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ABSTRACT 
 
The United States Air Force has a vested interest in advancing intelligence, surveillance, and reconnaissance 
technologies. Although software and hardware testing is performed for these technologies to demonstrate 
functionality, only limited research has investigated the effect of these tools on human performance. This research 
describes a process for the identification of suitable metrics to assess the effectiveness of new ISR technologies. We 
used several factors to determine the potential suitability of candidate measures including their relative sensitivity, 
reliability, content validity, and task intrusiveness. Additionally, the sensitivity of several measures, including 
performance-based, physiological and subjective measures, for the discrimination between levels of difficulty of 
imagery analyst tasking were compared. Twenty participants from a school for training intelligence analysts 
volunteered. Real recorded footage from two imagery types, wide area motion imagery and full motion video, was 
presented to analysts in short video clips. Tasking for each clip was provided prior to viewing. Tasking was 
developed by a subject matter expert and validated by five career analysts who independently rated the tasking in 
terms of difficulty. Performance data showed a significant difference based on difficulty of tasking as predicted 
(F(1,19) = 220.32, p < .001), as did subjective difficulty ratings assessed by the NASA-Task Load Index (F(1,19) = 
12.84, p < .01). The sensitivity of physiological data to difficulty was mixed. Significant differences based on 
difficulty rating were identified for fixation duration (F(1, 14) = 5.30, p = .037) and saccade duration (F(1, 14) = 
15.13, p < .01). However, no significant differences were identified in heart rate or heart rate variability (p > .05). 
There were also no significant differences in indices of workload across imagery types. The suitability and 
applications of these measures for assessing intelligence analyst performance in simulated analyst operational 
environments is discussed. 
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INTRODUCTION 
 
The United States Air Force (USAF) has a vested interest in advancing intelligence, surveillance, and 
reconnaissance (ISR) technologies, and the capability to rapidly and effectively leverage the information obtained by 
these technologies.  ISR capabilities play a critical role in the USAF’s warfighting capabilities, and over the past 
decade the USAF has procured a variety of new sensors and platforms that have enabled significant gains in the 
availability of imagery to inform decision makers during combat operations.  The changes in ISR capabilities 
operated by the USAF have required substantial changes in the technology used to process, analyze, and disseminate 
information. Capabilities were rapidly developed and readily accepted by the community that was desperate to keep 
up with emerging sensor capabilities and evolving requirements. While the development of these capabilities 
undoubtedly aided the Air Force in meeting their mission objectives, unfortunately, many of the capabilities 
provided only short-term solutions, had high levels of redundancy with other capabilities, contained unpredicted 
bugs, and had limited interoperability with standard Air Force systems.  

What capabilities does the USAF have for identifying tools that are effective?  In other words, what processes and 
capabilities does the USAF have to be an informed consumer with regard to technologies for intelligence analysts? 
In the current fiscally-constrained environment, it is paramount that selection of new capabilities be informed by 
data. As part of this initiative, a research environment was developed to evaluate new tools for ISR analysis in a 
human-in-the-loop, simulated operational environment, providing objective and subjective empirical data to inform 
decision makers. This led to the development of the Analyst Test Bed (ATB), a joint collaboration between the Air 
Force Research Laboratory and Alliance for the Human Effectiveness and Advancement (AHEAD).  This paper will 
describe the process leveraged for the identification of suitable metrics to assess the effectiveness of new ISR 
technologies in a realistic, simulated operational environment. In it we present a study aimed at equipping the ATB 
with measurement capabilities to quantitatively and qualitatively assess the impact and effectiveness of new analysis 
tools on analyst performance.  We integrated a variety of behavioral and physiological measures and evaluated them 
within the context of an intelligence analysis environment. This was the first step in developing a capability for the 
empirical assessment of human-centered operator performance for intelligence analysis.  

