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Abstract 

Understanding and monitoring the changes in the cognitive workload of trainees can offer critical quantitative 

information about their progression and performance. Unfortunately, accurate real-time objective quantification of 

cognitive workload has, thus far, proven elusive and is often neglected in favor of subjective self-reports. This paper 

reports a novel technique for the classification of cognitive workload using methods from the domain of 

deterministically nonlinear dynamical systems. The reported technique utilizes physiological input data, specifically 

the subject’s electrocardiographic (ECG) signal, captured during task performance. The novelty of the proposed 

algorithm stems from its ability to perform real-time, as well as after-action review, classification of cognitive 

workload using the full ECG signal. As will be presented, the use of the full ECG signal offers the ability to 

determine even small changes in the subject’s workload and proves itself far more accurate than the standard 

classification methodology using heart rate variability (HRV). Further, the proposed methodology offers the ability 

to create accurate, real-time workload metrics over diverse populations and tasks; thus, reducing the need for 

individualized model creation. The proposed algorithm is validated through a case study in which participants were 

asked to perform varying levels of the Multi-Attribute Task Battery (MATB) developed by NASA. The case study 

punctuates the high accuracy of the proposed algorithm and its ability to classify cognitive workload levels in real-

time and after-action review.  
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INTRODUCTION 

 

Understanding and monitoring the changes in the cognitive workload of trainees can offer critical quantitative 

information about their progression and performance. Unfortunately, accurate real-time objective quantification of 

cognitive workload has, thus far, proven elusive and is often neglected in favor of subjective self-reports. However, 

the determination of workload in participants, while performing specific tasks, has been a topic of much interest 

over the past few decades. This interest has been heightened by many recent application needs, including 

determining the fidelity of simulators (Davidovitch, Parush, & Shtub, 2009; Schnell, Hamel, Postnikov, & McClean, 

2011; Schnell, Postnikov, & Hamel, 2011), the types of automobile user interfaces that should be incorporated to 

reduce workload (Pala et al., 2011; Wu, Rakheja, & Boileau, 1998), and the selection of suitable operators for 

unmanned aerial systems (UAS) (McKinley, MacIntyre, & Funke, 2011). 

 

While subjective self-report measures of workload have been popular, a goal of objective measurement has been 

long sought in the domain. Objective measurement of workload involves the collection of various types of data from 

sensors on, or about, the subject and their environment. This general classification may be broken down into three 

sub-classes, namely process input based measures, performance based measures, and physiological based measures 

(Wierwille & Eggemeier, 1993). Process input based measures include metrics that are directly controlled by the 

subject such as steering wheel position in an automobile or flight control position in an airplane. Performance based 

measures include such metrics as lateral lane position of an automobile on the highway or flight technical errors 

based on the aircraft state (Eggemeier & Wilson, 1991). Physiological based measures include signals from sources 

such as electroencephalograph (EEG), ECG, eye tracking, respiration, and galvanic skin response (Schnell, Keller, 

& Poolman, 2008).  

 

Input and performance based measures of workload are highly quantitative and have produced some satisfactory 

workload classification results in the past (Eggemeier & Wilson, 1991. For example, such measures can characterize 

a participant’s effort expended versus the performance achieved. However, these measures do not account for 

cognitive workload expenditures or remaining cognitive capacity and are most often specific to the task that is being 

performed. Therefore, these measures are not extensible across different crew station platforms or task domains and 

new measures must be generated for each crew station or task. Additionally, performance based measures are at best 

surrogates for more direct measures of workload, such as physiological deviations from a baseline.  

 

This paper reports a novel technique for the classification of cognitive workload using methods from the domain of 

deterministically nonlinear dynamical systems. The reported technique utilizes physiological input data, specifically 

the subject’s electrocardiographic (ECG) signal, captured during task performance. Physiological measurements of 

workload have been attempted using EEG signals (Berka et al., 2004; Schnell, Becklinger, & Ellis, 2010; Schnell, 

Macuda, Poolman, & Keller, 2006) as inputs to the detection algorithms. While some of these methods have 

experienced satisfactory response, the obtrusiveness of the EEG sensors makes them less than optimal for real-time 

collection, especially during experiments of long duration. Additionally, EEG signals do not lend themselves well to 

population-based models but rather generally require personalized workload prediction models. 

