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ABSTRACT

The United States Air Force has a vested interest in advancing intelligence, surveillance, and reconnaissance
technologies. Although software and hardware testing is performed for these technologies to demonstrate
functionality, only limited research has investigated the effect of these tools on human performance. This research
describes a process for the identification of suitable metrics to assess the effectiveness of new ISR technologies. We
used several factors to determine the potential suitability of candidate measures including their relative sensitivity,
reliability, content validity, and task intrusiveness. Additionally, the sensitivity of several measures, including
performance-based, physiological and subjective measures, for the discrimination between levels of difficulty of
imagery analyst tasking were compared. Twenty participants from a school for training intelligence analysts
volunteered. Real recorded footage from two imagery types, wide area motion imagery and full motion video, was
presented to analysts in short video clips. Tasking for each clip was provided prior to viewing. Tasking was
developed by a subject matter expert and validated by five career analysts who independently rated the tasking in
terms of difficulty. Performance data showed a significant difference based on difficulty of tasking as predicted
(F(1,19) = 220.32, p < .001), as did subjective difficulty ratings assessed by the NASA-Task Load Index (F(1,19) =
12.84, p < .01). The sensitivity of physiological data to difficulty was mixed. Significant differences based on
difficulty rating were identified for fixation duration (F(1, 14) = 5.30, p = .037) and saccade duration (F(1, 14) =
15.13, p < .01). However, no significant differences were identified in heart rate or heart rate variability (p > .05).
There were also no significant differences in indices of workload across imagery types. The suitability and
applications of these measures for assessing intelligence analyst performance in simulated analyst operational
environments is discussed.
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INTRODUCTION

The United States Air Force (USAF) has a vested interest in advancing intelligence, surveillance, and
reconnaissance (ISR) technologies, and the capability to rapidly and effectively leverage the information obtained by
these technologies. ISR capabilities play a critical role in the USAF’s warfighting capabilities, and over the past
decade the USAF has procured a variety of new sensors and platforms that have enabled significant gains in the
availability of imagery to inform decision makers during combat operations. The changes in ISR capabilities
operated by the USAF have required substantial changes in the technology used to process, analyze, and disseminate
information. Capabilities were rapidly developed and readily accepted by the community that was desperate to keep
up with emerging sensor capabilities and evolving requirements. While the development of these capabilities
undoubtedly aided the Air Force in meeting their mission objectives, unfortunately, many of the capabilities
provided only short-term solutions, had high levels of redundancy with other capabilities, contained unpredicted
bugs, and had limited interoperability with standard Air Force systems.

What capabilities does the USAF have for identifying tools that are effective? In other words, what processes and
capabilities does the USAF have to be an informed consumer with regard to technologies for intelligence analysts?
In the current fiscally-constrained environment, it is paramount that selection of new capabilities be informed by
data. As part of this initiative, a research environment was developed to evaluate new tools for ISR analysis in a
human-in-the-loop, simulated operational environment, providing objective and subjective empirical data to inform
decision makers. This led to the development of the Analyst Test Bed (ATB), a joint collaboration between the Air
Force Research Laboratory and Alliance for the Human Effectiveness and Advancement (AHEAD). This paper will
describe the process leveraged for the identification of suitable metrics to assess the effectiveness of new ISR
technologies in a realistic, simulated operational environment. In it we present a study aimed at equipping the ATB
with measurement capabilities to quantitatively and qualitatively assess the impact and effectiveness of new analysis
tools on analyst performance. We integrated a variety of behavioral and physiological measures and evaluated them
within the context of an intelligence analysis environment. This was the first step in developing a capability for the
empirical assessment of human-centered operator performance for intelligence analysis.

