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ABSTRACT 

 

Military organizations worldwide are aiming to mature artificially-intelligent agents (e.g., computer-based 

intelligent tutoring systems (ITS) and virtual humans) to lead, support, and tailor training to the needs of individuals 

and small units.  Goals for ITS are: to match or exceed the learning effect of expert human tutors; reduce the cost of 

authoring, delivering, and managing training; lower entry skills needed to author ITS; and develop quality standards, 

accessibility, and flexibility for the learner.  This paper focuses on improving learning effect and explores how 

learning gains (e.g., knowledge and skill acquisition, and enhanced performance) might be realized in ITS for 

tutoring both individual and small unit tactical tasks.  To this end, an adaptive tutoring learning effect chain 

(ATLEC) for both individual and team learning is put forth.  Originally developed by Sottilare (2012), ATLEC for 

individual tutoring models the relationships of concepts for learner data (behavioral, physiological, historical, and 

trait), learner states (cognitive and affective), instructional strategy selection, and learning gains.  This model is a 

key methodology incorporated within the Generalized Intelligent Framework for Tutoring (GIFT).  This paper 

expands the ATLEC model to include small unit tutoring and an expanded array of learning gains (e.g., accelerated 

learning and enhanced retention).  A key to learning gains in human tutoring is the ability of the tutor to detect and 

interpret behavioral cues from the learner to aid them in assessing the learner’s cognitive (e.g., engagement) and 

affective (anxiety, frustration, boredom and confusion) states in order to optimally select their next instructional 

strategy.  ITS must use other means (e.g., behavioral and physiological sensors) to detect and interpret learner states 

which is an advantage over human tutors.  The product of this paper will be a model of learning effect that can be 

used to drive standards and the development of ITS for training and education. 
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INTRODUCTION 

 

Research is ongoing in the United States military, Pacific Rim and NATO countries to enhance the adaptive 

capabilities of computer-based intelligent tutoring systems (ITS) to support more tailored and effective learning 

experiences.  The U.S. Army Research Laboratory (ARL) is conducting adaptive tutoring research to enhance 

instructional strategy selection to support the Army Learning Model (ALM) goal of self-regulated, tailored 

instruction.  Other services are exploring the development of cognitive models to support tutoring and the U.S. 

Office of the Secretary of Defense Advanced Distributed Learning Initiative is conducting research leading to a 

Personalized Assistant for Learning (PAL).  Australia and New Zealand along with the U.S., Canada and United 

Kingdom are participating in a Joint and Coalition research agreement under the Technical Cooperation Program 

that includes goals to explore individual and small unit tutoring technologies.  Finally, NATO has established a 

Research Task Group to assess Intelligent Tutoring System (ITS) technologies and opportunities to support agent-

regulated learning.  So it appears that interest worldwide in enhancing the capabilities of ITS is high and in 

particular learner-centric approaches are preferred. 

 

Today’s ITS have an average learning effect equivalent to improvements of one letter grade (VanLehn, 2011), an 

increase of median scores from the 50
th

 percentile to the 79
th

 percentile or a learning effect of 0.8 sigma over 

traditional classroom training.  VanLehn’s meta-analysis examined tutoring methods that provided static tutoring 

(e.g., seated at a desk with a laptop computer) in well-defined domains (e.g., mathematics, physics).  If we can 

improve their adaptiveness, ITS have potential for higher learning gains in more kinetic and ill-defined military 

training contexts as well as static/well-defined domains currently observed in ITS today. 

 

Background 

 

A key to improving learning effect over traditional classroom training lies in modeling selected behaviors of expert 

human tutors.  To realize accelerated knowledge and skill acquisition, and enhanced performance and retention 

facilitated by ITS, Sottilare (2012) explored learning moderators (e.g., engagement, confusion, frustration, 

boredom), expert human tutoring processes (e.g., INSPIRE - Lepper, Drake, and O’Donnell-Johnson, 1997), 

conditions of learning (Gagne, 1985), and existing ITS information flow to develop the adaptive tutoring learning 

effect chain (ATLEC).  The initial version of ATLEC modeled the relationships between concepts for learner data 

(behavioral, physiological, historical, and trait), learner states (cognitive and affective), instructional strategy 

selection, and learning gains.  The enhanced ATLEC model described in this paper includes new concepts for 

instructional context and instructional tactic selection for both individual and team modeling and expanded 

descriptions of ATLEC elements and implementation not previously described.  ATLEC is a guiding methodology 

implemented within the Generalized Intelligent Framework for Tutoring (GIFT), an open-source tutoring 

architecture to support authoring, instructional management, and experimental analysis of effect.   