 

The use of EEG signals for classification of workload is well represented in the literature, two examples of which 

are presented here. Wilson and Russell (Wilson & Russell, 2003) attempted to classify workload using a 
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combination of sensors, including six channels of brain electrical activity, eye, heart, and respiration measures. They 

were able to achieve classification accuracies around 82%; however, their tasks consisted of only two variants of the 

same test. Additionally, the high number of sensors used to collect the data is sub-optimal for many scenarios 

including in flight measurements. Matthews et al (2008) used a wireless EEG sensor helmet to classify workload in 

real-time. They achieve classification accuracies on an average of 80.5%. 

 

Several accounts of the use of ECG in relation to workload are found in the literature. Dussault, Jouanin, Ohillippe, 

& Guezennec (2005) studied the changes to ECG during operation of a simulator to determine if the signals 

reflected mental workload. They were able to detect slight differences between novice and experts. Kamada, 

Miyake, Kumashiro, Monou & Inoue (1992) reported a study of the power spectrum of Heart Rate Variability 

(HRV) in subjects under mental workload. In that work, the authors were able to produce a classification of the 

subjects into two types using the ECG signal and HRV analysis. 

 

Largely absent from the literature is an account of accurate classification of workload based solely on the ECG 

signal. This paper attempts to fill that void through the presentation of a classification algorithm which utilizes the 

chaotic nature of the ECG signal to accurately classify workload. A case study in which five subjects performed four 

levels of a given task each day for three days is presented, largely as proof of concept for the proposed classification 

methodology. In that study, the first day’s data is used to generate the model and the remaining two days are 

classified against that model. Reported is a detailed description of the algorithm as well as the results of the case 

study. 

CHAOTIC PHYSIOLOGY CLASSIFICATION 

 

The research community has known for a number of years that human physiological signals in general, and ECG 

specifically, are deterministically nonlinear (also known as chaotic) systems (Govindan, Narayanan, & Gopinathan, 

1998; Kozma & Freeman, 2002; Owis, Abou-Zied, Youssef, & Kadah, 2002). Chaotic systems are often not well 

represented via the normal scalar time series. Instead, the dynamics of the system are obfuscated in the single 

dimension whereas they become apparent when a transform of the data is made. This transform moves the data from 

the single dimensional scalar space into a multi-dimensional embedded phase space (Richter & Schreiber, 1998).  

 

In the early 1980s Takens proposed a methodology for transforming scalar signals into multidimensional phase 

space for the purpose of observing the dynamics (strange attractor) of the system (Takens, 1980). Takens stated that 

the scalar signal could be transformed through an embedding process which mapped the time series data into a 

vector space through a time delay parameter. Given a time series data set   {          }, Takens suggested a 

transform through the use of a delay parameter τ such that the set X is transformed into a set     { ⃗⃗    ⃗⃗      ⃗⃗  } 

where   ⃗⃗  ⃗   {                               } and d is the dimension of the phase space. Two parameters must be 

calculated to use Takens delay embedding – the time delay and the embedding dimension. The calculation of the 

time delay parameter is often performed using the Mutual Information method discussed at length in (Kim, Eykholt, 

& Salas, 1999) and (Fraser & Swinney, 1986) while the embedding dimension is most often calculated using the 

False Nearest Neighbors method (Kennel, Brown, & Abarbanel, 1992). 

 

The transformation to phase space using the mutual information and false nearest neighbor techniques can be 

illustrated nicely with an ECG signal. The panel on the left of Figure 1 depicts a portion of an ECG signal from one 

of the subjects of the case study discussed later in this paper. After calculating the parameters as described above, 

the phase space can be generated with time delay τ = 8 and embedding dimension  d = 3. The panel on the right of 

Figure 1 shows the phase space that is generated from the signal using the methods described above. The image of 

the phase space does not necessarily elicit new knowledge about the ECG signal in and of itself. However, as will be 

seen, the phase space offers the possibilities for greater classification accuracies than have been reported in the 

literature. 

 

Chaotic systems exhibit sensitive dependence upon initial conditions. Thus, nearby orbits of the attractor, about the 

phase space, diverge exponentially (Lai & Winslow, 1994). This results in an amplification of uncertainties within 

the system. However, the chaotic system will exhibit an ergodicity about the phase space. All of this conspires to 

create an impossible environment for accurate long term prediction, and, unfortunately, a difficult environment for 
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accurate classification. To facilitate an environment conducive to accurate classification the chaotic phase space is 

course grained into discrete states rather than maintaining the exact trajectories. 

