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ABSTRACT

Increasingly, Modeling and Simulation (M&S) is playing a key part in the decisional process Program Managers
(PM) make in the development of new systems, testing, doctrine, and other processes. Unfortunately, the PM must
navigate their decisions about leveraging M&S without any supporting aids, making entry and efficient utilization
difficult. There is currently no systematic method for assembling environments and designing experiments from
multiple M&S perspectives like Live vs. Virtual vs. Constructive simulations to provide decisional data. This
process typically requires multiple stakeholders to meet many times in an effort to assemble modeling and
simulation-based experiments “that work.” As more models, simulators, and scenarios become networked and
available to experimenters, a solution is needed to facilitate and accelerate the setup of complex experiments that
involve these assets. To meet this need, research was conducted to develop the Live Virtual Constructive & Game -
Assisted Experimental Designer tool (LVC&G-AED), an interface and software solution that guides individuals
through a ten-step research process, from defining research questions and choosing variables of interest, to
developing relevant measures and specifying the environment’s software and hardware apparatus. This process is
designed to be high-level, capturing the questions of the various professionals involved in simulation development,
while being sufficiently rigorous to ensure that specific research questions are addressed. Partially Observable
Markov Decision Process algorithms, coupled with an intuitive user interface, allow for interactive exploration of
the state space of experimental configurations of simulators, equipment, and other resources available to the user.
Through the LVC&G-AED decision-aid, experimenters are provided with recommendations for optimal
experimental design configurations. Ultimately, LVC&G-AED translates experimental and simulation requirements
into machine-actionable constraints, to facilitate the complex setup of experiments that involve combinations of
Live, Virtual, Constructive, and Game M&S environments. This paper focuses on the development lessons learned
during this research and the way forward.
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INTRODUCTION: THE EASE CONCEPT OF OPERATIONS

Increasingly, Modeling and Simulation (M&S) plays a key part in the decisional process Program Managers (PMs)
make in the development of new systems, testing, doctrine, and other processes. Unfortunately, the PM must
navigate a complex decision space to leverage M&S, without any dedicated supporting aids. The sheer amount of
information available and the vast number of considerations that must be taken into account make efficient
utilization of this research space difficult. There is currently no systematic method for assembling environments and
designing experiments from multiple M&S perspectives such as Live vs. Virtual vs. Constructive simulations to
provide decisional data. This process typically requires multiple stakeholders to meet many times to assemble M&S-
based experiments that sufficiently answer research questions. As more models, simulators, and scenarios become
networked and available to experimenters, a solution to this complex decisional process is needed to facilitate and
accelerate the setup of experiments that involve these assets.

From the introduction of new technology to dynamic enemy tactics, the ability to test and train new technologies,
operating procedures, and organizational structures in a quick and cost-effective manner is becoming increasingly
important. Live, Virtual, Constructive, and Game (LVC&G) simulations allow for efficient and repeatable
experimentation; however, many individuals are involved with the creation of LVC&G simulator hardware,
software, and scenarios. An Army analyst understands the phenomena to be studied. An operations researcher or
systems analyst understands research methods, experimentation, and measurement. A simulation engineer knows the
intricacies of the LVC&G scenarios and general capabilities specific to the LVC&G platform. In order to create an
appropriate scenario, all three of these individuals must coordinate. The difficulty of coordinating across people and
professions can slow development of tests — producing tests that are less decisive and efficient than desired, while
adding additional financial and manpower costs (McDonnell et al., 2011).