 

Since they are often confused, it is worth mentioning the differences between adaptive and adaptable systems.  In 

short, adaptable systems can be modified by users whereas adaptive systems automatically make changes in 

response to changing conditions.  Effective adaptive tutors automatically respond to changes within the learner’s 

states and the instructional environment (context) to support optimal learning. 

 

During human-regulated tutoring, the ability of the tutor to detect and interpret behavioral cues from the learner aids 

the tutor in assessing the learner’s cognitive (e.g., engagement) and affective (anxiety, frustration, boredom and 
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confusion) states which informs the tutor’s selection of the next instructional strategy (e.g., prompt the learner for 

additional information).  ITS must use other means (e.g., behavioral and physiological sensors) to detect and 

interpret learner states which may offer an advantage over human tutors who may not be aware of learner’s 

physiological states.  ATLEC, as originally developed, focused on individual learners.  The goal of this paper is to 

highlight an expanded ATLEC model which includes small unit tutoring and learning effect on an expanded array of 

learning gains (e.g., accelerated learning and enhanced retention).  This paper describes a comprehensive model of 

individual learning effect and introduces a model of team tutoring that can be used to drive standards and the 

development of ITS for training and educational applications. 

 

 

ADAPTIVE TUTORING LEARNING EFFECT CHAIN FOR INDIVIDUAL LEARNERS 

 

This section examines the elements, theory, influences, and effect of an enhanced ATLEC model for individual 

learners.  Since its debut in 2012, the adaptive tutoring learning effect chain (ATLEC) for individual learners has 

been enhanced (Figure 1) to include tactical actions (e.g., specific questions, prompts, feedback) which account for 

domain-dependent instructional context during tutoring sessions.  The premise of ATLEC is that improving any link 

in the chain improves subsequent links and thereby learning gains.  New additions to the ATLEC model for 

individual learners presented in this paper are shown in red and detailed descriptions of learner data, learner states, 

instructional strategies and tactics, and learning gains are provided below. 

 

 

 
 

Figure 1. Enhanced ATLEC for Individual Learners 

 

Learning gains are a function of instruction strategy selection accuracy.  Instructional strategy selection accuracy is a 

function of learner state classification accuracy, and learner state classification accuracy is a function of the 

availability of relevant learner data. 

 

Learner Data 

 

A description of key learner data concepts are discussed in this section.  Learner data is any information about the 

learner’s traits, measures, and historical data (e.g., previous training history, experience) that may be used to infer 

current or future learner states (e.g., competence, cognitive, affective, and performance).  Since data collection is 

often an obtrusive, expensive, and messy process, it is preferable to collect only the data that is relevant to desired 

learning outcomes (e.g., learning gains) and necessary for accurate state classification and instructional decisions.  

Methods that are passive (unobtrusive) are also preferred to keep from interfering with the learning process.  Less is 

more if classification of learner states can remain accurate while reducing the amount of data, types of sensors and 

other collection methods, and the number of interventions with the learner.   

 

Based on the literature, the following categories of learner data have been determined to indicate critical positive 

learner states such as motivation and engagement, and negative learner states such as long term confusion, 

frustration, and boredom.  With the exception of behaviors and physiological measures, most learner data categories 

are not directly observable and must be derived from other data or through learner queries.  Once captured, values, 

preferences, interests, and goals have significant persistence and should be considered for inclusion in long-term, 

persistent learner models as trait data. 
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Values - Value is a measure of worth and personal values include principles and standards developed through 

family, religion, culture, media and other sources that drive learner decision-making, beliefs, motivation, 

preferences, interests, and affect (personality, mood, and emotions) and thereby influence learning (knowledge and 

skill acquisition and retention).  Standard methods to quantify values for use in instructional decisions have not yet 

been established. 