 
Figure 1. Example of a Scalar ECG (left) Transformed into Embedding Phase Space (right). 

 

Flowing from symbolic dynamics, it is possible that a dynamical system       can have many course grained 

representations, each obtained by partitioning the phase space Ψ into a finite number of sets (Crutchfield & Packard, 

1982). Let Ψ be the time-delay embedding phase space of a chaotic system, S, with time-delay τ and embedding 

dimension d. Due to the chaotic nature of S there exist an inherent ergodicity of S over Ψ. As such, orbits are formed 

in a quasi-periodic fashion in S, which are used in the proposed classification. Let E be an n-dimensional hypercube 

which contains Ψ, as well as other points not necessarily in the system S. Thus, E forms the bounding space of Ψ. 

Then, we can impose on E a, possibly fractal, partition P and map the points                (where ij is the j
th

 cell of 

the i
th

 dimension of the hypercube) to the centroid of the cell               which contains the point            . The n-

dimensional hypercube E contains the course grained representation of the chaotic system. Figure 2 illustrates this 

course grained representation for the phase space given in Figure 1 using a partition size of N = 30, or 30 by 30 

cells. 

 

 
Figure 2. Course grained representation of the phase space given in Figure 1. Partition size is 30 by 30. 
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The partition, P, imposed on the bounding space is useful for the creation of a sparse matrix of transitions of the 

orbits of the system in phase space. From P, we can form a 2 dimensional matrix M of size ∏   
 
      ∏   

 
    , 

where ik is the size of the  k
th

 dimension of the hypercube E. We can then assign to each cell,         the 

probability,    , of transitioning from            to             with consideration given to the exponential divergence or 

convergence of the system at the transition. The probability value,    , assigned to cell,        is simply the 

number of times in E the transition from            
to            

 is encountered, normalized by the total number of 

single step transitions in E with respect to the local divergence or convergence of the system at the transition point. 

We refer to this matrix as the Ergodic Transition Matrix (ETM) of E. 

 

The proposed methodology uses ETMs as the data base for classification. Given a set of time series data, acquired 

for various class labels, models are built through the transformation of that data into ETMs. One ETM is created for 

each time series. The model ETMs are then grouped by class label forming the training set of the classification 

algorithm. The test set of the algorithm is formed in similar fashion. Once the training and test sets are formed the 

classification algorithm uses the Nearest Neighbor methodology for determining the class label of each ETM in the 

test set. 

 

The Nearest Neighbor methodology is a standard machine learning technique as discussed by Witten and Frank 

(2005). The Nearest Neighbor methodology assigns a data set the class label of the class whose members most 

closely match the data set being classified. In the case of the proposed chaotic classification methodology, the class 

label is assigned based upon the Euclidean distance between the members of the training set and the ETM of the 

time series being classified. Given a set of ETMs grouped by class label     the proposed algorithm assigns to a 

time series I the class label of the group of ETMs which meets the criteria in Eq. (1).  

 

             (∑ √(   
     

 )
  

     )    (1) 

  

An additional benefit of the proposed classification methodology is that it may be used in a real time format through 

the use of moving windows of data. Given a real time signal which is assumed to be deterministically chaotic, and a 

model of ETMs built as described above, a buffer of data, representing a finite number of orbits of the system in 

phase space, is collected. Once the buffer has sufficient content, an ETM can be created for the buffered data and 

compared to the ETM models as described above. The class label of that comparison can be logged and the first data 

point, or even first orbit, of the buffer can be removed and new data added. This form of classification continues as 

the buffer is replenished, thereby offering real-time classification of the time series. 

CASE STUDY 

 

The case study presented in this paper involved five subjects performing four levels of a task each day for three 

days. The tasks performed consisted of four different levels of the Multi-Attribute Task Battery (MATB), a well-

proven workload generator in the field of operator performance for 20 years with broad applicability (Amegard & 

Comstod, 1994). These levels are described below during the performance of each MATB task of a known workload 

level, the ECG of the participant was recorded for use by the classification algorithms. 

 

Four levels of MATB formed the tasks performed in this case study. These levels represented four different levels of 

difficulty. Two levels, MATB A and MATB C, were kept similar to illustrate the accuracy of the methodology. 