To bridge this gap, the United States (U.S.) Army’s Simulation and Training Technology Center (STTC) has
undertaken the conception of an Executable Architecture Systems Engineering (EASE) as a unifying platform that
connects stakeholders with all the M&S equipment at their disposal (Marshall, 2011). The fundamental purpose of
EASE is to ensure interoperability and connectivity between the users and their tools, in a manner that simplifies
access and implementation of experimental or training configurations (Figure 1). Beyond program managers,
stakeholders may include M&S users (e.g., experimenters or trainers), system engineers, developers, and other
subject matter experts. M&S equipment may refer to various apparatus available on-site or remotely, including
models, simulators, scenarios, hardware, software, and data repositories.
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Figure 1. STTC's EASE Concept of Operations

INTRODUCING AUTOMATED RECOMMENDATIONS IN THE DECISION-MAKING PROCESS

The development of a highly automated solution can streamline the selection and setup of simulation environments
by guiding users through the experimentation process, while still leveraging much of the knowledge of the
stakeholders by utilizing an intelligent solution. The experiment designs developed with such technology would be
well-structured and complete, so design teams can coordinate more productively over these products. To test this
approach, we developed the LVC&G Assisted Experimental Designer (AED), a machine intelligent and
scientifically-informed guided research aid to support a variety of networked LVC&G simulations.

As illustrated in Figure 2, the foundation of the AED decision-support system is a computer-based automated
interview process that enables users to input information relevant to their experimental objectives. This interview is
guided by a ten-step research questionnaire, structured as a systematic way of designing an experiment, from the
identification of research goals and statistical design to the definition of independent and dependent variables. An
intelligent algorithm then analyzes the input provided by the experimenter, in the form of a Partially-Observable
Markov Decision-Process (POMDP) model, which explores the domain space of feasible experimental
configurations that would satisfy the user’s objectives. The POMDP model dynamically queries a Knowledge
DataBase (KDB) containing information relevant to existing M&S or live assets, platforms or scenarios, as well as
records of previously-conducted experiments. With these data, the model infers feasible experimental configurations
that optimize the design for cost (i.e., minimizing the cost of running the experiment) and for quality (i.e.,
maximizing the quality of the expected experimental results). A rank-ordered list of experimental configurations is
returned to the experimenter through the AED interface, allowing the user to select the configuration they want to
run. Ultimately, AED will be able to automatically push an experimental design file based on the selected
configuration directly to the M&S or live platforms connected with EASE.

Assisted Experimental Designer

User Interface Model Database
10-step
T interview

- T process
POMDP Past experiments
imizati &

Experimenter Listof

results)
Equipmentinfo.

experimental

configurations

Figure 2. System Architecture for the Assisted Experimental Designer
In order to maximize the benefit of employing automated reasoning, we designed the AED tool such that it could

operate in a closed loop, constantly refining its recommendations for experimental configurations based on the
incremental new knowledge gained after each experiment.
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Figure 3. Process-oriented View of AED

The process diagram of Figure 3 illustrates the closed loop permitted by the usage of POMDP algorithms at the core
of the AED decision-aid. After an experimental configuration (“experiment”) is selected and implemented, AED
pushes the resulting data (“results”) to the KDB for future use. These results are also directly analyzed by the model,
which compares them to past results from the KDB and to the initial objectives input by the experimenter. The
model is then capable of updating its recommendations for experimental configurations so that the next experiment
may yield better results.

THE GRAPHICAL USER INTERFACE

To facilitate the input of experimental information by a user, an intuitive Graphical User Interface (GUI) was built.
It leverages a ten-step experimental design process that queries the user for key information related to the
experiment they wish to conduct (Figure 4). The ten-step experimental design process was built from previous
versions developed for the Office of Naval Research and for the Air Force Research Laboratory, in research projects
related to evaluating operator supervisory control performance in multi-asset resource allocation under uncertainty
(Cummings and Bruni, 2010) and to testing various experimental designs for target detection tasks by unmanned
systems operators (Swanson et al., 2012). This process was built to ensure that no key experimental parameter is left
out during the design and execution of the experiment, and that the design of the experiment is repeatable in a
manner that accounts for statistical validity.
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Figure 4. Screenshot of the Prototype Graphical User Interface for AED Interview Process
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The first seven steps, listed in a quick-access menu in the left panel and available as a form in the main area of the
GUI, include: (1) objectives, (2) research questions, (3) constraints, (4) environment, (5) independent variables,
(6) dependent variables, and (7) statistical design. Once the experimenter has filled out the first seven steps, the
model generates an experimental configuration based on user inputs and queries to the knowledge database. The
experimental configurations generated by the model are pushed back to the user in (8) configuration, a rank-ordered
list of experimental configurations generated by the AED model for the experimenter to select from and modify as
they see fit (e.g., “One Semi-Automated Forces (OneSAF) with Scenario 4 and the Vision Toolkit). The process
ends with two additional steps: (9) protocol, where the system outputs an automatically-generated experimental
protocol document that lists information pertaining to the experiment with the selected configuration and (10)
Internal Review Board (IRB), where the system generates documents pertaining to the submission of an
application for IRB approval whenever the research involves human participants.