Development, selection, and integration of metrics for assessing human analyst performance in simulated 
operational environments are significant challenges, especially when attempting to be an ecologically valid test 
environment. Controlled laboratory research can provide the capability to make causal inferences between 
intervention and outcome and yield high internal validity (e.g., Anderson & Bushman, 1997). On the other hand, 
these causal inferences may not exhibit the same relationships when other factors are present (i.e., limited 
generalizability or low external validity), as they are in more naturalistic environments. Naturalistic observation 
allows for studying a phenomenon in a setting where all potential factors are present, but this lack of control inhibits 
causal inference. Although, it should be noted that some research has found similar results in observational studies 
as very controlled studies. For instance, in the medical domain, research comparing randomized, controlled trials 
and observational studies found negligible difference between confidence intervals generated via the two methods 
(e.g., Concato, Shah, & Horwitz, 2006). One goal for this effort was to maximize generalizability to the operational 
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environment to the extent possible while still gathering empirical data (i.e., metrics) to assess the effectiveness of the 
tools in realistic environments. 

Another purpose of this research was to verify that the capability exists to experimentally impose realistic tasking 
with sufficient fidelity to result in increases in workload, and additionally, to establish that the capability exists to 
detect these differences via the current performance-based, physiological, and subjective measurement capabilities. 
Performance metrics were identified through a multifaceted approach to user analysis (i.e., Mission Essential 
Competency; Bennett et al., 2007).  This process allowed us to identify tasking perceived by experienced analysts to 
impose increased workload.  

The NASA-Task Load Index (TLX) is a multi-dimensional scale used to measure workload. It is validated, sensitive 
to changes in workload, and has high diagnosticity (Rubio et al., 2004; Hill et al., 1992).  Furthermore, it has been 
used in a variety of applied and academic settings; and is one of the most often-used measures for identifying 
changes in workload (Hill, 1992; Hart, 2006). It has been shown to have greater sensitivity, concurrent validity with 
performance, and diagnosticity when compared to other measures of workload (Rubio et al., 2004). 

Ocular behavioral data has also been shown to correlate with task difficulty and cognitive workload. (Dahlstrom et 
al., 2011; Palinko & Kun, 2011; Pomplun & Sunkara, 2003). As task complexity increases in a simulated air-traffic 
control task, blink duration and saccade distance were found to significantly decrease. In addition, pupil dilation was 
significantly greater with increases in workload (Ahlstrom & Friedman-Berg, 2006).  Increased pupil dilation is a 
reliable and involuntary response associated with short and long term memory access, mental arithmetic, reading 
comprehension, vigilance, and perceptual tasks (Klingner et al., 2008). In a simulated driving task, Palinko et al. 
(2010) found that mean pupil diameter changed significantly and positively correlated with increased cognitive 
workload.   

Heart-based physiological metrics have been shown to correlate with task difficulty and workload. Corresponding 
changes in heart rate were documented (increases for higher workload flight segments and decreases for lower 
workload flight segments of simulated and actual flights) for aviation trainees and pilots (Dahlstrom & Nahlinder, 
2009; Dahlstrom et al., 2011).  Parsons et al. (2009) found that participants’ median heartbeats per minute (BPM) 
were significantly higher when directly interacting with virtual environments rather than passively observing the 
same virtual environments, indicating that higher levels of immersion correlate with increased physiological 
reactions. We predict that task difficulty will be rated high by SMEs for video snippets with higher perceptual load, 
greater similarity between targets and distractors, and a larger number of occlusions. Furthermore, it is predicted that 
these video snippets will increase performance-based (accuracy and time), physiological, and subjective measures of 
workload. 
 
METHODOLOGY 
 
Participants  
 
Twenty participants (6F, 14M) were recruited from the Advanced Technical Intelligence Center (ATIC) in Dayton, 
OH. All participants were current students or alumni of ATIC. The average age for the 19 participants reporting 
demographic data was 42 years (age range: 20 - 66).  One person declined to report an age. Twelve of the 
participants had taken or were currently enrolled in the ATIC Analyst Bootcamp course, six had completed basic 
military training (BMT), five reported having had geospatial intelligence training, and two reported a class on full 
motion video.  Participants reported on other relevant training courses, including ATIC Advanced Technical 
Intelligence (3), Security Forces Training School (1), SOCET GXP Seminars (1), U.S. Army Military Police (1), 
and U.S. Army Calvary Scout (1).  Two participants reported that their experiences included the National Air & 
Space Intelligence Center (NASIC), while no other relevant experiences were reported (e.g., AF DCGS-A, Army 
Intel Brigade, NGA Imagery, MQ-1/9, Real-time FMV in DGS/NASIC/NGA).  Four participants reported previous 
deployments. 