Development, selection, and integration of metrics for assessing human analyst performance in simulated
operational environments are significant challenges, especially when attempting to be an ecologically valid test
environment. Controlled laboratory research can provide the capability to make causal inferences between
intervention and outcome and yield high internal validity (e.g., Anderson & Bushman, 1997). On the other hand,
these causal inferences may not exhibit the same relationships when other factors are present (i.e., limited
generalizability or low external validity), as they are in more naturalistic environments. Naturalistic observation
allows for studying a phenomenon in a setting where all potential factors are present, but this lack of control inhibits
causal inference. Although, it should be noted that some research has found similar results in observational studies
as very controlled studies. For instance, in the medical domain, research comparing randomized, controlled trials
and observational studies found negligible difference between confidence intervals generated via the two methods
(e.g., Concato, Shah, & Horwitz, 2006). One goal for this effort was to maximize generalizability to the operational
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environment to the extent possible while still gathering empirical data (i.e., metrics) to assess the effectiveness of the
tools in realistic environments.

Another purpose of this research was to verify that the capability exists to experimentally impose realistic tasking
with sufficient fidelity to result in increases in workload, and additionally, to establish that the capability exists to
detect these differences via the current performance-based, physiological, and subjective measurement capabilities.
Performance metrics were identified through a multifaceted approach to user analysis (i.e., Mission Essential
Competency; Bennett et al., 2007). This process allowed us to identify tasking perceived by experienced analysts to
impose increased workload.

The NASA-Task Load Index (TLX) is a multi-dimensional scale used to measure workload. It is validated, sensitive
to changes in workload, and has high diagnosticity (Rubio et al., 2004; Hill et al., 1992). Furthermore, it has been
used in a variety of applied and academic settings; and is one of the most often-used measures for identifying
changes in workload (Hill, 1992; Hart, 2006). It has been shown to have greater sensitivity, concurrent validity with
performance, and diagnosticity when compared to other measures of workload (Rubio et al., 2004).

Ocular behavioral data has also been shown to correlate with task difficulty and cognitive workload. (Dahlstrom et
al., 2011; Palinko & Kun, 2011; Pomplun & Sunkara, 2003). As task complexity increases in a simulated air-traffic
control task, blink duration and saccade distance were found to significantly decrease. In addition, pupil dilation was
significantly greater with increases in workload (Ahlstrom & Friedman-Berg, 2006). Increased pupil dilation is a
reliable and involuntary response associated with short and long term memory access, mental arithmetic, reading
comprehension, vigilance, and perceptual tasks (Klingner et al., 2008). In a simulated driving task, Palinko et al.
(2010) found that mean pupil diameter changed significantly and positively correlated with increased cognitive
workload.

Heart-based physiological metrics have been shown to correlate with task difficulty and workload. Corresponding
changes in heart rate were documented (increases for higher workload flight segments and decreases for lower
workload flight segments of simulated and actual flights) for aviation trainees and pilots (Dahlstrom & Nahlinder,
2009; Dahlstrom et al., 2011). Parsons et al. (2009) found that participants’ median heartbeats per minute (BPM)
were significantly higher when directly interacting with virtual environments rather than passively observing the
same virtual environments, indicating that higher levels of immersion correlate with increased physiological
reactions. We predict that task difficulty will be rated high by SMEs for video snippets with higher perceptual load,
greater similarity between targets and distractors, and a larger number of occlusions. Furthermore, it is predicted that
these video snippets will increase performance-based (accuracy and time), physiological, and subjective measures of
workload.

METHODOLOGY
Participants

Twenty participants (6F, 14M) were recruited from the Advanced Technical Intelligence Center (ATIC) in Dayton,
OH. All participants were current students or alumni of ATIC. The average age for the 19 participants reporting
demographic data was 42 years (age range: 20 - 66). One person declined to report an age. Twelve of the
participants had taken or were currently enrolled in the ATIC Analyst Bootcamp course, six had completed basic
military training (BMT), five reported having had geospatial intelligence training, and two reported a class on full
motion video. Participants reported on other relevant training courses, including ATIC Advanced Technical
Intelligence (3), Security Forces Training School (1), SOCET GXP Seminars (1), U.S. Army Military Police (1),
and U.S. Army Calvary Scout (1). Two participants reported that their experiences included the National Air &
Space Intelligence Center (NASIC), while no other relevant experiences were reported (e.g., AF DCGS-A, Army
Intel Brigade, NGA Imagery, MQ-1/9, Real-time FMV in DGS/NASIC/NGA). Four participants reported previous
deployments.

