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ABSTRACT

Physicians predominantly use self-monitoring to assess and maintain skill proficiency, and to determine when
refresher training is required. However, strikingly low correlations exist between physician self-assessments and
observer-expert ratings. In addition, in many military and civilian positions, training and education schedules are
often standardized and rigid, potentially leading to wasted resources on training that is not needed for those that
remain proficient at needed skills. In order to optimize training, there is a critical need for adaptive learning systems
that can objectively measure, and preemptively or timely refresh knowledge and support skill maintenance. This
paper outlines challenges associated with objectively quantifying skill decay within the medical domain.
Requirements for a skill decay framework are summarized based on identified challenges, and a preliminary Skill-
DETECT (Degradation Evaluation Toolkit for Eliminating Competency-loss Trends) framework is presented. This
Skill-DETECT framework uses objective data to tailor an education and training program to a user’s specific needs.
The current application of the Skill-DETECT framework is developed within a medical environment, and utilizes
electronic medical records generated by a physician, as well as real-time cognitive assessment data to suggest
recommendations on individualized, optimized retraining regimens to reduce the likelihood of skill decay.
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INTRODUCTION

Training and retraining have long been an important priority in the clinical domain (Lundberg and Lamm, 1993).
However, rapid advances in medical technology, new treatments, new drugs and new medical knowledge in general
make it extremely difficult for clinicians to keep up with these changes, while keeping busy practice schedules. This
is exacerbated for primary care physicians who have seen the scope and depth of their work increase, and are seeing
increasingly more complex and severe patients presenting with multiple conditions (St. Peter et al., 1999). Further,
there are really no objective mechanisms in place for these physicians to detect any potential degradation in their
skills. Without objective guidance, ongoing training may not be targeted at the skills that are most needed. Further
the rate of skill decay can be affected by various moderating factors such as conditions of retrieval, individual
differences, task characteristics, and training conditions, which further complicates the concerns with self-
assessment and remediation. One possible means of identifying skill decay and prescribing training is via the direct
assessment of skills, yet this approach may quickly become cumbersome and complicated given the breadth of skills
and the busy schedules of practicing physicians. Thus, operationally feasible, yet objective, alternate approaches are
necessary to mitigate for skill decay and optimize sustainment of training. This paper presents the groundwork
necessary to uncover the requirements and potential options to guide the development of a skill degradation
evaluation framework for eliminating competency-loss trends, which could be integrated in training management
systems. What follows is a review of two types of challenges that may influence the design of such a framework:
Operational Challenges and Skill Decay Challenges.

CHALLENGES IN QUANTIFYING SKILL DECAY

Types of Skill Decay

In order to understand how to operationalize a framework that supports addressing and mitigating for skill
decay, it is first necessary to understand the nature of skill degradation. While skill decay may assume numerous
operational definitions, a commonly accepted definition proposes that skill decay is a decline or deterioration of
trained or acquired skills after a period of nonuse (Arthur, Bennett, Stanush, & McNelly 1998; Wang et al,
2013). In a similar vein, work by the Army Research Institute refers to skill decay as its interchangeable
counterpart—skill retention (or the problem of). Skill retention refers to the ability to retain skills, which have been
trained or acquired, after a period of nonuse. The period of nonuse, in this sense, would be referred to as the
retention interval (Wisher et al, 1999). Factors contributing to the rapid decay of skill will also contribute to an
individual’s inability to retain said skill, and as such, both of these terms shall be used synonymously in this paper.
When the human performance literature defines skill decay, it is generally referring to a loss of skills from a prior
baseline (i.e., absolute cognitive skill decay; Norman and Eva, 2005; Weaver et al., 2012). This interpretation
describes a situation where the necessary clinical knowledge and skills have already been formally trained and
acquired, yet factors within that clinical context contribute to an individual’s inability to retain said knowledge
and/or skills. Relative skill decay refers to a diagnosis of outdated skills in the face of changing scientific knowledge
and diagnostic standards over time (Norman and Eva, 2005; Weaver et al., 2012). This distinction takes on a more
unorthodox, theoretical standpoint on what exactly can be classified as cognitive skill decay in a clinical setting.
Since the academic formation of medical instruction, the progressive fluidity of medical knowledge has been well
recognized and established as a volatile, yet inherent, element of the field, and should be considered when assessing
clinical skill decay.
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Experts affiliated with medical colleges and teaching hospitals emphasize that in order for health practitioners to
advance their knowledge and stay abreast of developments in this ever-changing, ever-advancing field, they have to
invest in a continuing education (Ahmed & Ashrafian, 2009). Thus, due to the specific standards of clinical settings,
cognitive skill decay also implicates deviations from the latest knowledge/skills in the field (relative skill decay).
This emphasizes the need for a skill decay framework to support the tracking of both absolute skill decay and skill
obsolesce (relative skill decay). While cognitive decline is also important, this decline is not specific skill dependent
but a more generalized decay that would be outside of the scope of this effort.

