability and data loss in Experiment 2. 

 

EXPERIMENT 2 

 

Method 

 

Experiment 2 was conducted at the United States 

Military Academy. Due to the strict time constraints of 

Cadets, the study was run in two parts: Part 1 took 

approximately one hour, and included performing the 

baseline procedure for EEG and completing all 

questionnaires; Part 2 took approximately two hours 

and consisted of donning the neurophysiological 

sensors, and then performing the baseline task, VBS2 

scenarios, vigilance task, and observing the three movie 

clips. 

 

Participants 

A power analysis similar to that done in the first 

experiment was conducted, and it was determined that a 

minimum of 18 participant was necessary. Twenty 

participants completed the entire experiment, all West 

Point Cadets with active duty experience (including 

their time at West Point) ranging from 9-44 months 

(average of 15.45 months). Majority of participants 

were first-year cadets enrolled in the Behavioral 

Sciences and Leadership (BS&L) department’s General 

Psychology (PL100) course. Ages ranged from 18-23 

years, with an average of 19 years.  

 

Data Analysis 
Due to the improvements to the experimental setup, 

reliability and quality of the sensor data were greatly 

improved and data from all sensors was able to be 

included in this analysis. The data from the different 

sensors were processed in the same manner as for 

Experiment 1, except that for the chair sensors and 

pupil diameter, for which only their averages were 

included in the training datasets (i.e., no standard 

deviation and rate of change were calculated for them). 

This was due to low data variability of the chair sensors 

in short periods of time and the need to remove about 

15% of pupilometry data that was clearly out of range.  

 

Results 

 

Hotelling T
2
 tests were run on the datasets 

corresponding to the affective states to determine 

whether there were statistically significant differences 

between the means of sensor data corresponding to the 

presence of emotion versus the absence of it. The tests 

first failed to run because of multi-collinearity issues. 

Multi-collinearity diagnostics based on the inflation of 

variances (Fox and Monette, 1992) detected that many 

EEG bands from the Neurosky MindSet were highly 

correlated with other attributes in the data. Those 

attributes were removed from the input to the T
2
 tests.  

We were able to reject the hypothesis of equal means in 

the cases of Boredom and Fear at 0.001 significance 

level. However, that null hypothesis could not be 

rejected for Anger (p = 0.3645). 

 

The analysis then focused on finding accurate logistic 

regression classifiers for the three affective states. 

Additionally, logistic model trees (LMTs) were 

explored as a classification appraoch. The LMT 

algorithm produces decision trees that contain logistic 

regression functions at their leaves (Landwehr et al., 

2005); with the simplest LMT classifier being a single 

node containing a logistic regression model per class. 

LMT provides the capability of dealing with non-linear 

relationships in the data while still offering a model that 

is easy to interpret. The LMT algorithm from the 

"RWeka" R package was employed to obtain the LMT 

models. 

 

As in the first experiment, the classification accuracy of 

the models was evaluated through the average AUC 

values from 10-fold cross-validation, although this time 

10 runs of the cross-validation procedure were 

executed. The standard deviations of the AUC values 

were also calculated. None of the logistic regression 

models (on all variables and also using stepwise 

regression) showed a good or even fair generalization 

capability. However, the LMT models obtained for 

Boredom and Fear showed good generalization 

capability. The model for Boredom showed an average 

AUC value equal to 0.79 with 0.008 standard deviation  

(Figure 1). The model for Fear had an average AUC 
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value equal to 0.83 with 0.012 standard deviation 

(Figure 2).  

 

 
Figure 1. ROC curves for LMT model of Boredom. 

 

 
Figure 2. ROC curves for LMT model of Fear. 

 

Curiously, each resulting LMT model consisted of a 

single logistic regression model, suggesting that the 

LMT algorithm is particularly efficient at finding 

logistic regression models that favor generalization over 

statistical significance, thus avoiding overfitting. This is 

due to the LogitBoost algorithm (Friedman, Hastie, & 

Tibshirani, 2000) used in LMT to fit the logistic 

regression models at the nodes of the tree. Table 2 

provides the attributes that were factors in the LMT 

models for the affective states and the associated 

sensors. These results suggest that data obtained from 

these low-cost sensors could be useful to predict the 

presence of boredom and fear in learners. Statistical 

significance values are not provided for the LMT 

logistic regression models; contrary to classic logistic 

regression, statistical significance is not important to 

the LMT learning algorithm. 

