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ABSTRACT 

 

In this paper, the problem of capturing human motion in a natural environment is discussed from the perspective of needs, 

significance, scenarios, and technical challenges. The technologies that can be potentially used to capture human motion and 

activity in a natural environment are discussed, which include electromagnetic sensors, LED lights, inertial measurement 

units, range sensors, and computer vision-based markerless motion capture technology.   

 

Two markerless motion capture methods for capturing human motion from video imagery are investigated and implemented 

in this paper. The first method uses a silhouette shape descriptor to describe silhouette shape and maps the silhouette shape 

descriptor (input vector) to joint angles (output vector) through a mapping matrix which is determined using relevance vector 

machine. The second method performs pose estimation by fitting a 3D human model to the silhouette through an iterative 

optimization. By minimizing the distance between the silhouette and the template skeleton-surface model that is embedded 

inside the silhouette, joint angles are estimated and thus pose is identified. The silhouettes extracted from human animation 

data are used for training the methods. The initial results of the two methods are presented and analyzed.  
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INTRODUCTION 

 

The problem to be addressed in this paper is human motion capture in natural environments and settings, which may 

refer to any of the following conditions:  

 Natural light, shadow, and occlusion,  natural terrain and background, and natural scenarios;  

 Humans in natural appearance with street clothing carrying some objects;  

 Humans in natural states such that he/she moves or performs actions/activities freely; 

 Humans in a natural context interacting with other humans or their surroundings. 

  

Compared to traditional motion capture that is often conducted in a laboratory environment under controlled 

conditions, human motion capture in natural environments can potentially provide greater benefits and more unique 

features including: 

 High biofidelity. Since human motion will no longer be restricted by suits, markers, or other sensors being 

placed on the body, the captured motion could provide higher fidelic representation of true human motion.  

 True realism. Since a human moves or acts naturally, the captured motion is more realistic and natural. 

 Large variety of motion that is otherwise impossible to capture.  For instance, when a human subject wears 

loose clothing, it is almost impossible for marker based methods to capture the true body motion. 

 Minimum pre-setting and no need for subject cooperation. These are two unique features provided by 

markerless motion capture technology.  

 

There are various industry needs and commercial scenarios where capturing human motion in natural environments 

becomes necessary, such as athletics and sports, health care, human machine interface, and the entertainment 

industry. Human motion capture in natural environments has a variety of important applications within the United 

States (US) Department of Defense (DoD). For instance, within the modeling and simulation (M&S) community, 

human activity M&S plays an important role in simulation-based training and virtual reality (VR). However, human 

motion/activity simulation provided by current human modeling tools/technologies is either artificially synthesized 

or based on data collected in a laboratory environment, which lacks sufficient biofidelity and realism. In order to 

describe and simulate human motion/activity in the real world, it is necessary to capture human motion in a natural 

or real world environment. For homeland security purposes, human motion capture and analysis from video streams 

recoded in natural settings (e.g., airports and security check points) can be used to recognize human intent and to 

identify human borne threats.   

 

Depending on specific application scenarios, the requirements on the motion capture technology (MCT) to be used 

in natural environments may vary. However, important, common requirements are as follows: 

 Accuracy.  With respect to different applications or scenarios, the accuracy of joint angle estimation provided 

by a MCT can be defined at three different levels. 

o Low level: The focus is on pose identification where the joint angles associated with a particular pose 

can vary in a range. The applications or scenarios include machine-human interface, human intent 

prediction, and human activity recognition. 

o Medium level: The emphasis is on pose identification as well as joint angle estimation. The problems 

can be, for example, human activity replication/animation in M&S based training and serious games 

where high accuracy of joint angle estimation is required for the biofidelic replication of motion, but it 

could be lowered as soon as the motion looks real and natural.    

o High level: The focus is on joint angle estimation and gait/motion analysis. The applications involve 

biomechanical issues which require precise estimation of joint angles so that the relationship between 
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force and motion can be accurately determined. The problems include sports (e.g., athletic training), 

health (e.g., prosthetic rehabilitation, and gait and balance training), and the extraction of spatial-

temporal biosignatures.   