Characteristics
Many factors can contribute to skill decay, including skill and task characteristics, methodical characteristics (i.e.,
training and testing characteristics), and individual differences.

Skill & Task Characteristics:

The characteristics of the skills and tasks being trained or learned have an impact on decay patterns. Some of these
characteristics are related to a task’s complexity, cognitive demands, and physical demands. As shown in Table 1,
meta-analytic findings have shown that decay occurs most in tasks with moderate cognitive demands and little or no
physical demands (Wang et al, 2013).

Cognitive Load
Low Moderate High
Low No Decay High Decay | Low Decay
-3
g é Moderate | No Decay Low Decay | Low Decay
'E A | High Low Decay | Low Decay | Low Decay

Table 1: Wang et al, 2013 Meta-analytic Skill Decay Results

Within cognitive load, task complexity has been conceptualized along 4 components: closed versus open-looped,
discretion, dynamic complexity, and component complexity, with the highest levels of skill decay associated with
tasks that were closed looped, high discretion, and of low dynamic and component complexity, suggesting that
decay for complex tasks may be less influenced by other moderating factors compared to decay for simpler tasks
(Wang et al., 2013; Wisher et al., 1999). Types of skills or tasks may have varied degrees of decay and thus a one-
size-fits-all decay scheme is unlikely to exist. Different characteristics will influence the time course of decay and
thus the skill decay framework must accommodate for such variability and characterization.

Methodological Characteristics:

Similarly, the manner in which a skill is learned or trained (training characteristics), as well as how a skill is
assessed (testing characteristics), has an impact on skill decay. Meta-analytic findings show that skill decay occurs
more rapidly when training to criterion, when there is little or no structure in the learning or training environment,
when feedback or performance reviews are not utilized, or when the similarities between the training and the
transfer environment are poor (Arthur, Bennett, Stanush, & McNelly 1998; Wang et al., 2013; Wisher et al.,
1999). These characteristics imply a relationship with the quality of learning that took place, and thus the higher
quality of learning (e.g., more opportunities for learning, better feedback, etc.) appears to influence the likelihood of
decay. From another perspective, there are factors that influence the likelihood of observing errors interpreted as
skill decay, such as the retention interval or dissimilarities between the training and testing environment (Arthur et
al., 1998; Wang et al., 2013; Wisher et al., 1999). This highlights the challenge that is faced when attempting to
determine or predict skill decay as there are independent variables that have an impact in skill decay yet may be out
of the control of the Skill-DETECT framework (e.g., quality of training). This implies that the framework cannot
simply predict skill decay based on a pre-determined decay curve and thus must make use of additional data that
may provide insight as to the current level of skill proficiency for each physician.

Individual Differences:

Individual difference characteristics relate to the innate differences among individuals (i.e. age, sex, personality,
learning style, intelligence, etc.). Research has highlighted how some of these characteristics (e.g., age, innate
ability or intelligence) influence skill decay (Glendon, McKenna, Hunt, & Blaylock, 1988; see also Arthur, Bennett,
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Stanush, & McNelly 1998; and Wang et al. 2013 for a review). Age plays a role in the eventual decay of cognitive
faculties, therefore affecting the performance of physicians (Blasier, 2009). Not only do physical skills decay, but
cognitive skills decline as well; with physical skills decaying more rapidly with age than cognitive skills. This
implies that physicians who still know how to perform well might not possess the physical strength or stamina to
engage in lengthy procedures or attend to a high load of patients. Innate ability or intelligence has been studied at
great length and is also claimed to affect skill decay. Higher ability individuals retain knowledge over longer periods
of time than lower ability individuals (Arthur, Bennett, Stanush, & McNelly 1998; Oberlander et al, 2007;
Nembhard & Uzumeri et al., 2000; Wisher et al., 1999). Individuals with higher innate ability or intelligence are
more likely to willingly partake in opportunities to overlearn, memorize and retain knowledge in a more meaningful
and decay resistant way, and/or schedule refresher training during times of skill nonuse to attenuate skill decay
(Arthur, Bennett, Stanush, & McNelly 1998; Johnson & Sagae, 2012; Weaver, Newman-Toker, & Rosen, 2012;
Wisher et al., 1999). While physicians may be considered high-performance individuals who could perhaps be
categorized as both having a higher innate ability and practice requirements, it is difficult to make inferences
without providing some kind of assessment for traits that may influence skill decay.