Figure 5 depicts the GUI for the results input form. While the vision for an integrated version of AED with EASE
calls for a direct feed of experimental data and results to be connected to the AED model and KDB, our first
implementation of AED requires a manual upload of a comma-delimited file that contains the results of the
experiment performed. This current version also includes a section where the experimenter may provide subjective
feedback regarding the experiment. An early stakeholder-review of possible dimensions for collection of such
feedback has identified a set of costing factors as a primary candidate. AED currently asks the user to rate the costs
of personnel, of running the experiment, of acquisition or access to LVC&G assets, and of licensing on a 7-point
scale (from “extremely low” to “extremely high”). This information is subsequently stored in the KDB and used by
the model to refine its estimates of the cost of feasible experimental configurations. The design of the GUI followed
the principles of ecological interface design (Vicente, 2002) and decision-oriented design (Metersky, 1993).
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Figure 5. Screenshot of the Prototype Graphical User Interface for AED Results Input Form

THE MODEL
Background

Conducting an experiment is an iterative process in which the experimenter designs the experiment, collects data,
and analyzes the results to determine if there is enough evidence to answer the proposed research questions. After
each iteration, a decision must be made whether or not to continue based on the quality of the results collected so far
and constraints such as time and cost. If the experimenter decides to continue the process, they must modify the
current experimental configuration in order to collect data that will ultimately lead to an improvement in the quality
of the results. The decision on what to change in the experimental configuration could involve simple adjustments
such as increasing the number of trials or randomizing the run order, to more elaborate options such as utilizing a
different apparatus.
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Given the nature of the experimental process, the AED’s decision support system is built by modeling this process
as a Partially-Observable Markov Decision Process (POMDP). POMDP models have been widely used to represent
and optimize sequential decision-making problems under uncertainty (Smallwood & Sondik, 1973, Puterman,
1994). These types of problems are commonplace in many real-world domains such as robot navigation (Pineau et
al., 2007), assistive systems (Hoey et al., 2010), medical diagnosis and treatment (Hauskrecht and Fraser, 2008),
inventory management (Treharne and Sox, 2002), and more recently in the domain of automated training and
learning systems (Carlin et al., 2013 and Andrews et al., 2013).

The POMDP model provides a powerful tool to capture the uncertainty in determining experimental progress and
ultimately provide decision-making support in the form of actionable experimental configurations to novice
experimenters. The value of the POMDP over many other modeling techniques is that it allows us to develop a
quantitative model of a system, even when certain states of the system are not observable (Puterman, 1994).
Traditional Markov processes serve as excellent quantitative models of a system when the transitions of the system
from one state to another contain some uncertainty, but these states must be known. When certain characteristics of
a system are not directly observable, a POMDP model can utilize those characteristics that are observable to
develop a probabilistic representation of the system’s true state (Smallwood & Sondik, 1973). In the research
domain addressed by AED, a system is comprised of every linked simulator apparatus, constructive entities being
employed, variables being manipulated and measured, and any humans that may be in the loop. Some of the
characteristics that may not be directly observable include the validity of certain constructive entities, the direct
relationship between a simulator’s fidelity and human performance, and how the modification of variables in one
simulator apparatus affects the representation of other variables in a linked apparatus, among countless others. By
receiving feedback on results obtained from certain experimental configurations, the POMDP model constantly
improves its probabilistic representations of a system’s true state.