 Efficiency.   Motion capture discussed in this paper includes recording motion data and processing motion data.  

Recording data uses sensors and relevant hardware whereas processing data mainly implements software to 

derive the required information, such as pose identification and joint angle estimation. Since extensive 

computation is usually needed in processing data, efficiency refers to the computational speed at which a 

designated task (e.g., pose identification) can be accomplished. Depending on specific tasks of motion data 

processing and applications, efficiency can be considered at two different levels. 

o Real time: Ideally, the processing of captured motion data can be done in real time or nearly real-time 

so that the desired data or information can be provided for use in a timely manner. For many 

application scenarios, such as human-machine interface, immersive and interactive training, and 

security surveillance (e.g., human intent prediction and human borne threat detection), it is necessary 

to achieve real-time processing. 

o Off line: For many applications, such as those related to gait/motion analysis, activity replication, and 

biosignature extraction, real time processing is not necessary; instead, off line processing is acceptable. 

 Robustness.  It has two-fold implications: sensors and hardware systems can reliably acquire motion data under 

specified conditions, and the meaningful or desired data/information can be derived from the data collected. 

While it is desirable for a technology to perform robustly for every frame, given the complexity of human 

motion under various natural conditions, it is almost inevitable that a system or technology will fail for some   

ill-conditioned frames. However, it is necessary for a system to capture reliable motion data for key frames that 

depend on particular problems or applications.  

 Minimum setting/interference. Capturing human motion in natural environments often requires minimum 

system setting (e.g., setting lights and placing markers or sensors on a subject) or even prohibits pre-setting. In 

many application scenarios, such as security surveillance, it is impossible to have a subject’s cooperation, and it 

is preferable to avoid subject awareness.    

 

Due to the complexity of human motion and the variety of natural environments, capturing human motion in natural 

environments has many hurdles to overcome. With respect to data collection, the major technical challenge is 

acquiring reliable, useful, and complete data under various conditions. With respect to data processing, the main 

technical difficulty is quickly analyzing the data to derive the desired motion data or information.      

 

THE STATE-OF-THE-ART OF MCT 
 

Retro-reflective optical motion capture technology, as a gold standard in accuracy, is widely used and commercially 

provided by many vendors using various optical systems. The technology relies on line of sight between multiple 

cameras with light emitting strobes and retro-reflective markers placed on the subject. The optical systems are, 

however, cumbersome to move and cannot be used with common attire or street clothing, which inhibit its use in 

natural or real-world settings. Besides, using a marker tracking system is sometimes disadvantageous because of the 

mere fact that markers must be placed on the body.  Placing markers on the body not only introduces error in the 

skeletal position due to soft tissue artifacts but also changes the way subjects move, although the change is slight in 

most cases.  For example, when markers are placed on the medial aspects of the arms and legs, some subjects will 

tend to walk bow-legged and with their arms out to avoid knocking off markers as the legs pass each other and the 

arms pass the torso.   

 

The technologies that can be potentially used to capture human motion and activity in a natural environment include 

electromagnetic sensors, LED lights, inertial measurement units, range sensors (e.g., Microsoft Kinect), and 

computer vision-based markerless motion capture technology. Electromagnetic sensors provide accurate orientation 

and position, but are greatly limited by the range of the generated magnetic field. In recent years, depth cameras 

such as the Microsoft Kinect have become available for full body motion tracking at reasonable prices. However, 

like optical motion capture systems, depth cameras have relatively narrow fields of view which lead to very limited 

workspaces. Because these depth cameras are designed to use infrared sensors, their performance reduces 

significantly in outdoor environments under direct sunlight. Inertial measurement units (IMUs) could be used for 

human motion capture with great portability and flexibility. They can work almost anywhere, but are unable to 

maintain long-term stability and accuracy. Computer vision based markerless motion capture (MMC) approaches 

rely on image streams from one or multiple cameras for human motion analysis. It could maintain long-term 
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tracking with a certain degree of accuracy, but may often produce inaccurate results due to occlusion. Based on their 

application potentials, IMU and MMC technologies will be discussed in more detail below.  