Stimuli

The stimuli were derived from two types of imagery: real-world full motion imagery (FMV) and real-world Wide
Area Motion Imagery (WAMI). The FMV leveraged was high definition, color video footage. The WAMI was
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lower-resolution black and white footage captured at 60Hz. Since this is real footage and hence varies on a variety
of dimensions, sources of difficulty for these tasks were identified through cognitive task analysis with subject
matter experts (SMEs). A subject matter expert (SME), an intelligence analyst with over 20 years of experience in
the field, was asked to identify appropriate tasking for 40 video snippets such that 20 videos would be relatively
easy for a novice analyst and 20 would be difficult. After the creation of the stimuli by a single SME, the video
snippets were then independently rated by five additional SMEs for difficulty and using these ratings were used to
categorize the scenarios dichotomously as either easy or difficult. The top 25% and bottom 25% were determined to
have high and low levels of difficulty and were selected for this experiment. Difficulty ratings were collected using a
5-point Likert scale with an average rating for difficult scenarios of 1.8 and an average rating for easy scenarios of
3.4. The average variability among raters for the difficulty of selected snippets was .8 on a 5-point Likert scale. The
duration of each video clip was 60 seconds.

Tasks

Participants were asked to perform tasking known to be common in the field of imagery analysts (e.g., slant count)
using prerecorded FMV or WAMI. Participants were asked to individually respond to the tasking following each
trial using pencil and paper.

Experimental Design

The experiment leveraged a 2x2 factorial design with factors: task difficulty (easy vs. difficult) and imagery type
(FMV vs. WAMI).

Table 1: Independent Variables (I1Vs) and Dependent Variables (DVs)

1Vs DVs
Task difficulty (easy; difficult) Performance (mean counting deviation)
Imagery Type (FMV;WAMI) Subjective (rating; NASA-TLX)
Physiological (eye-tracking; ECG)

The video clips were grouped into four 5 minute blocks (i.e., two ‘easy’ blocks and two “difficult’ blocks) with a
five minute break between Block 2 and Block 3. The order of the blocks was counterbalanced. The measures
collected during each block of trials include task performance (i.e., accuracy of response to tasking), subjective
workload (i.e., NASA-TLX), and physiological measures of workload (i.e., heart and eye tracking data). Perceived
task difficulty was collected from participants using the same 5 point Likert scale administered to SMEs prior to
data collection. The difficulty scale was filled out after each video was viewed. Task performance was measured by
calculating the difference value between the participants count and the correct count.

Oculomotor and pupillary dynamics were monitored and recorded using a Smart Eye Pro 5.6 (120Hz) eye-tracking
system (Smart Eye AB — Goteborg, Sweden). In real time, Smart Eye extracted 23 parameters including the
following: gaze direction, gaze original, pupil diameter, eye lid opening, blink rate, and fixation duration. The
experimenters sought to achieve +/- 2-degrees of accuracy for each calibration point.

ITM ITM

Heart rate information was captured using the Equivital'™ sensor. Equivital'™ captures full electrocardiographic
(ECG) data as well as heart rate and breath rate. For the purposes of this study, we will be looking at interbeat
intervals, heart rate, and heart rate variability.

Procedures

Upon arrival, participants received informed consent documents and were fitted for the Equivital™ sensor. After
calibration of the eye tracking system, participants were provided imagery examples (still pictures) to familiarize
them with the imagery they would be viewing throughout the trials. Imagery content was labeled to provide
examples of what various objects might look like in the two imagery types (e.g., pedestrians, bicyclists, motorized
bikes, automobiles). Participants were then provided tasking which mimicked what they would see in the
experimental trials. Specifically, they were provided guidance as to the area within the imagery that they were to
monitor and provided instructions as to the type of activity that they were to report on. For example, ‘Count the
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number of people entering the building indicated’. After completing the training trials, participants were asked to sit
quietly for five minutes without any tasking. The purpose of this break was to allow a five-minute resting period for
observation of the physiological data (heart rate) to establish a baseline level for use in the data analysis.

Participants completed four blocks consisting of five trials each. Videos for each trial were 60 seconds in length.
The imagery and associated tasking were implemented in a counter-balanced distribution of the imagery (i.e. FMV
or WAMI) and task difficulty (i.e., easy or difficult), which was determined in advance. Participants were assigned
a block order upon arrival at the laboratory.