The POMDP Model Representation

Formally, a POMDP model is defined by a tuple < §,4,P,Q,0,R >. The set S of all possible states s is referred to
as the state space. The set A defines a set of actions while P defines the state transition model. P is a probability
table composed of elements P(s’|s, a), which define the probability that the model will transition from state s at
time t, into state s” at time ¢ + 1 given that action a was taken. The set (0 represents a set of possible observations
and the observation function O provides the probability that a particular observation will occur given a state
transition (i.e., O(0ls,a,s")). Lastly, the reward function R is used to drive the optimization problem, that is, the goal
of the POMDP solver is to create a policy to maximize this reward.

The POMDP models the experimental process by tracking experiment state. For this particular application, the state
is an abstract representation of the progress towards meeting the experimental goals. More precisely, the state is a
representation of the quality of the experimental results that the experimenter has obtained throughout the
experimental process. In the current implementation, the state space consists of a vector s which contains a quality
value for each one of the independent and dependent variables that are being used to conduct the experiment.

S=(C[1,C[2, """ lqn) (1)

The true state however, is not directly observable (i.e., measurable) but can be estimated through a set of
observations which are related to it. As such, the model combines a set of measurable parameters (i.e., observations)
to infer the experimental state based on two categories: (1) the quality of the instrument which is estimated through
measures of reliability and fidelity of a particular apparatus for each particular variable; and (2) the quality of the
results, which is estimated based on metrics such as mean stabilization, variance and bound checks, outlier
reduction, confidence intervals checks for each variable across a number of trials. The observations are calculated
after experimental results are available and stored in a vector o.

0=1(07,05, .. ,0n) (2)
Where, each observation is a weighted sum of the values for each category.

0; = 0.3 X Quality of Instrument + 0.7 X Quality of Results (3)
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Since the true state is not observable, the POMDP model keeps track of an abstracted version of the state commonly
referred to as the belief state b.

b= (G1,Gs, s Gn) (4)

The belief state is a n x k matrix which contains n vectors §, each containing a probability distribution over the k
possible values of each of the n states.

i = P1,P2, o Pi) A Ty = 1. (5)

These probability distributions are updated after every observation o and provide a representation of the most likely
quality value for each of the state variables. Lastly, the set A, is defined by the courses of action that the
experimenter can take after each one of the experimental runs has been completed. These actions are represented in
the model as a set of experimental configurations that the experimenter can run. These experimental configurations
are obtained using data from historical experiments within the KDB.

A=(a,ay, ... ,Am ) (6)

Ultimately, the goal of the model is to recommend to the experimenter the next experiment configuration that should
be run to improve upon its current results. In POMDP terms, this translates into selecting an action, given the most
current belief state and observation such that the reward function is maximized. This is done by mapping
observations to actions using a policy, developed to maximize the reward.
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Figure 6. Detailed View of the POMDP Model in AED

In order to achieve this goal, the AED model works in two stages (Figure 6). In the setup stage, a POMDP solver is
used to generate a POMDP policy for the execution stage to select the next action. In order to generate the policy
the state transition model P and the observation model O must be defined for a particular experiment. This is done
by characterizing the effect of each possible action (i.e., available and relevant experiment configuration from KDB)
on each one of the components of the state (i.e., the I\Vs and DVs) via two parameters: (1) the applicability which
refers to how likely the experiment is to increase the quality of a state variable and (2) the difficulty which captures
how costly it is to achieve that increase in quality. For example, it is possible that a particular experiment produces
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high quality results for a given DV, in which case the applicability level for this DV would be high. However, it can
also be the case that the cost of using the apparatus for this experiment is also high, thereby making the difficulty
value high and thus not necessarily the best option. By capturing these parameters, the POMDP solver can create a
policy that will select actions with maximum applicability and minimum difficulty across all variables. Note that the
larger the action space, the more complex the policy generation stage becomes. In order to keep this complexity
manageable the action space is pruned prior to policy generation by filtering past experimental configurations to
select only those which are similar to the initial configuration that was selected by the experimenter. The similarity
criterion as well as the threshold for selection, are parameters which may be specified by the experimenter.