 

Inertial Measurement Unit (IMU) 

An IMU is a device that uses a 3-axis micro-electro-mechanical system (MEMS) gyroscope, 3-axis MEMS 

accelerometer, and 3-axis MEMS magnetometer to track the device’s orientation in a global reference frame via 

sensor fusion of all 3 sensor outputs.  A constant global reference frame is established by finding the downward 

vector of gravity via the accelerometer and an orthogonal vector pointing north using the magnetometer.  A third 

vector orthogonal to the others to complete the 3D reference frame is calculated by taking the cross product of the 

first two.  Orientation of the device is then tracked with respect to this reference frame. When an IMU is attached to 

each body segment, the pose of the subject can be defined in terms of Euler rotation angles between IMUs attached 

to articulated body segments.  There are a number of commercially available IMU systems that can be used for full 

body motion capture with a wide range of applications.  Xsens (http://www.xsens.com), for example, is a fully 

developed system that includes a suit with IMUs imbedded in the material, and proprietary software for creating a 

subject specific model and recording of data.  On the other hand, IMU’s from companies like APDM 

(http://apdm.com) do not come with ready-to-use software, but with a software development kit that allows users to 

create their own model and software that is specific to their applications and completely customizable.  All IMUs 

work in the same general way.  The factors that determine their accuracy include the quality of the sensors and on 

board software that corrects or compensates for sensor drift and other disturbances.  Magnetic interference from 

power lines, machinery, ferromagnetic materials, etc. is a problem inherent to all IMUs because the interference 

throws off the magnetometer that is essential to defining the global reference frame.   

 

Extensive research has been performed on using IMUs in motion capture applications and on increasing accuracy 

and performance of IMUs.  For instance, Cutti et al. (2010) developed a protocol to measure the torso and lower 

limb kinematics of children with cerebral palsy and amputees during gait in free-living conditions.  Their protocol 

consisted of 3 steps, placing IMUs on the body following some simple rules, computing the rotation axis of the 

knees, and measuring the IMU’s orientation in a pre-defined body position.  Using this protocol, the authors report 

root of mean square (RMS) error of 1.4 and 1.8 degrees and a standard error of 2.0 and 2.5 degrees for hip and knee 

angles, respectfully. However, creating a robust system is very difficult due to the disturbances from the factors 

described above. As noted by Favre et al. (2008) based on the ambulatory measurement of 3D knee joint angle, 

IMUs are often only reliable for a few minutes of recording.  Various signal analysis methods were utilized to 

improve the performance of IMUs for motion capture applications. Among them, the Kalman filter is a common 

method being used by many researchers. For instance, by using the Kalman filter, Mazza et al. (2010) attained 

significant accuracy improvements of up to 11 degrees and RMS errors of less than 1 degree. 

 

Markerless Motion Capture Technology  

Markerless Motion Capture (MMC) is motivated by the need in many situations to capture the motion of people or 

objects outside of a motion capture lab in a natural environment. It has great potential applications including 

interactive training, clinical gait analysis, surveillance, and vision for autonomous systems, among many others.  

Using computer vision methods to perform MMC from a sequence of video images has been a central topic for 

computer vision research in the last two decades. Virtually all computer vision MMC methods can be grouped into 

two general categories: generative methods and discriminative methods.   

 

Generative Methods 

Generative methods typically use an optimization algorithm to minimize the difference between a template model 

and a measurement taken from the images.  The variables (usually some measurement of subject pose and 

orientation) that produce the minimum difference are taken to be the true pose and position/orientation of the subject 

being recorded.  They are called generative because they use a model to generate motion that matches the subject.  

They have the advantages of being general and robust to virtually any kind of movement or subject, but if the model 

or problem is formulated without appropriate constraints, they can produce unrealistic results.  Various optimization 

algorithms also present a challenge to using generative methods, as each algorithm performs differently from the 

others.  Some have parameters that need tedious tuning, and some algorithms may be more inherently suited to a 

type of problem than others.   