 

Preferences - Derived from values, preferences are a measure of the degree to which a learner values one choice 

over another.  Examples of preferences include personality preferences (e.g., extraversion vs. introversion), learning 

style (e.g., active or reflective), or goal-orientation, the disposition toward developing/demonstrating ability when 

during achievement opportunities (VandeWalle, 1997).  Affect (e.g., emotions) may be used to predict preferences 

(North, Todorov, and Osherson, 2010) and we can therefore expect that preferences may be used to infer the 

affective state of the learner where positive affect is generally associated with experiences that align with learner 

preferences and negative affect may result from experiences that oppose learner preferences. 

 

Interests - Interests include activities of significant value to the learner.  Understanding the learner’s interests may 

aid in capturing and maintaining the learner’s motivation and engagement during challenging (e.g., complex or 

tedious) learning experiences. 

 

Goals - Defining the learner’s purposes and desired achievements, goals moderate motivation and thereby influence 

learning.  Goal orientations are significant in understanding and supporting learner goals.  Master goal orientation is 

focused on developing competency while performance approach goal orientation is focused on demonstrating 

competency (Midgley, et al, 2000).  A learner with a performance avoidance goal orientation is striving to avoid the 

demonstration of incompetence (Midgley, et al, 2000). 

 

Behaviors - Behaviors are directly observable and include the physical actions of the learner (conscious and 

unconscious) which consist of facial dynamics (e.g., frowns and smiles), gestures, posture, head position, and speech 

which may be used to infer cognitive or affective states (e.g., workload, engagement, frustration, confusion).  In 

general, behaviors have low persistence and are only useful at indicating recent states, but may also include actions 

(e.g., responses to questions) that indicate performance. 

 

Physiological Measures - Physiological measures are quantifiable learner data (e.g., heart rate, breathing rate, 

electrical impulses) captured by sensors (e.g., thermal cameras, electro-encephalographs) which may be used to infer 

cognitive (e.g., workload or engagement) or affective states (e.g., frustration or confusion) (Calvo & D'Mello, 2010).  

In general, physiological measures have low persistence and are only useful at indicating recent states. 

 

Within the GIFT sensor module, sensor data is acquired, processed, and/or filtered.  The resulting filtered data is 

transmitted to the learner module using standard messages (sensor data and sensor filter data messages) to join other 

available learner data (e.g., values, preferences, interests, goals) to inform the learner state classification process.  

Sensor module configuration may be altered to support the inclusion of customized filters and writers.  Filters 

convert data to a form suitable for communication to other GIFT modules.  Writers permit time stamped sensor data 

to be written to disk as CSV files for post-processing by researchers for the purpose of model development and 

refinement.  Currently sensor processing thresholds are static.  For optimal performance, future implementations will 

target dynamic calibration and perhaps individualized baselines using historical learner data. 

 

The sensor module uses a configurable plug-in architecture which supports a wide range of both hardware and 

software sensors.  Hardware sensors can include any behavioral/physiological sensor capable of capturing a signal 

and reporting the signal to the computer (via serial port, USB, or blue tooth).  Hardware sensors integrated to date 

include electro-encephalographs (EEGs), an electro-dermal activity sensor, a temperature and humidity sensor (via 

instrumented mouse), various bio-sensors for breathing and heart rate detection, the Inertial Labs Weapon 

Orientation Module (WOM; for adaptive marksmanship), and Microsoft Kinect for gesture, posture, head pose, and 

facial marker recognition.  Software sensors can also be employed and are typically used as surrogates for actual 

hardware sensors, which is useful for testing and validation, or for direct input of self- assessment by the learner.  A 

plug-in for the Institute for Creative Technologies Multi-Sense toolkit to interpret states from sensor data is also 

included in the most recent version of GIFT.  
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Learner States 

 

For individual learners, ATLEC includes six state categories which are important to guiding strategy and tactic 

selection by the tutor:   

 

Potential State - Also known as competence or expected success, potential is a long term measure which is derived 

from the learner’s previous successful experiences, training, and education in fields related to the current training 

task.  Success is commonly testable and measures the learner’s knowledge and skill acquisition, and retention.   

 

Performance State - Contrasted with potential state or expected success, performance state measures actual learner 

progress toward goals.  Performance is derived from learner behaviors including responses to tests/quizzes, 

decisions, and actions measured by speed and accuracy against potential, goals and standards to determine whether 

the learner is above, at, or below expectations for a given lesson, task or concept. 