In addition to age and human traits such as innate intelligence, skill decay may also be impacted by an individual’s
level of expertise. The differences in the cognitive pathways of novices vs. experts have implications for the distinct
ways in which the cognitive skills of these two groups may decline. An expert’s typical naturalistic/dual-process
model of cognitive reasoning, for example, would vary substantially from a novice’s typical rational information
processing model (Weaver, Newman-Toker, and Rosen, 2012). The cognitive shortcuts so often utilized by experts,
such as heuristics and pattern recognition and interpretation, prove to be a double edged sword, as experts are able to
more efficiently draw conclusions and free up other cognitive resources to attend to other presenting factors, but at
the same time may prematurely come to conclusions without considering all possible courses of action. Within a
highly trained workforce such as physicians, there are still variations in expertize that may influence the decay
curves. This implies that a skill decay framework should incorporate parameters that characterize individual
differences as factors that may impact the rate of skill decay for individuals being tracked within it, yet at the same
time, will need confirmatory measures to determine if indeed skill decay has taken place.

Assessment of Skill Decay
Skill decay has been reported to follow a pattern of rapid degradation followed by slower decrements in
performance in relation with time (Hicks, Marsh, and Russell, 2000). This forms a ‘forgetting curve’ similar to the
one illustrated in Figure 1.

Performance

Time

Figure 1: Representative Forgetting Curve
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This performance change represents skill decay, and can be captured by detecting errors in performance. Errors may
occur for many reasons as illustrated by the multiple challenges outlined earlier. Generally, research of skill decay
and reacquisition will report performance trends in terms of percent correct responses. The amount or quantity of
errors can be stipulated by this overall percent correct score (Oberlander et al, 2007; Johnson & Sagae, 2012; Pavlik
& Anderson, 2005; Pugh & DaRosa, 2013). Skill decay is marked by an increase in errors over time. However,
given the variability in complexity and content of most clinical tasks and skills, the cause of deterioration in task
performance is not usually obvious. To identify when and why the degradation of skills occurred, it is necessary to
gain a better understanding of the underlying cognitive mechanisms involved in skill decay and in order to do so,
one must dissect the process of a task — in this case, clinical care, that often times involves classifying the
unobservable (Zhang et al. 2004). This implies that in order to identify skill decay, a skill decay framework must not
only incorporate mechanisms to track and measure errors rates but at the same time but also have a library of pre-
established performance thresholds that indicate that a skill has reached an undesirable level of performance.

OPERATIONAL CHALLENGES

Within the operational clinical environment, there are a number of challenges that deserve consideration such as:
Self-Assessment, Friction Points, and Clinical Judgment.

Self-Assessment

Today, physicians in outpatient clinical settings are expected to be competent in self-assessment and self-monitoring
of diagnosis knowledge and skills, and to have the metacognition to determine how best to maintain proficiency
through lifelong learning and skills development (Mann, 2011). Without ongoing practice, skill loss occurs
(Stefanidis et al., 2006). However, self-assessments and expert independent assessments are not always highly
correlated (Pandey et al., 2008), thus leading to potential gaps in voluntary selection of most applicable practice or
training sessions to maintain proficiency (Chang et al., 2007). Training and retraining have long been an important
priority in the clinical domain (Lundberg and Lamm, 1993). However, rapid advances in medical technology, new
treatments, new drugs and new medical knowledge in general make it extremely difficult for clinicians to keep up
with these changes, while keeping busy practice schedules. This is exacerbated for primary care physicians who
have seen the scope and depth of their work increase, and are seeing increasingly more complex and severe patients
presenting with multiple conditions (St. Peter et al., 1999). In a study of over 12,000 physicians, St. Peter and
colleagues found that 30% of primary care physicians and 50% of specialists reported that the scope of care
provided by primary care physicians had increased during the previous two years. As a result, primary care
physicians are concerned about current expectations and feel a need to prepare to fulfill their expanding roles
effectively and maintain their skills. This highlights the need for tools that are able to measure and track the learning
and potential decay of physician knowledge, skills and attitudes (KSAs). It also implies that a skill decay framework
must support the tracking of a broad range of KSAs and maintain a type of user profile (e.g., a learner model) that
can track physicians’ KSAs and associated decay.