 

The basic approach for generative methods involves the following steps: 
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a. A deformable 3D human model (e.g., a skeleton model or 3D shape model) is created.  The model parameters 

include, but are not limited to position, orientation, joint angles, and shape parameters. 

b. Silhouettes are used to compare the input images to the model.  Segmentation algorithms are used to produce 

the silhouettes of the subject from input images, and a virtual camera is used to take projections of the model 

from the same perspective as the input images.  

c. The silhouettes are compared in terms of certain metrics with a cost function. Regardless of metrics variation, 

the cost function output is a scalar value that quantifies the difference.   

d. An optimization algorithm is used to find the optimum values of the model parameters for each frame that 

minimize the cost function.  

 

There are many variations to this basic approach.  One method by Kohli et al. (2008) called pose-cut, seeks to tackle 

the problems of segmentation and pose estimation together.  Based on the representation of an image as a Markov 

Random Field, the method utilizes optimization to minimize a cost function that includes a term for segmentation 

and a term for pose estimation. Segmentation is performed using dynamic graph cuts where a stick man model is 

used as a shape prior.  Pose estimation is achieved by fitting to the segmented image a shape prior that is deformed 

from the articulated stick man model. They showed that the rough, pose-specific shape prior provided by the model 

significantly improved segmentation results.   

 

Another paper by Saito et al. (2014) tries to estimate body trunk shape and pose from silhouettes using a 

homologous human body model that treats human functional joints as the implanted vertices within body surface 

meshes. They create their deformable trunk model by analyzing a homologous model database using principal 

component analysis (PCA).  The model then uses principal component projection coefficients (with 95% 

contribution ratio) and four joints with three degrees of freedom (DoF) in the spine to determine shape and pose of 

the model.  The difference between the input images (torso silhouettes from the front and side views) and the 

projections of the model from the same perspective is represented by a cost function which is defined as follows. 

The input silhouettes are used to create a contour distance image which combines the distance transforms of the 

silhouette and its reverse image such that every pixel in the image has a value equal to the minimum distance to the 

silhouette contour.  The projected silhouette outline of the model is then used as a mask and overlaid on the contour 

distance image.  The cost function includes the pixel values of the contour distance image summed over each pixel 

of the mask and divided by the number of pixels in the mask. The cost function is then minimized using the 

covariance matrix adaptation evolution strategy (CMA-ES).  They reported a mean error of only 6.67mm over 100 

reconstructed torso models. 

 

Discriminative Methods 

Discriminative methods typically seek to describe the shape of a silhouette and then use a machine learning 

algorithm to determine the relationship between the silhouette shape descriptor and the joint angles as well as other 

model parameters from the training data sets. While these methods can be accurate, they are limited to the motions 

they expect to see based on the training set. Discriminative methods often have a hard time classifying movements 

that were not part of their training set. A method that has shown to be successful in tracking several motions from 

silhouettes was developed by Agarwal and Triggs (2008).  In this method, a shape context is calculated for each 

silhouette image in the training set, which is a histogram of the angles and distances to the other points on the 

contour using 12 angular and 5 radial log-polar bins, creating a 60D vector.  A k-means algorithm is then used to 

cluster the shape contexts into 100 clusters, the centers of which form a vector of 100 dimensions.  The vector for 

each point on the silhouette is summed to create a 100D histogram for each silhouette.  This is what they call the 

observational model, and the basis functions for this model are selected via relevance vector machine.  A dynamic 

model (an auto regression model) based on the joint angles of previous frames constitutes the second part of the 

statistical model used in this method.  The two models together form a robust statistical model that takes similar 

measures from input silhouettes and estimates joint angels and body gross motion based on the shape context and 

historical motion of the model. 