 

Cognitive State - A measure of learner thinking capacity, problem-solving capability, and focus, the determination 

of cognitive states uses learner behaviors to indicate increases in complex and abstract mental capabilities (Anderson 

& Krathwohl, 2001).  Of significance in cognitive learning are attention, engagement and working memory.  A 

revision of Bloom’s taxonomy (Anderson & Krathwohl, 2001) tracks a series of behaviors from low cognitive state 

to high as follows: remembering, understanding, applying, analyzing, evaluation, and creating. 

 

Affective State - A measure of feeling with varying duration and relationship to identifiable sources (Gebhard, 2005), 

affective states include personality (long duration, multiple sources), mood (moderate duration, vague sources), and 

emotions (short duration, specific sources).  Learner behaviors indicate affective growth and the manner in which 

the learner handles emotions during learning experiences and in particular when presented with significant 

challenges.  Reported feelings, values, appreciation, enthusiasms, motivations, and attitudes indicate affective states 

including from low to high: receiving, responding, valuing, organizing, and characterizing (Krathwohl, Bloom and 

Masia, 1964). 

 

Motivational State - Broken out separately due to its importance in expert tutoring models (e.g., INSPIRE - Lepper, 

Drake & O’Donnell-Johnson, 1997), motivation is influenced by goals, preferences, and interests. 

 

Psychomotor State - Associated with physical tasks (e.g., marksmanship) which include physical movement, 

coordination, and the use of the motor-skills.  Development of motor-skills requires practice and is measured in 

terms of speed, precision, distance, procedures, or techniques during execution (Simpson, 1972).  Simpson’s 

hierarchy of psychomotor states ranges from low to high: perception - the ability to use sensory cues to guide motor 

activity; set or readiness to act; response - early stages of learning a complex skill through imitation and trial and 

error; mechanism - habitual learned responses; complex overt response - skillful performance of complex 

movements; adaptation - well-developed skills that are modified to support special requirements; and origination - 

the development of new movement patterns to fit unique situations. 

 

States are determined by the learner module using inputs from sensors, surveys, historical profiles, etc. (learner data) 

and the domain module (learner progress against expectations).  GIFT defines an enumerated list of learner state 

attributes, each of which has an enumerated list of possible values.  For example, the learner attribute of “potential” 

can take on the values of “unknown”, “novice”, “journeyman”, or “expert”.  At any point in time, learner state is 

represented by a set of learner state attributes and a short term, a long term, and a predicted value for each.   

 

To determine learner’s states, classification models rely on input from sensors, a persistent learner model (e.g., 

historical data from surveys, instruments and profiles), and the domain model (e.g., performance data).  To date, 

GIFT computes learner state from sensor data and scored surveys using classifiers to determine current states and 

predict future states.  Translators allow for a preprocessing step that can be used for unit conversion or normalization 

and the like.  Translated data are passed on to one or more learner state classifiers.  Classifiers are preconfigured for 

the input channel (e.g., specific sensor channel).  Each classifier processes assigned data to compute a single short 

term value (nominal or numerical).  Classified states tracked over time are used to identify general trends to predict 

future values.  The current approach in GIFT allows for the computation of divergent learner state attributes which 

must be deconflicted.  The implementation of a probabilistic schema for addressing learner states and strategy 

selection is desirable given the accuracy of many classification models today range from 60-80%. 
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The importance of the availability of learner data and the accuracy of learner state classification models cannot be 

understated.  Unreliable or unavailable learner data lowers state classification accuracy.  Lower state classification 

accuracy drastically affects the overall probability of selecting the most appropriate strategies to meet the needs of 

the learner.  For example, if the strategy selection classifier is individually 80% accurate given 100% accurate 

learner states and the tactics selection classifier is individually 80% accurate given 100% accurate strategy 

recommendations, then the best tactics classification that can be expected for the learning effect chain (serial learner 

state-strategy-tactics set of classifiers) is 51% if the learner state classifier is only 80% accurate.  This is a virtual 

coin flip and is unacceptable.  An ITS must classify learner state very accurately (> 90%) for the learning effect 

chain to realize significant learning gains.  Classifier accuracy is determined by the area under a receiver operating 

characteristic (ROC) curve (Figure 2) where the true positive rate (TPR) or sensitivity (see equation 1) for three 

classifiers are plotted against the false positive rate (FPR) or 1 minus the specificity (see equation 2).  Higher 

sensitivity is accompanied by a decrease in specificity. 