Once the POMDP policy is generated, the model enters the execution stage. In this stage, new recommendations are
suggested to the experimenter every time the experimenter can provide a complete set of results from an
experimental run. These results include the measured values for all of the dependent variables of interest for a
specific set of trials as well as the values of the independent variables used for each trial. Given these values,
observations are generated (based on the aforementioned quality metrics) for the POMDP model to update its state.
The new estimated state (i.e., the belief state) is then used by the policy to generate a new recommendation. This
iterative process may continue until the experimenter is satisfied with the outcome of the results.

Building the POMDP Model

The AED model was built within a custom developed C# (C sharp) application. The model consists of a POMDP
library wrapped inside the decision support module referred to as the AED Engine. We envision the AED to be a
service which can be used by several users simultaneously while running distinct sets of experiments with a variety
of custom settings. In order to enable such deployment an application server was developed which facilitates the
interaction between the multiple modules within AED. Within this architecture, the model operates as follows. An
instance of the AED Engine module is created for each user that is carrying out an experimental process. Each AED
Engine instance has its associated POMDP module and is managed by the AED Object Manager (AOM). The AOM
loads pre-existing experiments from KDB and makes them available in memory to all instances of the AED Engine.
Similarly, after every experiment is run, the information from that experiment is stored in the KDB through the
AOM. Lastly, the AOM facilitates data passing between the AED Engine and the GUI in order to provide the model
with the necessary configuration parameters from the user and the experimental process and return the generated
recommendations.

The functionality of the various modules has been initially tested to ensure that all of the pieces deliver the specified
functionality and communicate appropriately. Features like loading and saving KDB data, creating experiment
configurations from user defined parameters, generating POMDP policies from a set of experimental configurations
and generating POMDP recommendations from observations have all been successfully tested by populating the
KDB with scripted apparatus and experiment data. In terms of the validity of the recommendation engine itself (i.e.,
the POMDP model) it is a challenging task to benchmark its performance given the nature of the decision making
problem. That is, the potentially large decision space which can lead to a series of recommendation sequences that
may be equally sensible. Despite the limited availability of data and the challenge of generating testing scenarios, a
few scripted test cases have been developed in order to help determine the validity of the recommendations. It is
anticipated that the fidelity of the testing and evaluation process will increase as the KDB gets populated with real
historical data. In addition, expertise from experimental designers can be leveraged to determine qualitatively the
efficacy and sensibility of the recommendations in a systematic manner.

THE KNOWLEDGE DATABASE
The purpose of the KDB is to act as an information repository available to the model for query when building and
evaluating experimental configurations. The KDB can fulfill four queries from the model (see Bruni et al., 2014 for
more details):

1. Request for experimental information: the KDB houses known information about previously conducted

experiments. This information is captured in the KDB in a systematic structure using an Extensible Markup
Language (XML) schema (TestExperiment.xml).
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2. Request for apparatus information: the KDB houses known information about apparatus available to the
user for experimentation. This information is captured in the KDB in a systematic structure using an XML
schema (TestApparatus.xml).

3. Request for cost estimate: the KDB can compute the estimated experimental cost of an experimental
configuration designed by the model.

4. Request for quality estimate: the KDB can compute the estimated apparatus and experimental quality of
an experimental configuration designed by the model.

Using structured interviews to populate the database

In order to fulfill these requests, the KDB leverages a body of data collected directly from current experiments using
the AED tool, but also through structured interviews with stakeholders. A survey questionnaire was built to elicit
information from expert interviewees, in a manner that mimics the schema of the KDB, but in “human-friendly”
questions with example answers. An example question is described below.