 

A paper by Toshev et al. (2009) uses similar methods to track the motion of vehicles.  While vehicles are rigid 

objects that generally lack separate segments connected by movable joints, the problem of fitting a model to a 

silhouette is the same.  Toshev et al. creates a statistical model they call a model view graph.  It consists of 500 

silhouettes of each model taken from a uniform distribution of viewing angles.  The edges connecting neighboring 

silhouettes represent view transitions that can be induced by motion of the model.  A codebook is then created using 

shape descriptors of each silhouette, forming a 200D histogram for each model.  Input images are then classified 
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based on the best fit to the silhouette model histograms using the parameters of shape, orientation about the 

silhouette centroid, scale, and viewpoint.  A score is assigned to each fitting and a maximum score is found using a 

backward-forward algorithm. 

 

Silhouette Extraction  

One common necessity shared by both categories of computer vision methods is the need for segmentation of the 

images before position and orientation of the subject can be estimated, meaning the subject in the image must be 

separated from the background in order to make an accurate estimate.  This is often done by silhouette extraction, 

which generates an image that is just a white silhouette of the subject on a black background, but it is not the only 

method. Segmentation and silhouette extraction are separate, challenging computer vision problems in their own 

right.  Some MMC methods tackle the problem of segmentation and pose estimation simultaneously, as the method 

described in Kohli et al (2008). 

 

MARKERLESS MOTION CAPTURE TECHNOLOGY DEVELOPMENT 

In a Small Business Innovative Research (SBIR) project sponsored by the US Air Force, efforts were made to 

develop a technology for markerless motion capture. One discriminative method and one generative method were 

implemented. Both require data for training and testing.  

 

Training Data Generation 

Using animated motion allows high quality silhouettes to be extracted thus making it easier to train the model. 

Therefore, the data (silhouettes) required for training both methods were obtained from human activity modeling 

and simulation through the following procedures (Cheng et al., 2011).  

1. Use OpenSim (http://www.opensim.stanford.edu) to compute joint angles from the motion capture data of a 

human subject performing different activities.  Create a biovision hierarchy (BVH) file for each activity based 

on the joint angles.  The OpenSim animation of walking is illustrated in Figure 1.  

2. Use Blender (http://www.blender.org) to create the shape model from the subject scan data and animate the 

model with the BVH file for each activity, as shown in Figure 2.  

3. Create videos of the motion from a selected camera view (side view), as shown in Figure 3 as an example.  The 

videos display a white image of the human subject on a dark background in order to make it easier to extract 

silhouettes.   

4. Use OpenCV (http://www.opencv.org) to find the silhouette contour for each frame, as shown in Figure 4.  

 

 
 Figure 1.OpenSim animation of walking       Figure 2. Blender modeling and animation 

 

    
    Figure 3. Image from side view of 3-D animation   Figure 4. Silhouette contour for each frame 

http://www.opensim.stanford.edu/
http://www.blender.org/
http://www.opencv.org/
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Method-1: Discriminative Method 

The discriminative method implemented in this paper is based on the method proposed in Agarwal and Triggs 

(2008) with two major modifications. One modification is using the discrete cosine transform (DCT) to replace 

shape context (SC) as the silhouette shape descriptor. While SC is an effective silhouette shape descriptor, it is 

calculated for every point of the silhouette contour for each frame, thus taking excessive computer time and memory 

when a large number of silhouettes are analyzed.  The DCT is computed on the entire silhouette contour for each 

frame, thus taking much less computer time and memory. All DCT coefficients or a truncation of its first part (the 

first 400 coefficients, for example) can be used to form a DCT coefficient vector for the silhouette shape description. 

The other modification is that a PCA is used to characterize the space formed by DCT vectors. Then each DCT 

vector was projected onto the eigenspace formed by the principal components.  Instead of directly using DCT 

coefficient vector, the first 64 projection coefficients were used to describe the silhouette shape for each frame.  

 

The silhouettes from nine subjects performing five activities (Cheng et al., 2012) were used to train the method.  