 

 
 

Figure 2: Example Receiver Operating Characteristic (ROC) curves for state classifiers 

 

FN)/(TP TPysensitivitTPR  

where TP = # true positive predictions of learner state 

 and FN = # false negative predictions of learner state 

(1) 

 

 

TN)FP/(FPFPR  

where FP = # false positive predictions of learner state  

and TN = # true negative predictions of learner state 

(2) 

 

 

Instructional Strategies and Tactics for Individual Learners 

 

This section describes how strategies, instructional context, and tactics interact as part of the learning effect chain.  

Within ATLEC, there are two categories of strategies: macro-adaptive and micro-adaptive.  Macro-adaptive 

instructional strategies are informed by the learner’s traits (values, preferences, interests, and goals) and the learner’s 

potential state.  Macro-adaptive strategies are generally implemented prior to the tutoring session to initialize the 

scenario.  Macro-adaptive strategies influence the selection of tutoring scenarios based on their level of complexity 

relative to the learner’s potential.  For example, a macro-adaptive strategy for a learner with low prior knowledge 

might be to limit the learner’s control of navigation in the learning environment.  Macro-adaptive strategies do not 

rely on instructional context (e.g., current performance) and are domain-independent.   
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Micro-adaptive instructional strategies are a real-time adaptation of the initial or planned scenario and are informed 

by a more comprehensive model of learner states and traits.  In particular, the learner’s performance state is critical 

in selecting micro-adaptive strategies.  For example, a micro-adaptive strategy during tutoring might be to assess the 

level of performance and provide additional navigational control as the learner demonstrates higher levels of 

performance.  Micro-adaptive strategies are also domain-independent.  This is important since pedagogical engines 

using domain-independent strategies may be reused across multiple training domains/tasks. 

 

Tactics selection is informed by strategy recommendations (macro or micro) and instructional context (Goldberg et 

al., 2012).  Tactics are domain-dependent.  An example of a tactic selection is to allow access to additional 

navigational controls within a specific course based on a micro-adaptive strategy recommendation to allow the 

learner additional control.  In the context of ATLEC, we assert that well timed and executed instructional tactics will 

in turn affect subsequent learner data used for inferring a state determination.  If an adaptive tactic is successful, the 

result can be seen in the data that ultimately triggered the learning effect cycle.  The goal is to use pedagogical 

strategies to improve learning gains (e.g., skill acquisition or performance) with increases being linked to changes in 

the learner’s raw physiological or behavioral data. 

 

The collection of performance metrics directly following the execution of a tactic is important because this 

information can be used to evaluate the effectiveness of a pedagogical decision for a particular learner.  In essence, 

GIFT can use data following implementation of a pedagogical intervention to further refine the strategy selections 

based on associated outcomes.  From this approach, methods can be applied to close the loop of the ATLEC model 

to evaluate the effectiveness of applied strategies and tactics on state determinations for a specific type of learner.  

This assessment can run in real-time, modifying strategy selection candidates by evaluating how specific strategies 

influence performance within that specific learning session.  If a strategy is found to have a neutral or negative effect 

on subsequent performance, GIFT can modify strategy selection conditions so that that particular strategy is not 

executed when the same learner model data is present.  From a different perspective, the evaluation can be applied in 

an offline capacity through data mining techniques that take into account all of a learner’s data from previous 

sessions to identify the optimal strategies that have been found to positively affect outcomes for a specific 

individual.  Analysis in an offline mode can also take into consideration between-subject methods to examine how 

particular strategies work across similar learner profiles.  As GIFT and other tutoring systems develop around the 

theorized benefits of personalized instruction, evaluating how individuals with common characteristics react to 

strategy selections and how those tactics influence subsequent outcomes will be important in quantifying the 

adaptiveness of ITSs.  Through the application of educational data mining practices, analytical methods can be used 

to explore the unique types of data present in learning systems (training or education) to better understand how 

learners progress in different settings (www.educationaldatamining.org). 

 

Adaptive Tutoring Techniques 

The Institute of Education Sciences (2007) identified seven instructional strategies which are supported by science 

and can be reliably applied to both human and computer-based teaching/tutoring: space learning over time; 

interleave worked example solutions with problem solving exercises; combine graphics with verbal descriptions; 

connect and integrate abstract and concrete representations of concepts; use quizzing to promote learning; help 

students allocate study time effectively; and ask deep explanatory questions.   