Stimuli 
 
The stimuli were derived from two types of imagery: real-world full motion imagery (FMV) and real-world Wide 
Area Motion Imagery (WAMI). The FMV leveraged was high definition, color video footage. The WAMI was 
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lower-resolution black and white footage captured at 60Hz. Since this is real footage and hence varies on a variety 
of dimensions, sources of difficulty for these tasks were identified through cognitive task analysis with subject 
matter experts (SMEs). A subject matter expert (SME), an intelligence analyst with over 20 years of experience in 
the field, was asked to identify appropriate tasking for 40 video snippets such that 20 videos would be relatively 
easy for a novice analyst and 20 would be difficult. After the creation of the stimuli by a single SME, the video 
snippets were then independently rated by five additional SMEs for difficulty and using these ratings were used to 
categorize the scenarios dichotomously as either easy or difficult.  The top 25% and bottom 25% were determined to 
have high and low levels of difficulty and were selected for this experiment. Difficulty ratings were collected using a 
5-point Likert scale with an average rating for difficult scenarios of 1.8 and an average rating for easy scenarios of 
3.4. The average variability among raters for the difficulty of selected snippets was .8 on a 5-point Likert scale. The 
duration of each video clip was 60 seconds.  

Tasks 
 
Participants were asked to perform tasking known to be common in the field of imagery analysts (e.g., slant count) 
using prerecorded FMV or WAMI. Participants were asked to individually respond to the tasking following each 
trial using pencil and paper.  

Experimental Design 
 
The experiment leveraged a 2x2 factorial design with factors: task difficulty (easy vs. difficult) and imagery type 
(FMV vs. WAMI).  

Table 1: Independent Variables (IVs) and Dependent Variables (DVs) 

IVs DVs 
Task difficulty (easy; difficult) Performance (mean counting deviation) 
Imagery Type (FMV;WAMI) Subjective (rating; NASA-TLX) 

 Physiological (eye-tracking; ECG) 
 

The video clips were grouped into four 5 minute blocks (i.e., two ‘easy’ blocks and two ‘difficult’ blocks) with a 
five minute break between Block 2 and Block 3. The order of the blocks was counterbalanced. The measures 
collected during each block of trials include task performance (i.e., accuracy of response to tasking), subjective 
workload (i.e., NASA-TLX), and physiological measures of workload (i.e., heart and eye tracking data). Perceived 
task difficulty was collected from participants using the same 5 point Likert scale administered to SMEs prior to 
data collection. The difficulty scale was filled out after each video was viewed. Task performance was measured by 
calculating the difference value between the participants count and the correct count.  

Oculomotor and pupillary dynamics were monitored and recorded using a Smart Eye Pro 5.6 (120Hz) eye-tracking 
system (Smart Eye AB – Göteborg, Sweden).   In real time, Smart Eye extracted 23 parameters including the 
following: gaze direction, gaze original, pupil diameter, eye lid opening, blink rate, and fixation duration. The 
experimenters sought to achieve +/- 2-degrees of accuracy for each calibration point.   

 
Heart rate information was captured using the EquivitalTM sensor. EquivitalTM captures full electrocardiographic 
(ECG) data as well as heart rate and breath rate. For the purposes of this study, we will be looking at interbeat 
intervals, heart rate, and heart rate variability.  

Procedures 
 
Upon arrival, participants received informed consent documents and were fitted for the EquivitalTM sensor. After 
calibration of the eye tracking system, participants were provided imagery examples (still pictures) to familiarize 
them with the imagery they would be viewing throughout the trials.  Imagery content was labeled to provide 
examples of what various objects might look like in the two imagery types (e.g., pedestrians, bicyclists, motorized 
bikes, automobiles).  Participants were then provided tasking which mimicked what they would see in the 
experimental trials. Specifically, they were provided guidance as to the area within the imagery that they were to 
monitor and provided instructions as to the type of activity that they were to report on.  For example, ‘Count the 
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number of people entering the building indicated’. After completing the training trials, participants were asked to sit 
quietly for five minutes without any tasking.  The purpose of this break was to allow a five-minute resting period for 
observation of the physiological data (heart rate) to establish a baseline level for use in the data analysis.   