However, the level of difficulty was randomized to reduce adaptation due to learning and so that the subjects would 

not inadvertently anticipate the difficulty of future levels based upon the current level. Each subject experienced the 

same sequence of levels each day they performed the tasks, although these levels were randomized between 

subjects. Table 1 describes the four levels of MATB used in the case study. 

 

The subject’s perceived workload for each task was recorded using the Bedford rating scale. The Bedford workload 

scale allows the subject to assign a numeric value between 1 (low) and 10 (high) to the level of workload they 

perceived during a task (Roscoe & Ellis, 1990) using a rubric based decision tree. The Bedford rating tool was 

developed to support evaluation of aircrew workload during task performance. However, it has been shown to be 
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effective in non-aviation tasks as well (Sukthankar, 1997). The Bedford ratings were used for the class labels in the 

presented case study. 

Table 1. MATB parameters used in the case study. 

Task Name System Monitoring 

Settings (Seconds 

between Failures) 

Resource Monitoring 

Settings (Seconds 

between Failures) 

Tracking Settings 

(Joystick 

Response/Jitter) 

MATB A 10 10 Low/Low 

MATB B 4 6 High/High 

MATB C 15 15 Low/Low 

MATB D 20 20 Low/High 

 

 

In the presented case study, subjects were asked to record their perceived Bedford ratings. A subjective workload 

assessment panel in the Cognitive Assessment Tool Set (CATS) (Schnell, Hamel, et al., 2011; Schnell, Postnikov, et 

al., 2011; Schnell, Melzer, & Robbins, 2009) was used to record the subject’s subjective ratings as a ground truth for 

later use in building a classification model. This software recorded the perceived ratings for each task and stored 

them in a log file for later use. 

 

Apparatus 

 

The apparatus used in the presented case study consisted of a Portable Computer with monitor, keyboard, mouse, 

joystick, and a device for capturing the ECG signal. During performance of the MATB tasks, the subjects were 

restricted to the use of the keyboard and joystick only. Figure 3 depicts the apparatus used.  

 

 
Figure 3. Apparatus used for the presented case study. 

The ECG signal was captured from the subjects via a three lead ECG monitor. The monitor was attached to the 

subject via electrode patches placed in the standard three lead configuration. This sensor then attached to a 

QuickAmp© amplifier which relayed the amplified signal to the pc and was recorded using the Cognitive 

Assessment Toolkit System (CATS) (Schnell et al., 2009) developed at the Operator Performance Laboratory of the 

University of Iowa. This system records physiological, and environmental, signals to a MySQL database for later 
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analysis. The data used in this case study was stored in such a manner. Since the ECG signal forms the input to the 

proposed classification methodology, proper collection and storage of that data was critical to the experiment. 

 

Case Study Results 

 

The case study consisted of five subjects performing a series of four MATB tasks for each of the three consecutive 

days for which the study was conducted. The subjects recorded their Bedford ratings using the software described 

above. ECG signals were captured from each subject while performing each task. 

 

The ECG signals and the self-reported subjective workload scores from Day 1 were used to form the models for the 

classification methodology. These signals were grouped by task, thereby creating five ETMs (one for each subject) 

for each task level. These ETMs were assigned a class label of task name. The ECG signals from Days 2 and 3 were 

then classified using the proposed methodology. Analysis was performed to determine the accuracy of the 

classification methodology based upon a binary correct/incorrect scoring. 

 

The daily self-reported subjective workload ratings were averaged for each task. However, to illustrate the specific 

ratings recorded, Table 2 shows the subjects’ perceived workload recorded as Bedford ratings for Day 1. Figure 4 

depicts the average Bedford ratings reported for the three days of the study. In Figure 4 the tasks are ordered by 

difficulty rather than name. As can be seen, in general the subject’s perceived MATB C and MATB A tasks as fairly 

low difficulty, MATB D as moderate difficulty, and MATB B as a fairly difficult task.  

 

Table 2. Bedford Ratings for the MATB tasks performed on Day 1. 

Subject MATB A MATB B MATB C MATB D 

Subject 1 2 4 2 4 

Subject 2 5 7 4 6 

Subject 3 5 8 5 6 

Subject 4 3 6 2 5 

Subject 5 4 8 5 6 

 

 
Figure 4. Reported Bedford ratings for the three days of the study. For each day of the study, the five subjects 

performed four differing levels of MATB. Therefore, each bar represents the reported workload of the five 

subjects for that task on the given day. 