 

Durlach and Ray (2011) identified several promising adaptive techniques that generally align with the Institute of 

Education Sciences strategies to support effective learning.  These include: error-sensitive feedback, mastery 

learning, adaptive spacing and repetition for drill-and-practice items, metacognitive prompting, and fading worked 

examples.  Each is described below in relationship to how each fits within ATLEC. 

 

 Error Sensitive Feedback - an intervention triggered when the learner commits errors that are either 

individually or cumulatively significantly divergent from the ideal as defined in the expert model of the ITS 

 Mastery Learning - a strategy where the ITS ensures the learner masters (can recall and apply) prerequisite 

lessons or concepts before allowing the learner to move on to the next lesson/concept 

 Adaptive Spacing and Repetition - a strategy where the learner more easily recalls knowledge items/objects 

when the knowledge is exposed to the learner repeatedly over a long time span rather than repeatedly 

studied during a short span of time (Dempster, 1988) 

 Metacognitive Prompting - a strategy where the ITS encourages the learner to self-reflect and evaluate, 

self-explain, and self-correct rather than provide the answer directly 

http://www.educationaldatamining.org/
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 Fading Worked Examples - “a step-by-step demonstration of how to perform a task or how to solve a 

problem." (Clark, Nguyen, and Sweller, 2006, p. 190) from which parts have been deliberately removed or 

faded (Atkinson, Renkl, and Merrill, 2003) 

 

Implementation of Domain-Independent Macro-Adaptive Strategies within GIFT 

This section describes how the pedagogical module processes learner traits (value, preferences, interests and goals) 

which are used to support selection of macro-adaptive strategies (pre-training strategies) and provides a description 

of Merrill’s Component Display Theory (rules, examples, recall, and practice) as implemented in GIFT. 

 

Learner state messages sent by the learner module are used by the GIFT pedagogical module to determine macro-

adaptive strategies (e.g., the challenge level of the course object) in a domain-independent fashion.  The Engine for 

Macro-Adaptive Pedagogy, also known as eMAP, dynamically manages flow through the course material based on 

the Component Display Theory (CDT - Merrill, Reiser, Ranney, and Trafton, 1992).  Thus, GIFT course authors 

now have the option of inserting one or more CDT branching points as a top-level element in a GIFT course.  All 

course elements in GIFT are classified as one of the CDT quadrants.  In the rule quadrant, the tutor tells the learner 

what they need to know (facts, rules and principles).  In the example quadrant, the tutor shows the learner how to do 

necessary tasks.  In the recall quadrant, the tutor asks the learner to recall information previously presented.  Finally, 

in the practice quadrant, the tutor prompts the learner to apply their knowledge. 

 

Each CDT branching point assumes the existence of independently authored meta-data tagged content for use in 

eMAP.  While a linear course flow has pre-scripted steps, CDT guides strategy selection by using the current CDT 

quadrant (rule, example, recall or practice) along with the current learner performance, motivation, and other learner 

states.  To determine the next step, the Pedagogical module provides the learner states and performance (e.g., at 

expectation, below expectation, or above expectation) to eMap.  The eMap then uses this data for its CDT query and 

returns a set of metadata attributes describing the most desirable content package for the next iteration of content 

presentation.  Metadata attributes are communicated to the Domain Module in the form of a branch request.  Upon 

receipt of the branch request, the domain module consults the metadata files for the currently executing course and 

compares metadata of the available content packages (lessons) with the data in the branch request.  Finally, the 

lesson material with the best matching metadata attributes is selected for presentation to the learner.  

 

Implementation of Domain-Independent Micro-Adaptive Strategies within GIFT 

This section describes how the pedagogical module processes learner state attributes (engagement, motivation) to 

support the selection of micro-adaptive strategies (real-time, in-situ training strategies).  Rules for applying micro-

adaptive strategies are defined in a lesson specific Domain Knowledge File (DKF) which is authored in advance by 

an instructional designer, and read at run time by the Domain Module which then shares the necessary micro-

adaptive strategy configuration information with the Pedagogical module.  The rules are mappings from transitions 

in learner state attribute values (e.g. “engagement=LOW” to “engagement=HIGH”) to one or more domain 

independent micro adaptive instructional strategies.  Multiple attribute-values can also be combined using the logical 

AND operator to form complex transition definitions.  Logical OR and logical NOT operators are not currently 

supported, but will be supported in future versions of GIFT. 