Participants completed four blocks consisting of five trials each.  Videos for each trial were 60 seconds in length.  
The imagery and associated tasking were implemented in a counter-balanced distribution of the imagery (i.e. FMV 
or WAMI) and task difficulty (i.e., easy or difficult), which was determined in advance.  Participants were assigned 
a block order upon arrival at the laboratory.   

For each trial, participants received advance instructions as to the area of responsibility (AOR) for the particular trial 
and precise instructions for the counting task (e.g., count all the motorized bikes in the area).  Following the end of 
the video, participants recorded their count based on the imagery and provided a subjective rating.   

Each block of five trials was followed immediately by administration of the NASA Task Load Index (TLX).  After 
the second NASA TLX administration (after block 2), participants were given a second five-minute resting period 
for observation of the physiological data (heart rate).  After the final block and administration of the NASA TLX, 
participants were debriefed and escorted to the changing room to remove the EquivitalTM vest and sensor. 

Results 
 
One individual’s data was lost due to technical issues. The data for each remaining participant was averaged across 
all the available trials of a given condition.    In the following sections we present the results for counting 
performance as well as those for subjective workload ratings, and eye tracking measures.  No significant differences 
in heart rate nor heart rate variability were identified 
(p >.05) across difficulty or task conditions; no 
further analyses on these measures will be presented. 
All analyses were performed with sphericity assumed 
unless otherwise noted. 

Counting Performance 
Analysis of the counting performance data show a 
significant interaction between expert difficulty 
categorization and imagery type, F(1,19) = 12.60, p = 
.002, partial eta squared = .399 (Figure 1). 
Participants were more accurate in their counts for 
easy tasking paired with FMV than WAMI; however, 
for difficult tasking, participants were more accurate 
with WAMI than for FMV. 

Subjective Ratings of Task Difficulty 
There was a significant difference in novice difficulty 
ratings based on the expert categorization of task 
difficulty F(1,19) = 66.48, p < .001, partial eta 
squared .778 (Figure 2).  There was no evidence that 
imagery type resulted in differences in difficulty 
ratings p > .05.  There was no evidence of an 
interaction between expert difficulty categorization 
and imagery type, p > .05. 
 
Subjective Workload Ratings 
Analyses were conducted for the overall workload 
assessment.  There was a significant difference in 
novices’ self-reported workload based on the expert 
categorization of difficulty F(1,19) = 12.84, p < .01, 
partial eta squared .403 (Figure 3).  There was no 
evidence that imagery type resulted in differences in 
self-reported workload, p > 0.5.  There was no 

Figure 1: Mean Counting Response Deviation by 
Imagery Type and Task Difficulty 
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Figure 2: Mean Subjective Difficulty Rating by Imagery 
Type and Task Difficulty 
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evidence of an interaction between expert difficulty 
categorization and imagery type, p > .05. Analyses were 
also conducted for each of the subscales.  On the 
frustration, performance, physical and temporal 
subscales was no significant difference in novices' self-
reported workload based on the expert categorization of 
difficulty, no significant differences in self-reported 
workload, and no significant interaction, p > 0.5.  
Significant results are detailed in the following 
paragraphs. 
 
There was a significant difference in novices' self-
reported effort subscale based on the expert 
categorization of difficulty F(1,19) = 7.53, p < .02, 
partial eta squared .284 (Table 2).  There was no 
evidence that imagery type resulted in differences in 
self-reported effort, p > .05.  There was no evidence of 
an interaction between expert difficulty categorization 
and imagery type, p  > .5. 
 
 

Table 2. Mean Subjective Effort Ratings by Condition 

Mean  St. Dev N SE 

Easy, FMV 9.7667 6.39819 20 1.430679 

Easy, WAMI 10.3667 7.16628 20 1.602429 

Difficult, FMV 13.35 7.34487 20 1.642363 

Difficult, WAMI 14.9667 8.82043 20 1.972308 
 
There was a significant difference in novices' self-reported mental demand subscale based on the expert 
categorization of difficulty F(1,19) = 4.81, p = .041, partial eta squared .202 (Table 3).  There was no evidence that 
imagery type resulted in differences in self-reported mental demand, p > .05.  There was no evidence of an 
interaction between expert difficulty categorization and imagery type, p > .05.   
 