For each trial, participants received advance instructions as to the area of responsibility (AOR) for the particular trial
and precise instructions for the counting task (e.g., count all the motorized bikes in the area). Following the end of
the video, participants recorded their count based on the imagery and provided a subjective rating.

Each block of five trials was followed immediately by administration of the NASA Task Load Index (TLX). After
the second NASA TLX administration (after block 2), participants were given a second five-minute resting period
for observation of the physiological data (heart rate). After the final block and administration of the NASA TLX,
participants were debriefed and escorted to the changing room to remove the Equivital™ vest and sensor.

Results

One individual’s data was lost due to technical issues. The data for each remaining participant was averaged across
all the available trials of a given condition. In the following sections we present the results for counting
performance as well as those for subjective workload ratings, and eye tracking measures. No significant differences
in heart rate nor heart rate variability were identified

(p >.05) across difficulty or task conditions; no " ﬁ ]
further analyses on these measures will be presented. e 10 -
All analyses were performed with sphericity assumed S 9 -
unless otherwise noted. 8 < 8 ] I
w2 6 -
Counting Performance £ 8 5 ®FMV
Analysis of the counting performance data show a § 3 g ] WAMI
significant interaction between expert difficulty o 2 —j I
categorization and imagery type, F(1,19) = 12.60, p = § (1) ] : .
.002, partial eta squared = .399 (Figure 1). s

. . . Easy Difficult
Participants were more accurate in their counts for
easy tasking paired with FMV than WAMI; however, Task Difficulty
for difficult tasking, participants were more accurate
with WAMI than for FMV.

Figure 1: Mean Counting Response Deviation by

. . . Imagery Type and Task Difficulty
Subjective Ratings of Task Difficulty

There was a significant difference in novice difficulty
ratings based on the expert categorization of task
difficulty F(1,19) = 66.48, p < .001, partial eta
squared .778 (Figure 2). There was no evidence that
imagery type resulted in differences in difficulty
ratings p > .05. There was no evidence of an
interaction between expert difficulty categorization
and imagery type, p > .05.
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Analyses were conducted for the overall workload
assessment. There was a significant difference in
novices’ self-reported workload based on the expert
categorization of difficulty F(1,19) = 12.84, p < .01,
partial eta squared .403 (Figure 3). There was no Figure 2: Mean Subjective Difficulty Rating by Imagery
evidence that imagery type resulted in differences in Type and Task Difficulty

self-reported workload, p > 0.5. There was no
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evidence of an interaction between expert difficulty
categorization and imagery type, p > .05. Analyses were
also conducted for each of the subscales. On the
frustration, performance, physical and temporal
subscales was no significant difference in novices' self-
reported workload based on the expert categorization of
difficulty, no significant differences in self-reported
workload, and no significant interaction, p > 0.5.
Significant results are detailed in the following
paragraphs.
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Subjective Workload (Overall)

There was a significant difference in novices' self-
reported effort subscale based on the expert .
categorization of difficulty F(1,19) = 7.53, p < .02, Tasking
partial eta squared .284 (Table 2). There was no
evidence that imagery type resulted in differences in
self-reported effort, p > .05. There was no evidence of ~ Figure 3: Overall Subjective Workload by Imagery
an interaction between expert difficulty categorization Type and Task Difficulty

and imagery type, p > .5.

Table 2. Mean Subjective Effort Ratings by Condition

Mean St. Dev N SE
Easy, FMV 9.7667 | 6.39819 20 | 1.430679
Easy, WAMI 10.3667 | 7.16628 20 | 1.602429
Difficult, FMV 13.35 | 7.34487 20 | 1.642363
Difficult, WAMI 14.9667 | 8.82043 20 | 1.972308

There was a significant difference in novices' self-reported mental demand subscale based on the expert
categorization of difficulty F(1,19) = 4.81, p = .041, partial eta squared .202 (Table 3). There was no evidence that
imagery type resulted in differences in self-reported mental demand, p > .05. There was no evidence of an
interaction between expert difficulty categorization and imagery type, p > .05.