 

Based on the results from the first experiment, it was 

expected that a classifier could be obtained for the 

Anger state. Unfortunately, it was not possible to obtain 

even a fair classifier for that state using the two models 

considered. This result agrees with the Hotelling T
2
 test 

results. It was hypothesized that the lack of significance 

for difference of means in the case of Anger could be 

due to the presence of outlier observations, so the  

 

Table 2. Factors in Affective State LMT Models 

 

Affective 

State 

Low-

Cost 

Sensor 

Attribute Coeff.Sign 

Boredom 

EEG 

(Intercept) - 

Alpha2 + 

Gamma - 

Gamma2Diff - 

BetaDiff - 

BetaDev + 

Beta2Diff + 

AttentionDev + 

Heart 

Rate 

Monitor 

HeartDiff - 

HeartDev + 

Distance 

Sensor 

MotionDev + 

Fear 

EEG 

(Intercept) - 

Gamma2Dev - 

Beta2Dev + 

Delta - 

Attention - 

Distance 

Sensor 

Motion + 

Chair 

Seat  

Sensors 

ChairSensor6 - 

ChairSensor7 + 

 

multivariate robust outlier detection method proposed 

in Filzmoser et al. (2005) was applied to the Anger data 

set, and observations labeled as outliers were removed. 

The T
2
 test was repeated on the reduced Anger data set. 

The p-value obtained was equal to 0.0662, which still 

did not allow for rejection of the null hypothesis at 0.05 

or lower significance level. A logistic regression model 

was obtained from the reduced Anger data set using the 

LMT algorithm. A 10-fold cross-validation of that 

model showed that it was an almost random classifier 

(average AUC = 0.58). As a final attempt to obtain a 

good classifier for Anger, a clustering approach similar 

to the one used in the first experiment was applied. A 

PAM clustering of the demographic data using the first 

5 principal components (which gave us up to 75% of 

variance) found two groups of participants. One of the 

groups consisted only of three participants, which did 

not provide enough data for fitting a model to its 

corresponding dataset. In the case of the other group, a 
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stepwise logistic regression model that included the 

Delta and BetaDiff attributes turned out to be 

significant at 0.01 alpha level. However, its 

corresponding average AUC value was 0.48, which 

denotes a random classifier. Cross-validation of the 

LMT model on this data also gave a very poor average 

AUC value: 0.60.  

 

Only those participants that completed the whole 

experiment and had a good benchmark EEG baseline 

and data files (10 participants in total) were considered 

for the analysis of the cognitive states. This was not a 

limitation for the analysis, given that ground-truth 

values for cognitive classifiers were collected every 

second for about 2 hours for each participant during the 

experiment. Consequently, a large amount of training 

data was available from those 10 participants. 

Following an approach similar to that used for the 

affective states, the logistic regression models were 

cross-validated on the cognitive data sets from all 10 

participants combined. None of the logistic regression 

models showed a good or even fair generalization 

capability. However, exploratory 10-fold cross-

validations of the LMT models on all attributes showed 

good generalization capability.  

 

The LMT models obtained from all the training data on 

all the attributes consisted of highly complex decision 

trees. Too much complexity in machine learning 

models is typically associated to overfitting the training 

data, which might lead to poor classification 

performance on new data.   The complexity of the LMT 

models pointed to the need of finding subsets of 

relevant features for each cognitive state, in order to 

obtain simpler LMT models, while still keeping similar 

or better generalization capability (AUC values). The 

feature selection techniques provided by the Boruta R 

package (Kursa and Rudnicki, 2010) and the 

standardized coefficients from Linear Discriminant 

Analysis (LDA) (Rencher and Scott, 1990) were 

therefore employed. The mean and standard deviation 

of AUC values were obtained from 5 cross-validation 

runs on up to the first 10 variables selected by Boruta 

and LDA, separately. Based on these results from the 

feature selection techniques, LMT models were trained 

on several combinations of the most relevant variables 

and models achieving both good AUC values and low 

model complexity were selected. Table 3 provides the 

attributes that were factors in the LMT models for the 

cognitive states and the associated sensors. The average 

AUC values and their standard deviations were 

calculated through 10 runs of 10-fold cross-validations. 