Table 3. Mean Subjective Mental Demand Ratings by Condition 

Mean  St. Dev N SE 

Easy, FMV 17.7167 7.84296 20 1.753739 

Easy, WAMI 17.5833 9.06111 20 2.026126 

Difficult, FMV 21.6833 7.66207 20 1.713291 

Difficult, WAMI 18.9833 6.50728 20 1.455072 
Eye tracking 
The data for each eye-tracking measure listed in Table 4 were analyzed using a 2 (sensor – WAMI vs. FMV) X 2 
(load – low vs. high) repeated measures ANOVA.  The Greenhouse-Geiser correction for sphericity was considered 
but ultimately had no effect on the results given that each condition had only two levels.  Because the goals of the 
current study were to validate task manipulations and measures that have been reported extensively in the human 
factors literature and to select the most sensitive and ideal physiological measures from a range of candidate 
measures, we chose to adopt a relatively liberal statistical threshold (a standard alpha threshold of p < 0.05, 
uncorrected for multiple comparisons) due to the large number of statistical comparisons required to achieve these 
goals.   
 
Results of all 2 x 2 repeated measures ANOVAs on the eye-tracking data are reported in Table 4, with plots of the 
condition means for all measures showing significant (Figure 4) main effects of load.   

Figure 3: Overall Subjective Workload by Imagery 
Type and Task Difficulty 



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2014 

 

 
2014 Paper No. 14035 Page 7 of 11 

 

 
Table 4. ANOVA results of the eye-tracking data statistical analyses 

 Load Sensor Load x Sensor 
DV F p MSE F p MSE F p MSE 

Fixation 
Duration 

5.30 0.037 393.7 17.69 0.001 321.3 2.42 0.142 444.9 

Saccade 
Duration 

15.13 0.002 33.8 0.00 0.999 16.0 0.13 0.910 18.4 

Blink 
Duration 

4.62 0.050 5745.0 0.82 0.380 317.2 0.35 0.565 202.1 

Pupil 
Diameter 

4.68 0.048 2.26 x 10-7 2.68 0.124 1.57 x 10-7 0.01 0.911 1.81 x 10-7 

 
 

 

 
Figure 4.  Plots of condition means for the measures showing a significant main effect of load at uncorrected p < 0.05. 

 
DISCUSSION 
 
Two of the primary objectives of this study were:  (1) to validate that the task difficulty manipulations used here can 
reliably increase operator workload and that the behavioral and subjective rating data is sensitive enough to detect 
changes in even this type of applied environment, and (2) to validate that the non-invasive physiological sensor 
systems used in this study are sensitive to changes in operator workload.  Regarding the first objective, the 
behavioral performance and subjective rating data support the hypothesis that the task manipulations significantly 
altered operator workload. Significant differences in novice accuracy and subjective difficulty rating corresponded 
with expert ratings of difficulty. Interestingly, there was no significant difference in either accuracy or subjective 
difficulty between tasking using the two imagery types.  
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The finding is surprising because the subject matter experts indicated that, in general, WAMI sensor data is 
significantly more difficult to work with due to its lower resolution and temporal sampling rates. There are several 
potential explanations. It might be that in general working with WAMI imagery does not increase analyst workload 
compared to FMV. However, previous data gathered using Cognitive Task Analysis methods indicates analysts at 
least subjectively feel that working with WAMI increases workload. It would be expected that we should at least 
have identified differences via the NASA-TLX. It is possible that there was not sufficient power to detect an effect 
between the imagery types (i.e., the effect was small). However, the data does not even indicate a trend in the 
anticipated direction.  
 
The final hypothesis is that the expert analyst that identified the tasking unknowingly created tasking of different 
difficulty depending on the imagery type (i.e., easier tasking for WAMI than for FMV) negating the influence of 
imagery difficulty. Despite efforts to keep tasking difficulty equivalent across conditions, the real world imagery 
available may have been more conducive to more difficult tasking for FMV as compared with WAMI. Future 
research to compare imagery types should identify the same footage for each sensor type and use identical tasking. 
While this was considered prior to running the experiment, this was not possible in our design due to the availability 
of imagery at the time this research was conducted. The results here regarding imagery type should be interpreted 
cautiously.  
 