Table 3. Mean Subjective Mental Demand Ratings by Condition

Mean St. Dev N SE
Easy, FMV 17.7167 | 7.84296 20 | 1.753739
Easy, WAMI 17.5833 | 9.06111 20 | 2.026126
Difficult, FMV 21.6833 | 7.66207 20 | 1.713291
Difficult, WAMI 18.9833 | 6.50728 20 | 1.455072

Eye tracking

The data for each eye-tracking measure listed in Table 4 were analyzed using a 2 (sensor — WAMI vs. FMV) X 2
(load — low vs. high) repeated measures ANOVA. The Greenhouse-Geiser correction for sphericity was considered
but ultimately had no effect on the results given that each condition had only two levels. Because the goals of the
current study were to validate task manipulations and measures that have been reported extensively in the human
factors literature and to select the most sensitive and ideal physiological measures from a range of candidate
measures, we chose to adopt a relatively liberal statistical threshold (a standard alpha threshold of p < 0.05,
uncorrected for multiple comparisons) due to the large number of statistical comparisons required to achieve these
goals.

Results of all 2 x 2 repeated measures ANOVASs on the eye-tracking data are reported in Table 4, with plots of the
condition means for all measures showing significant (Figure 4) main effects of load.
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Table 4. ANOVA results of the eye-tracking data statistical analyses

Load Sensor Load x Sensor
DV F p MSE F p MSE F p MSE
Fixation 5.30 0.037 393.7 17.69 0.001 321.3 2.42 0.142 444.9
Duration
Saccade 15.13 0.002 33.8 0.00 0.999 16.0 0.13 0.910 18.4
Duration
Blink 4.62 0.050 5745.0 0.82 0.380 317.2 0.35 0.565 202.1
Duration
Pupil 468 0.048 2.26x107 2.68 0.124 157 x 107 0.01 0.911 1.81x 107
Diameter
310 Fixation Duration 50.0 Saccade Duration
290
 Low Load 55.0 m Low Load
210 ) ® High Load
® High Load 50.0
~ 250 =
E E
g 230 2 45.0
E £
[ B
210 00
180
35.0
170
150 30.0 +
FMV WAMI FMV WAMI
Sensor Sensor
240 Blink Duration 4.0E-03 Pupil Diameter
220 m Low Load m Low Load
= High Load o 2608 = High Load
200 ] 5
I o
3 g
o 180 5 3.0E-03
i T
= §
160 - &
2.5E-03
140
120 2.0E-03 +
FMV WAMI FMV WAMI
Sensor Sensor

Figure 4. Plots of condition means for the measures showing a significant main effect of load at uncorrected p < 0.05.

DISCUSSION

Two of the primary objectives of this study were: (1) to validate that the task difficulty manipulations used here can
reliably increase operator workload and that the behavioral and subjective rating data is sensitive enough to detect
changes in even this type of applied environment, and (2) to validate that the non-invasive physiological sensor
systems used in this study are sensitive to changes in operator workload. Regarding the first objective, the
behavioral performance and subjective rating data support the hypothesis that the task manipulations significantly
altered operator workload. Significant differences in novice accuracy and subjective difficulty rating corresponded
with expert ratings of difficulty. Interestingly, there was no significant difference in either accuracy or subjective
difficulty between tasking using the two imagery types.
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The finding is surprising because the subject matter experts indicated that, in general, WAMI sensor data is
significantly more difficult to work with due to its lower resolution and temporal sampling rates. There are several
potential explanations. It might be that in general working with WAMI imagery does not increase analyst workload
compared to FMV. However, previous data gathered using Cognitive Task Analysis methods indicates analysts at
least subjectively feel that working with WAMI increases workload. It would be expected that we should at least
have identified differences via the NASA-TLX. It is possible that there was not sufficient power to detect an effect
between the imagery types (i.e., the effect was small). However, the data does not even indicate a trend in the
anticipated direction.