Example query: Can the apparatus partition areas (cordon) for experiments or training
exercises automatically and if so how is this done and are the
partitions modifiable at runtime?

Example response: Yes, by setting up route systems in scenarios and/or implementation
of entity triggers which can be changed at runtime by the real-time
editor (Quality: medium, Confidence: high)

The information is then recorded in XML format in the KDB. Note that the responder’s confidence in their answer is
always requested during the structured interviews, in order for the model to make an estimate of the associated
quality of the characteristic, and the utility of the response in choosing this apparatus for an experimental
configuration.

Current status of the KDB

The KDB is currently migrating from an XML-based schema to a Structured Query Language (SQL) database.
Initially, an XML configuration file was created for any new database entry (including experiments and apparatus).
This allowed for flexibility in the database structure as initial data was collected from stakeholders. As the database
has matured and is populated by more entries, the XML schema has been refined to include more information that is
beneficial for the POMDP model, while excluding certain information that was found to not be beneficial. Now that
the schema has been refined, a proper SQL database will contain the information formerly included in the XML
configuration files. As the database grows, this will allow for more computational efficiency, which will allow users
to obtain recommendations from the POMDP model rapidly.

DEPLOYMENT AND TESTING AT THE UNITED STATES MILITARY ACADEMY

An initial deployment of the AED system is ongoing at The United States Military Academy (USMA). EASE has
been operable at USMA for some time, making this an ideal facility for initial integration efforts between the AED
system and EASE. As part of this integration process, knowledge elicitation sessions with various stakeholders and
potential end users at USMA have been ongoing to maximize the benefits obtained of this AED-EASE integration.
Additionally, insights from potential end users during these knowledge elicitation sessions have allowed the user
interface to be modified to better support these users.

This initial integration with EASE could help set a precedent for the future integration of other systems with EASE
and could inform the development of an EASE Application Programming Interface (API) in the future. The lessons
learned during this integration can be applied at other EASE-equipped facilities, to ease future integration efforts.
Additionally, the installation of the AED system at USMA will help gain access to additional stakeholders. Many
Army facilities work with USMA to conduct M&S experiments, so this added visibility for the AED system will be
very beneficial. Access to more stakeholders will ultimately lead to a larger, more complete KDB, which will only
increase the effectiveness of the underlying POMDP model and extend the benefits of the AED system.
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CONCLUSION

The purpose of the EASE platform developed by STTC is to ensure interoperability and connectivity between M&S
users and their tools, in a manner that simplifies access and implementation of experimental or training
configurations. With the Assisted Experimental Designer as a front-end component of EASE, not only are M&S
users afforded an intuitive interface to employ EASE and build their experiments, but they also benefit from
advanced automation that permits them to make the best use possible of those LVC&G assets connected to EASE.
In other words, AED increases accessibility to numerous, distributed modeling and simulation platforms while
ensuring more reliable and more efficient M&S or live experiments are designed.

In its initial build, AED relies on POMDP algorithms that explore the space of possible experiments (as captured in
the knowledge database) to reconcile feasible configurations with those objectives requested by users, and produce
recommendations that maximize the anticipated quality of the experiment while minimizing its cost. Used in series
of experiments, AED ingests the resulting data from experiment “n-1” to refine its recommendations for experiment
“n,” so as to yield significant improvements in experimental outcomes.

Ultimately, EASE combined with the AED decision aid has the potential to augment considerably the capabilities of
an experimenter using LVC&G assets. It is envisioned that, through networks of modeling and simulation assets, an
experimenter will be allowed to build experiments that make use of those previously inaccessible, remote assets: the
AED tool helps to figure out what piece of equipment is the best suited to fulfill the desired experimental objectives,
therefore enabling experimenters in one location to drive optimized experiments (defined by AED) in a distributed
fashion, using M&S or live apparatus in various remote locations.
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