The classification of Day 2 and 3 tasks were performed using Day 1 tasks as the models as described above. The 

proposed classification methodology performed very well using the ECG signal as the sole input. Figure 5 plots the 

results of classifying the workload of the subjects via their ECG for Day 2 using the Day 1 models. Each task is 

labeled with the associated average Bedford rating label from the Day 1 data. Thus, MATB A had a label of 3.8, 

MATB B was labeled 6.6, MATB C was labeled 3.6, and MATB D was labeled 5.4. This classification resulted in 

95% accuracy, using the binary correct/incorrect measurement for the classes. However, that metric underestimates 

the performance of the classifier which achieved a Pearson Correlation of 0.999. It should be noted that the one 
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misclassification of the Day 2 data determined that a MATB C task had a MATB A workload rating. The average 

reported workload of those tasks was MATB C = 3.8 and MATB A = 3.6, therefore, even that misclassification is 

relatively minor. 

 

 
Figure 5. Results of classification of day 2 tasks using day 1 models 

 
Figure 6. Results of classification of day 3 tasks using day 1 models 

Figure 6  plots the results of classifying the subject’s workload while performing the tasks on day 3 using the models 

from day 1. This classification resulted in 90% accuracy, using the binary correct/incorrect measurement for the 

classes. However, that metric underestimates the performance of the classifier which achieved a Pearson Correlation 

of 0.97. It should be noted that the two misclassifications of the Day 3 data determined that a MATB C task had a 

workload rating of an MATB A task and that a MATB B task had a workload rating of an MATB D task. The 

average reported workload of the tasks in the first misclassification were MATB C = 3.8 and MATB A = 3.6, 

therefore, that misclassification is relatively minor. The second misclassification determined a MATB D task to have 

a workload rating of an MATB B task. This is also a minor misclassification given that MATB D’s average 

workload rating for day 1 was 5.4 while MATB B’s average workload rating was 6.6, which is, again, a relatively 

minor misclassification in terms of rating scale magnitude. 
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In addition to the after action review classification, the authors used the models created from the data collected on 

Day 1 to perform real-time classification of workload for Day 2. In the real-time paradigm, the subject’s data is 

collected into a buffer of a given length. The buffer is classified using the ETM methodology and its workload is 

reported. This use of the Chaotic Physiology Classification technique produces a real-time workload metric that 

may, or may not, change throughout the performance of the task. Two examples of the results of real-time analysis 

are given in Figure 7 below where the left panel illustrates the results of Subject 2 performing the MATB D task, 

and the right panel represents the results of Subject 4 performing the MATB A task. In Figure 7 the heavy dark line 

represents the classified workload while the lighter solid background represents the average reported workload. 

 

  
Figure 7. Examples of Real-Time Workload Classification 

 

As can be seen from Figure 7, the proposed methodology is capable of accurately classifying workload in real-time. 

In fact, the real-time classification of all subjects for days 2 and 3 produced Pearson coefficients identical to those 

from the discrete after action reviews. The thoughtful reader may inquire whether or not the ETMs are simply 

detecting a statistical presence within the normal time series signal. The authors were also concerned about this and 

therefore performed an ANOVA on the time series data. This analysis showed that a statistical correlation between 

the original time series signal and the workload did not exist. Equipped with that knowledge, the accuracy of the 

proposed classification methodology becomes even more remarkable. 

CONCLUSIONS 

 

This paper presents a novel methodology for classifying human workload using ECG signals. The proposed 

methodology considers the signals to be from a deterministically nonlinear, chaotic, source. Therefore, 

transformation of the time series signals into an embedding phase space was presented to better access the dynamics 

of the system. Presentation was given to partitioning, or course graining, the phase space for the purpose of 

developing a matrix of transitions. The matrix of transitions is used by the classification algorithm in conjunction 

with a nearest neighbor methodology for determining the class label of new data. 

  

Also presented in this paper was a case study in which five subjects performed four MATB tasks daily for three 

days. The purpose of the case study was to validate the classification methodology. Results illustrated the high 

degree of accuracy with which the proposed methodology classified human workload using the ECG signal. Further, 

the study illustrated that group models, those made up of data from a group of subjects involved in the study, 

accurately classify the data without necessity of individual modeling for each subject. The methodology presented in 

this paper will be utilized in training and research environments to assist in determining participant workload levels 

in real-time and after action. 
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