The final hypothesis is that the expert analyst that identified the tasking unknowingly created tasking of different
difficulty depending on the imagery type (i.e., easier tasking for WAMI than for FMV) negating the influence of
imagery difficulty. Despite efforts to keep tasking difficulty equivalent across conditions, the real world imagery
available may have been more conducive to more difficult tasking for FMV as compared with WAMI. Future
research to compare imagery types should identify the same footage for each sensor type and use identical tasking.
While this was considered prior to running the experiment, this was not possible in our design due to the availability
of imagery at the time this research was conducted. The results here regarding imagery type should be interpreted
cautiously.

Regarding the second objective, the data from the SmartEye ™ eye-tracker and Equivital™ physiological sensor
systems will be discussed here individually, beginning with the SmartEye ™ data, before addressing the battery of
physiological assessment measures as a whole. Overall, a number of measures extracted from the eye-tracking data
differed significantly across the task load conditions, indicating that the eye-tracking data was sensitive to
differences in workload demands. At the same time, the eye-tracking measures were largely unaffected by the type
of sensor (WAMI vs. FMV) used by the participants (fixation duration and pupil quality were the only two measures
that were either marginally significant or significant). This latter finding is somewhat surprising due to the fact that
the study did not attempt to control for physical stimulation parameters of the two types of sensor feeds (such as
luminance and contrast) as might be done in a tightly controlled basic research experiment and that luminance is
known to affect eye-movement parameters such as pupil diameter. On the other hand, the pupil also expands and
contracts dynamically over a matter of seconds in response to perceptual and cognitive events (Beatty, 1982), and it
is possible that the pupillary dynamics evoked by the task masked any effects that physical stimulation parameters
might have had on the eye-tracking measures.

While a number of measures extracted from the eye-tracking data were sensitive to differences in workload (i.e. they
differed significantly between the two task difficulty levels), the degree to which each measure was diagnostic (i.e.
how consistent the direction of each effect was with previously reported findings in the literature) was somewhat
mixed. The blink-related measures extracted from the data were quite consistent with the existing body of literature.
As has been reported previously, blinks were shorter in duration (Fournier, Wilson, & Swain, 1999; Veltman &
Gaillard, 1998; Zheng et al, 2013) and were marginally less frequent (Fournier, Wilson, & Swain, 1999; Recarte et
al, 2008; van Orden et al, 2001) under the higher workload conditions. Furthermore, the inter-blink interval was
marginally smaller under the higher workload conditions, consistent with studies showing a similar effect as a
function of memory load (Veltman & Gaillard, 1998). The fixation duration effect was also consistent with a study
showing shorter fixation durations among anesthetists when managing a critical incident compared to scenarios
lacking a critical incident (Schulz et al, 2011). However, the expected effect of increased workload on fixation
duration appears to depend on what is driving workload — Zelinsky and Sheinberg (1997) found longer fixation
durations in a basic research task when participants had to search through a screen with a larger number of elements.

Other measures exhibiting a significant effect of workload, however, indicated an effect that was not consistent with
what might be predicted based on findings from the literature. The most prominent example is the significant
decrease in pupil diameter observed here under the high workload conditions. Contrary to this finding, the majority
of studies report that pupil diameter increases under higher workload conditions (e.g. Beatty, 1982). However, there
is some evidence to suggest that the relationship between workload and pupil diameter may not be monotonic,
which might explain why the effect of load on pupil diameter was reversed in the current study. Van Gerven et al
(2004) tracked pupil diameter as a function of memory load across a number of load values and found that although
pupil diameter increased for most step-wise increases in memory load, at the very highest level of memory load,
pupil diameter decreased substantially. Similarly, another study indicated that adding a secondary task onto a
primary task increased pupil diameter when the primary task was lower in mental workload, but it decreased pupil
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diameter when the primary task was already higher in mental workload (Recarte et al, 2008). However, one caveat
to the workload effect on pupil diameter reported here is that the effects of workload on SmartEye’s pupil quality
and iris loss measures —measures of signal quality — were marginally significant, with both indicating poorer signal
quality under the high load conditions than under the low load conditions (see Table 4 and Figure 4). Furthermore,
the effect of sensor type on pupil quality was also marginally significant, with signal quality better for the WAMI
than for the FMV sensor conditions. The effect of load on pupil quality could be explained by participants moving
their heads either more often or closer to the screen and out of optimal sensor calibration range in the high load
condition, although this explanation is speculative. The pupil diameter measure included in the analysis here was
drawn from SmartEye’s Filtered Pupil Diameter parameter, which adds temporal smoothing to the current sample’s
diameter estimate in inverse proportion to the current pupil quality estimate. While the filtering algorithm should
have reduced the impact of the effect of signal quality on pupil diameter, the main effect of load on the pupil quality
indicates that simple measurement differences cannot be ruled out as the main driver of the observed workload
effects on pupil diameter.