Another subject (subject 1100) performing the same five activities was used as the test case.  By comparing the 

estimated joint angles with their true values (which were from the BVH files used in the simulation) for subject 

1100, the RMS error for each joint angle is calculated and shown in Figure 5 for walking and jogging. Examples of 

the original motion of subject 1100 paired with a skeleton with the joint angles that were computed by the method 

are shown in Figures 6 and 7 for walking and digging, respectively.  It can be seen that for simple periodic motions 

like walking the RMS error of most joint angles over the entire motion is less than 1 degree.  However, as the 

motion to be tracked becomes more complex and dynamic, RMS error increases quickly, as seen in the jogging 

motion. 

 

 
Figure 5. RMS errors for walk and jog activities 
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 Figure 6. Subject 1100 walking    Figure 7.  Subject 1100 digging 

 

Method-2: Generative Method 

The generative method is based on the methods in Saito et al. (2014) described previously with several 

modifications.  One is that a full body model with a fixed shape rather than a torso model described by PCA 

coefficients is used.  The cost function was also modified to reflect the fact that only the pose and position of the 

model (not shape) is considered in the optimization and a penalty factor evaluation was added to help overcome 

problems with limb occlusion. 

 

The animation videos of subject 1100 described above were used to create a contour distance image for each frame.  

It creates a pixel depth map with the lowest value (0) along the outline of the silhouette, and larger positive values 

farther away from the outline, both inside and outside the silhouette figure.  For each frame of video, there are two 

views: 1) a head-on view aimed at the front of the subject and 2) an orthogonal view 90 degrees to the subject’s 

right.  A 3D deformable human model is then created.  In order to create the best possible fit, the model reflects the 

exact shape of subject 1100.  The model has 15 bones and 36 DoF that define the model’s 3D pose, position, and 

orientation in space. 

 

Using the CMA-ES algorithm (Hansen, 2009), the model parameters, i.e., joint angles and global 3D position, are 

optimized to best fit the silhouette.  During the optimization iteration, the model is positioned according to the guess 

for the present function iteration.  Front and side projections of the positioned model are then captured, creating 

similar silhouettes to those in the input video frame, which are then reduced to an image of the silhouette outline 

only using an edge finding algorithm. The length (number of pixels) in the model contour is calculated, and a 

penalty factor of 2 is applied if the contour lengths of the input image and model image are not similar.  Otherwise, 

the penalty factor equals 1.  The cost function is then calculated.  Within the cost function, the front and side model 

outline images are overlaid on their respective contour distance images.  For each view, the pixel values of the 

contour distance image are summed over the white pixels of the model contour and the sum is normalized by the 

number of pixels in the contour.  The normalized sums of both views are added to calculate a total cost for the 

present iteration, which is multiplied by the penalty factor.  The cost function is expressed as:   

               
         

             

where PF is the penalty factor, views are the front and side view, CDI is the contour distance image, mask is the 

white pixels of the model contour image, and numPixels are the number of white pixels in the model contour image.  

This cost function is minimized to find the pose for each frame in the video.  The cost represents the average 

distance in pixels between the outline of the model and the outline of the input silhouette, which for a perfect fit, 

would be 0. 

 

The method was tested with walking, jogging, and throwing motions performed by subject 1100.  The time histories 

of optimal joint angles were smoothed using a second order Butterworth filter with a cutoff frequency of 6 Hz.  

Animations of the model using the filtered joint angles look smooth and quite realistic.  An example of the input 

silhouettes, a contour distance image, and the model in the optimized position for a frame of walking motion is 

shown in Figure 8. 