Regarding the second objective, the data from the SmartEye TM eye-tracker and EquivitalTM physiological sensor 
systems will be discussed here individually, beginning with the SmartEye TM data, before addressing the battery of 
physiological assessment measures as a whole.  Overall, a number of measures extracted from the eye-tracking data 
differed significantly across the task load conditions, indicating that the eye-tracking data was sensitive to 
differences in workload demands.  At the same time, the eye-tracking measures were largely unaffected by the type 
of sensor (WAMI vs. FMV) used by the participants (fixation duration and pupil quality were the only two measures 
that were either marginally significant or significant).  This latter finding is somewhat surprising due to the fact that 
the study did not attempt to control for physical stimulation parameters of the two types of sensor feeds (such as 
luminance and contrast) as might be done in a tightly controlled basic research experiment and that luminance is 
known to affect eye-movement parameters such as pupil diameter.  On the other hand, the pupil also expands and 
contracts dynamically over a matter of seconds in response to perceptual and cognitive events (Beatty, 1982), and it 
is possible that the pupillary dynamics evoked by the task masked any effects that physical stimulation parameters 
might have had on the eye-tracking measures.   
 
While a number of measures extracted from the eye-tracking data were sensitive to differences in workload (i.e. they 
differed significantly between the two task difficulty levels), the degree to which each measure was diagnostic (i.e. 
how consistent the direction of each effect was with previously reported findings in the literature) was somewhat 
mixed.  The blink-related measures extracted from the data were quite consistent with the existing body of literature.  
As has been reported previously, blinks were shorter in duration (Fournier, Wilson, & Swain, 1999; Veltman & 
Gaillard, 1998; Zheng et al, 2013) and were marginally less frequent (Fournier, Wilson, & Swain, 1999; Recarte et 
al, 2008; van Orden et al, 2001) under the higher workload conditions.  Furthermore, the inter-blink interval was 
marginally smaller under the higher workload conditions, consistent with studies showing a similar effect as a 
function of memory load (Veltman & Gaillard, 1998).  The fixation duration effect was also consistent with a study 
showing shorter fixation durations among anesthetists when managing a critical incident compared to scenarios 
lacking a critical incident (Schulz et al, 2011).  However, the expected effect of increased workload on fixation 
duration appears to depend on what is driving workload – Zelinsky and Sheinberg (1997) found longer fixation 
durations in a basic research task when participants had to search through a screen with a larger number of elements.   
 
Other measures exhibiting a significant effect of workload, however, indicated an effect that was not consistent with 
what might be predicted based on findings from the literature.  The most prominent example is the significant 
decrease in pupil diameter observed here under the high workload conditions.  Contrary to this finding, the majority 
of studies report that pupil diameter increases under higher workload conditions (e.g. Beatty, 1982).  However, there 
is some evidence to suggest that the relationship between workload and pupil diameter may not be monotonic, 
which might explain why the effect of load on pupil diameter was reversed in the current study.  Van Gerven et al 
(2004) tracked pupil diameter as a function of memory load across a number of load values and found that although 
pupil diameter increased for most step-wise increases in memory load, at the very highest level of memory load, 
pupil diameter decreased substantially.  Similarly, another study indicated that adding a secondary task onto a 
primary task increased pupil diameter when the primary task was lower in mental workload, but it decreased pupil 
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diameter when the primary task was already higher in mental workload (Recarte et al, 2008).  However, one caveat 
to the workload effect on pupil diameter reported here is that the effects of workload on SmartEye’s pupil quality 
and iris loss measures –measures of signal quality – were marginally significant, with both indicating poorer signal 
quality under the high load conditions than under the low load conditions (see Table 4 and Figure 4).  Furthermore, 
the effect of sensor type on pupil quality was also marginally significant, with signal quality better for the WAMI 
than for the FMV sensor conditions.  The effect of load on pupil quality could be explained by participants moving 
their heads either more often or closer to the screen and out of optimal sensor calibration range in the high load 
condition, although this explanation is speculative.  The pupil diameter measure included in the analysis here was 
drawn from SmartEye’s Filtered Pupil Diameter parameter, which adds temporal smoothing to the current sample’s 
diameter estimate in inverse proportion to the current pupil quality estimate.  While the filtering algorithm should 
have reduced the impact of the effect of signal quality on pupil diameter, the main effect of load on the pupil quality 
indicates that simple measurement differences cannot be ruled out as the main driver of the observed workload 
effects on pupil diameter. 
 