Other measures that were significantly or marginally significantly affected by workload in the current analyses have
not shown this effect consistently in previous studies. In particular, recent workload studies reporting saccade
duration as a dependent measure failed to find a significant or marginally significant effect of workload (Di Stasi et
al, 2010; Halverson et al, 2012). A different, but related, measure — saccade distance — also has not consistently
been affected by workload across studies (Halverson et al, 2012 and Schulz et al 2011 for negative results; van
Orden et al, 2001 and Zelinsky & Sheinberg, 1997 for positive results). Notably, the two studies that did report
effects on saccade distance (van Orden et al, 2001 and Zelinsky & Sheinberg, 1997) both manipulated overall
workload by increasing the perceptual processing demands of the task. This manipulation was similar in nature to
the workload manipulation used in the current effort, and the direction of the effect reported here (shorter duration
saccades) is consistent with what one would expect to see in saccades of a shorter distance, as reported in van Orden
et al (2001) and Zelinsky and Sheinberg (1997). Therefore, the effect of workload on saccade duration here is
consistent with some reports in the literature, but it may only hold for high workload conditions associated with the
perceptual difficulty of a task. In contrast, the current effort failed to find an effect of workload on eyelid opening,
which contrasts somewhat with a recent claim that PERCLOSE (percentage eyelid closure, a related measure)
discriminates levels of workload well (Halverson et al, 2012). Our finding is more consistent with the larger body of
literature on workload. The finding reported by Halverson et al (2012) may reflect combined effects of workload
and vigilance — operators performed the task for 40 minutes straight, alternating between low- and high-levels of
workload in 5-minute segments. Workload and vigilance are not entirely independent constructs (Caggiano &
Parasuraman, 2004; Parasuraman, 1979; Warm, Parasuraman, & Matthews, 2008), and the effect of workload on
PERCLOSE may have emerged from a workload x vigilance interaction during later segments of the 40-minute
sessions.

Noise in both the heart rate and eye tracking data was a substantial issue that must be considered in future extensions
of this work, particularly the instances in which the signal quality metrics were affected by the workload
manipulation. In the current study, several steps were taken to address these potential noise issues: (1) trials for
each condition were averaged together for all participants, and the data were analyzed using a random effects model
on the group-wise data, (2) trial-wise data were normalized to a per-60-second time window based on the segments
of the trial in which the relevant eye-tracker signal was adequate, and (3) thresholds for individual measure instances
(e.g. individual fixations and saccades) were based on the measure duration to ensure that the automated measure
extraction algorithms were identifying true measure instances.

Overall, this study provided evidence for both the sensitivity and the diagnosticity of a subset of the measures
extracted from a variety of data sources in relation to the workload demands of a task. As expected, behavioral
performance and subjective data showed robust differences even in simulated real-world environments. For future
studies, blink-related measures seem to be the most robust and diagnostic measure captured by the SmartEye ™
data, followed by saccade duration and fixation duration. For the type of tasking imagery analysts generally
performed, heart rate and heart rate variability were not sensitive enough to detect differences. This may have been a
function of the system selected or the environment. Note that the system selected was identified on the basis of
being relatively non-disruptive to typical tasking. Additional foundational research should be conducted before
leveraging electrocardiogram-based measures for diagnosticity of workload for imagery analysis. Overall, this set of
converging metrics will allow us to identify changes in analyst workload in high fidelity simulated environments
where missing data is common. This affords the capability to allow analysts to participate in team interactions, move
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around in the environment, and act naturally while providing real-time seamless and non-disruptive data collection.
While we would not recommend these conditions for answering basic research questions, these types of applied
environments are critical for providing empirical data so that the USAF is an informed consumer with regard to
technologies for intelligence analysts.
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