 

The results of optimization were compared to the original BVH files used to create the test data described above to 

determine accuracy. Only major sagittal plane joint angles were compared, as they are the significant ones that are 
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commonly analyzed in activity recognition and basic gait analysis.  The RMS error for each joint angle for walking, 

jogging, and throwing was calculated.  Of the three motions, walking had the smallest RMS errors.  Over the length 

of the video, RMS error for the lower limb joints and lumbar joint, i.e. lumbar flexion, hip flexion, knee flexion, and 

ankle plantar/dorsiflexion ranged from 4.2-14.2 degrees.  The upper limbs experience much more occlusion from the 

torso; consequently, upper limb joint angle errors, i.e. shoulder and elbow flexion, were significantly larger, ranging 

from 22.9-31.0 degrees.  However, over the length of the video and multiple strides, limbs were occasionally 

confused by the model, which led to a solution with good fit but poor accuracy and increased RMS errors.  Error 

calculations for one complete gait cycle with no limb confusion showed smaller RMS errors. Figure 9 shows a 

comparison of RMS errors for each joint angle between full video duration and one complete gait cycle of walking. 

 

 
Figure 8. Input silhouette, contour distance image, and optimized model in 3D pose 

 

 

Figure 9. RMS error of major joint angles during walking and throwing 

RMS errors for a throwing motion are also presented in Figure 9.  Shoulder ab/adduction angles were also included 

in the error analysis because a large amount of motion happens about that joint axis during this motion. The 

throwing motion is much more dynamic than walking.  Consequently we see higher RMS error across all joint 

angles. Like the walking motion, RMS error of the lower limb joints are much lower than the upper limb joints, with 

lower limb joint error ranging from 7.2-18.4 degrees, and upper limb joint angles ranging from 20 to 45.3 degrees.  

However, there is very little, if any, limb confusion. 

 

Discussion  

Both discriminative method and generative method implemented in this paper were able to track various human 

motions with varying degrees of accuracy.  Both methods have advantages and disadvantages compared to the other.  

The discriminative method is faster and more accurate, but requires training for the motions it expects to capture.  

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

D
e

gr
e

e
s 

Joint 

full video walking 

1 gait cycle 

throwing 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2014 

2014 Paper No. 14116 Page 10 of 11 

The method also had difficulty with motions that were not periodic. On the other hand, the generative method does 

not require any training but captures motion with less accuracy. It can be seen from the results of both methods that 

the upper limb joint angles are estimated with greater error than the lower limbs.  This is due to the limb occlusion 

by the torso.  Whereas the lower limbs only occlude each other for a brief period of time, the upper limbs are often 

occluded by the torso for much longer time, especially in the side view.  When occluded, there is no information in 

the silhouette describing the position of the upper limbs.  Therefore, many positions can be accepted by the 

optimizer.  Constraints must be chosen carefully to minimize these occlusion errors without constricting the model 

to the point where it cannot follow complex motions.   

 

The error caused by limb occlusion could possibly be addressed by using multiple cameras to view the subject from 

different perspective angles.  Additional views would provide extra information that would reduce the ambiguity of 

the pose when limbs are occluded in other views. The estimation error of the upper limb joints for the throwing 

motion can also be caused by the constraints applied to the model during optimization.  The arm achieves very fast 

joint rotational velocity when throwing an object.  If the joint velocity constraints on the model are too tight, fast 

movement of the arm will not be captured appropriately.  This could possibly remedied by loosening the constraints; 

however, doing so would expand the solution space, leading to the increased solution times.  It was also noted that 

there was far less limb confusion during the throwing motion than in walking.  This is likely a result of the high 

degree of silhouette asymmetry in the frontal view of the throwing motion as opposed to the walking motion.   

 

An interesting note is that despite the differences in accuracy between the discriminative method and the generative 

method, the replicated human motion from both methods for all activities still looks smooth and natural to the 

human observer.  Therefore, we believe both methods could be used for pose/activity recognition and human motion 

replication/animation, since when different human subjects perform the same motion, their joint angels can have 

large variations.  

 

CONCLUSIONS 

 

There are various industry needs and commercial scenarios where capturing human motion in natural environments 

becomes necessary. There are various requirements on the motion capture technology to be used in natural 

environments.  Due to the complexity of human motion and the variety of natural environments, capturing human 

motion in natural environments has great hurdles to overcome. Among the motion capture technologies that can be 

potentially used in natural environments, the computer vision based markerless motion capture technology has the 

largest potential, because it requires minimum pre-setting and has no need for subject cooperation.   
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