Other measures that were significantly or marginally significantly affected by workload in the current analyses have 
not shown this effect consistently in previous studies.  In particular, recent workload studies reporting saccade 
duration as a dependent measure failed to find a significant or marginally significant effect of workload (Di Stasi et 
al, 2010; Halverson et al, 2012).  A different, but related, measure – saccade distance – also has not consistently 
been affected by workload across studies (Halverson et al, 2012 and Schulz et al 2011 for negative results; van 
Orden et al, 2001 and Zelinsky & Sheinberg, 1997 for positive results).  Notably, the two studies that did report 
effects on saccade distance (van Orden et al, 2001 and Zelinsky & Sheinberg, 1997) both manipulated overall 
workload by increasing the perceptual processing demands of the task.  This manipulation was similar in nature to 
the workload manipulation used in the current effort, and the direction of the effect reported here (shorter duration 
saccades) is consistent with what one would expect to see in saccades of a shorter distance, as reported in van Orden 
et al (2001) and Zelinsky and Sheinberg (1997).  Therefore, the effect of workload on saccade duration here is 
consistent with some reports in the literature, but it may only hold for high workload conditions associated with the 
perceptual difficulty of a task.  In contrast, the current effort failed to find an effect of workload on eyelid opening, 
which contrasts somewhat with a recent claim that PERCLOSE (percentage eyelid closure, a related measure) 
discriminates levels of workload well (Halverson et al, 2012).  Our finding is more consistent with the larger body of 
literature on workload.  The finding reported by Halverson et al (2012) may reflect combined effects of workload 
and vigilance – operators performed the task for 40 minutes straight, alternating between low- and high-levels of 
workload in 5-minute segments.  Workload and vigilance are not entirely independent constructs (Caggiano & 
Parasuraman, 2004; Parasuraman, 1979; Warm, Parasuraman, & Matthews, 2008), and the effect of workload on 
PERCLOSE may have emerged from a workload x vigilance interaction during later segments of the 40-minute 
sessions. 
 
Noise in both the heart rate and eye tracking data was a substantial issue that must be considered in future extensions 
of this work, particularly the instances in which the signal quality metrics were affected by the workload 
manipulation.  In the current study, several steps were taken to address these potential noise issues:  (1) trials for 
each condition were averaged together for all participants, and the data were analyzed using a random effects model 
on the group-wise data, (2) trial-wise data were normalized to a per-60-second time window based on the segments 
of the trial in which the relevant eye-tracker signal was adequate, and (3) thresholds for individual measure instances 
(e.g. individual fixations and saccades) were based on the measure duration to ensure that the automated measure 
extraction algorithms were identifying true measure instances. 
 
Overall, this study provided evidence for both the sensitivity and the diagnosticity of a subset of the measures 
extracted from a variety of data sources in relation to the workload demands of a task. As expected, behavioral 
performance and subjective data showed robust differences even in simulated real-world environments. For future 
studies, blink-related measures seem to be the most robust and diagnostic measure captured by the SmartEye TM 
data, followed by saccade duration and fixation duration.  For the type of tasking imagery analysts generally 
performed, heart rate and heart rate variability were not sensitive enough to detect differences. This may have been a 
function of the system selected or the environment. Note that the system selected was identified on the basis of 
being relatively non-disruptive to typical tasking. Additional foundational research should be conducted before 
leveraging electrocardiogram-based measures for diagnosticity of workload for imagery analysis. Overall, this set of 
converging metrics will allow us to identify changes in analyst workload in high fidelity simulated environments 
where missing data is common. This affords the capability to allow analysts to participate in team interactions, move 
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around in the environment, and act naturally while providing real-time seamless and non-disruptive data collection. 
While we would not recommend these conditions for answering basic research questions, these types of applied 
environments are critical for providing empirical data so that the USAF is an informed consumer with regard to 
technologies for intelligence analysts. 
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