 

The Pedagogical Module detects the learner state attribute transitions by comparing incoming learner state with 

previously received learner state.  When state changes (transitions) are detected, the micro-adaptive strategy rule 

base is checked for a match.  If a match is found, one of the matching micro-adaptive strategies is selected and sent 

to the domain module in the form of a pedagogical request.  Currently, in cases where multiple strategies have been 

defined for a transition, only the first one listed is used.  However, by allowing for multiple strategies to be listed, 

we leave open the possibility for a more sophisticated selection methodology to be employed in future versions of 

GIFT.  If a match is not found the transition is ignored. 

 

Implementation of Domain-Dependent Tactics within GIFT 

This section describes how domain-dependent tactics are selected based on domain-independent macro and micro-

adaptive strategy recommendations and instructional context (who, what, when, where, how) within training 

courses.  Methods of tactics selection (rule-based, decision trees, machine learning algorithms, and Markov Decision 

Processes) are also discussed. 
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The Domain module receives domain independent macro and micro adaptive strategy requests from the Pedagogical 

module while the user is in a course.  Those requests are carried out by the Domain module using domain-dependent 

implementations.  Currently, micro-adaptive strategy implementations are authored in a DKF which is used during a 

lesson (e.g. training application scenario).  Upon receipt of a request, the Domain module locates the appropriate 

strategy handler, either based on the authored DKF or using the default logic, and then provides that request to the 

handler.  Sometimes, a request will contain more than one strategy type at which point the current logic is to select 

the first one in the list.  In the future, more robust tactics for strategy selection will be used such as machine learning 

algorithms and Markov Decision processes.  GIFT developers can choose to either create new strategy handlers or 

use one of the strategy handlers already included.  Strategy handlers range from very simple to very complex 

depending on the type of domain dependent strategy being implemented.  Thus a single handler may have multiple 

courses of action available to it.  Which course of action is taken can vary depending on the context.  For example 

repeated requests for feedback on a concept can result in variations in the feedback presented to the user (e.g., first 

iteration of feedback may be a gentle admonition, whereas the third feedback could be a stern warning).  The current 

approach for this type of strategy escalation is a rule based system.  Future implementations of handlers also have 

the opportunity of being improved with the use of more complex decision algorithms.  Furthermore, the system 

lacks request conflict resolution, where as if one or more strategy requests are received in a short amount of time, 

the applied domain dependent implementations could be incoherent or misconstrued.  For example, during the 

handling of presenting feedback for one request, another request arrives that is contradictory.  Of course this is just 

one simple example among many request permutations that could happen when such an adaptive system is used. 

 

Learning Gains 

 

This section describes desired learning gains and how each might be influenced by earlier processes in the learning 

effect chain.  Effect size is a measure for quantifying the difference between multiple (two or more) datasets (e.g., 

groups, methods, individuals measured over time).  Learning effect measures the difference in instructional methods 

(strategies or tactics) on learning gains (knowledge or skill acceleration, performance, or retention).  Learning gains 

include: 

 

Accelerated learning - Learning is the acquisition of knowledge and the development of skills.  Accelerated learning 

results from adaptive instructional methods and is a decrease in the amount of time needed to acquire a unit of 

knowledge or develop a skill compared to traditional (currently implemented) instructional methods.  Any method 

that enhances the tutor’s capability to optimally select instructional strategies and tactics, and keeps the learner 

focused on germane tasks will likely result in accelerated learning. 

 

Enhanced performance - Whereas learning is the acquisition of knowledge and skills, performance is the application 

of knowledge and skills.  If competence is a measure of potential skill, performance is a test of skill.  Rote 

performance of a task is not a true measure of skill, but allowing the learner to be tested in a variety of applications 

of acquired knowledge and skill can demonstrate true ability to perform.  Providing a variety of performance tests 

that sufficiently covers knowledge of the domain is costly unless much of the process of authoring ITS can be 

automated. 