The average AUC for Distraction was 0.81, with 0.010 

standard deviation. The average AUC for Engagement 

was 0.80, with 0.004 standard deviation. The average 

AUC for Workload was 0.82, with 0.008 standard 

deviation. 

 

Table 3. Factors in Cognitive State LMT Models 

 

Cognitive 

State Low-Cost Sensor Attribute 

Distraction 

Heart Rate Monitor Heart Rate 

Chair Seat Sensors 
All 4 Seat 

Sensors 

Engagement 

Heart Rate Monitor Heart Rate 

Chair Seat Sensors 
All 4 Seat 

Sensors 

Distance Sensor Motion 

Workload 

Distance Sensor Motion 

Chair Seat Sensors 
All 4 Seat 

Sensors 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

These experiments evaluated low-cost sensors for 

utilization in classifying cognitive and affective states, 

with results providing preliminary evidence of their 

utility in computer-based training environments. Good 

classification models based on data from low-cost 

sensors have been developed for the affective states of 

fear and boredom, and the three cognitive states 

considered in this study. 

 

A classifier for Anger could not be learned by the two 

models considered in this study. Several techniques 

suggested that our dataset for Anger did not provide 

enough differences between the presence and the 

absence of that affective state: (1) Hotelling T
2
 tests 

were not able to reject the equal means hypothesis; (2) 

removing outliers did not facilitate learning a good 

classifier; and (3) building a classifier from a subset of 

participants that shared similar demographics did not 

provide a good classification accuracy.  

 

Based on the models obtained, some of our hypotheses 

were partially or completely met. Regarding the 

affective states, the final logistic regression models 

obtained from LMT showed that heart rate and posture 

measures were factors in the model of Boredom, and 

posture sensors were factors in the Fear model. As 

expected, posture sensors were factors in the 

engagement model, but unexpectedly also contributed 

to the distraction and workload models, and heart rate 

was an unanticipated factor in the distraction and 

engagement models. However, low-cost EEG attributes 

factored into both affective state models, but none of 

the cognitive state models. Also, pupil diameter did not 

play a factor in any of the models. These results were 
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surprising, given the amount of literature support for 

using EEG and pupilometry metrics to measure 

cognitive states. This may lend evidence to the poor 

reliability of the low-cost sensors. The fact that the 

NeuroSky EEG had a single electrode and that the eye-

tracking sensor was noisy could be reasons for the lack 

of correlation. It is important to recall that about 15% of 

the pupil diameter data had to be removed and more 

noisy observations might have remained in the datasets. 

 

Given that the cutoff values to be used with the models 

depend not only on classification accuracy but also on 

the risks associated to each type of classification error 

(false positives and false negatives), conclusive cutoff 

values are not provided here. However, assuming the 

same risk for both types of classification error, the best 

cutoff values for each model seem to be around the 

following numbers: Boredom: 0.2; Fear: 0.2; 

Distraction: 0.2; Engagement: 0.3; Workload: 0.8.  

 

Future steps will include integrating the sensors and 

models into the Generalized Intelligent Framework for 

Tutors (GIFT; Sottilare, et al., 2011), a domain-agnostic 

ITS architecture. To complete integration, sensor-

specific interfaces will need to be developed to capture 

raw sensor data for processing and eventual 

classification of either a cognitive or affective state with 

a high degree of accuracy. Once candidate sensors have 

been integrated into the GIFT (Sottilare, et al., 2011) a 

series of assessments can begin. As noted in the 

lessons-learned section of this paper, there may be 

significant incompatibilities between sensors in a given 

sensor-state group, and the most accurate sensors may 

not be the most practical (e.g., a sensor with low 

usability for a given task).  So while this particular 

research has been instrumental in narrowing the field of 

sensors, significant research lies ahead to determine the 

smallest compatible set of sensors to predict each 

cognitive and affective state.  

 

Overall, this research provides evidence to support the 

theory that, with the help of low-cost sensors, ITSs can 

begin to rival the effectiveness of human tutors by 

diagnosing affective and cognitive states that contribute 

to a decrease in readiness to learn. Future work must 

also determine appropriate learning strategies to 

implement during periods of low readiness to learn and 

how to implement them. Furthermore, as sensor 

technology improves, sensors will be less invasive, will 

cost less, and will become more accurate. Subsequently, 

classifiers of more affective states can be developed, 

and those already developed will become more reliable.    
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