 

Enhanced retention - Retention is the ability to maintain a level of knowledge and skill to remain proficient in a 

particular task.  The idea that desirable difficulties (Bereiter & Scardamalia,1985; Bjork, 1988) can gel learning and 

support longer term retention is a principle adopted within GIFT’s pedagogical structure in the form of 

“indirectness” as defined in the INSPIRE model of tutoring (Lepper, Drake, and O’Donnell-Johnson, 1997) 

 

 

ADAPTIVE TUTORING LEARNING EFFECT CHAIN FOR TEAMS 

 

Sottilare (2010) proposed a distributed team training model that incorporated architectural concepts for 

communications between distributed team models for trust and performance based on locally derived individual 

learner states (e.g., affect and competence).  Sottilare, Holden, Brawner and Goldberg (2011) expanded this concept 

to include team models for performance, competency, cognitive state, affective state, trust, and communications.  

Fletcher & Sottilare (2013) built upon these conceptual team models and Sottilare’s (2012) original ATLEC model 

to examine how a learning effect chain might be implemented for teams.  This section introduces an enhanced 

ATLEC model for teams (Figure 3) that includes new concepts shown in red. 
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Figure 3. Enhanced ATLEC Model for Teams 

As in individual learner models, learner states are informed by learner data.  Learner states are then used to inform 

team states.  Research is ongoing to identify the relationship of individual behaviors, knowledge, skills, roles and 

responsibilities, and interactions to support team level state models of potential (competency), performance, shared 

cognition, shared affect, trust, and communication (Sottilare, Holden, Brawner & Goldberg, 2011).  A 

comprehensive literature review is forming the basis for the structure and initial development of these state models 

which will be evaluated using GIFT as a testbed.  Team states are used to inform the selection of team strategies that 

could include individual or group feedback recommendations, scaffolding (support strategies), or changes to the 

training scenario challenge level. 

 

Team strategy recommendations along with contextual data (e.g., who, what, where, and when) from the training 

environment (e.g., simulation or game) are used to inform instructional tactic selection.  For each defined strategy, a 

complementary tactic is authored for the purpose of being implemented when that pedagogical manipulation is 

called for by GIFT.  For example, if the strategy recommendation is to increase the challenge level of the scenario, 

the tactic selection for a building clearing scenario might be to increase the number of opposing forces in real-time.  

The focus of strategy and tactics selection in team training models is to develop and maintain a level of flow where 

the learners are neither bored nor overwhelmed, but sufficiently challenged by the task. 

 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 

ATLEC offers a structured methodology for understanding interactions between individual learners and tutoring 

systems.  The ATLEC model considers essential links between the learner and the ITS (as noted in the literature) 

leading to potential learning gains.  ATLEC is largely domain-independent and offers instructional designer cues to 

drive the development of standard processes to drive learning gains within ITS.  The ATLEC model may also be 

used as a testbed methodology to support learning effect evaluations and ITS technology comparison studies.  GIFT, 

an open-source architecture for tutoring, has adopted ATLEC as its guiding development model for adaptive 

tutoring, but there remains much work to do.  The following recommendations are provided for consideration as 

future adaptive tutoring research areas: 

 

Unobtrusive methods to acquire learner data - Develop standoff sensing methods that do not interfere or detract 

from the learning process, but support sufficient granularity of learner data for state classification.  Commercial 

hardware-based sensors (e.g., Microsoft Kinect) and software-based sensors (e.g., learner voice classifiers) are 

candidates for evaluation.   

 

Methods to improve the classification accuracy of learner states - Create and evaluate methods to enhance the 

classification accuracy of real-time models based on learner data.  Examine the efficacy of offline models for 

individuals and teams and evaluate their potential for generalization. 

 

Methods to improve the selection of appropriate and effective instructional strategies and tactics - Enhance the 

current deterministic, decision-tree implementations (e.g., Merrill’s Component Display Theory in GIFT) with 

probabilistic models using rewards as a basis for selection (e.g., Markov Decision Processes). 
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Create and evaluate team state models - While ATLEC for teams has begun to define essential interactions between 

groups of learners and tutoring systems, additional research is needed to develop structure for initial team state 

models and empirically evaluate/validate these models. 

 

Representation and computation of learner state, and methods to optimize the selection of instructional strategies 

and tactics are areas of ongoing research by the GIFT development team and others.  In addition to learner modeling 

and instructional strategies, GIFT design is informed by empirical research, the literature, and a series of advisory 

boards on subjects that include authoring and expert modeling, domain modeling, learning effect, and team tutoring. 
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