Friction Points

Within any domain there may be a number of areas where conflict or difficulties may arise. In the clinical domain,
there are a number of areas where error may occur. Zhang et al. (2004) describe the complexity of the overall
medical system in which medical errors can occur and organize it in a hierarchy of six different levels: 1)
individuals; 2) individual-technology interaction; 3) distributed systems including teams and groups of people and
technology; 4) organizational structures; 5) institutional functions; and 6) national regulatory environment. As
changes at all levels of the health care system occur and push primary care physicians to take a more prominent role
in caring for patients, particularly those with complex medical conditions, it is increasingly important to assist
physicians in acquiring and maintaining critical skills and monitor the quality of care they provide. This has two key
implications that may impact a skill decay framework: 1) in addition to medical procedure related skill decay, there
are other types of KSAs that may be involved at each of the six levels of the medical system hierarchy, 2) in addition
to skill decay, skill obsolesce must also be monitored, as it can contribute to errors if the physician is not practicing
according to the latest standards of care.

Clinical Judgments

Cognitive skills are at the core of clinical judgment and reasoning, and are difficult to elicit and observe.
Montgomery (2006) emphasizes that practical reasoning - a flexible, interpretive capacity to determine the best
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action to take when knowledge depends on circumstance - is required to take care of patients. That interpretive
capacity is what is commonly referred to as “clinical judgment”. While clinical judgment is neither a science nor a
technical skill, it puts both to use. Objective assessment on a frequent basis of this complex cognitive skill is
challenging due to the time and resources required (e.g., limits in simulation-based programs readily available to
physicians; resources required to evaluate standardized patients and live observers).

A key operational challenge for the development and implementation of a skill degradation system is to find ways of
using and mining readily available information in order to evaluate current clinical judgment proficiency.

GAPS IN CURRENT METHODS

Undoubtedly, efforts at standardizing physicians’ continuous learning have been effective in ensuring a bare
minimum of updated knowledge in the healthcare community (Ahmed & Ashrafian, 2009). Yet medical education,
residency and fellowship training, and technology evolve at a rapid pace (Kahol, Vankipuram, and Smith, 2009)
such that the longer a physician has been practicing independently, the more remote they are from their initial
education. Current approaches that identify skill decay are limited to the identification of past medical errors (e.g.
pointing out adverse drug events and/or misdiagnoses from electronic health records [EHR] data or litigation and
determining that the physician needs to follow up with some re-training) (Singh, Thomas, Khan, and Petersen,
2007). Alternative skill decay approaches other than error identification rely on a broad, one-size-fits-all approach
that utilizes procedure practice frequency as a measure of skill capability (State Medical Licensure Requirements
and Statistics, National Registry of Certified CME Professionals, American Medical Association). These approaches
are limited in that they do not adapt across the expected variability of conditions and characteristics that apply to
individual physicians, nor do they specify nor prescribe training regimens contingent upon diagnosed or predictive
areas of skill decay (Myers & Greenson, 2012). As mentioned earlier, physicians in outpatient clinical settings are
expected to be competent in self-assessment and self-monitoring. Further, relying on third party interventions (e.g.,
when a colleague or subordinate identifies a skill decay issue) are not a suitable approach given that there is no
guarantee that such observations would be noted or reported before a catastrophic failure occurs.

SKILL DECAY FRAMEWORK REQUIREMENTS

The preceding review summarizes operational and skill decay challenges, which provide the foundation for a
preliminary set of requirements for a framework that seeks to identify and mitigate skill decay (Table 2). The goal of
such a framework within the military medical domain is to predict and assess the onset of cognitive clinical skill
degradation, and determine with specificity which knowledge or skills have degraded or will be likely to degrade.
This is particularly applicable for physicians returning to clinical practice within the US after deployment, where
traditional clinical skills were not actively practiced during deployment.

Development of a framework that meets requirements outlined in Table 2 promises to provide exceptional value to
military physicians who, during deployment, must be knowledgeable in military-unique medical requirements
including procedures rarely seen in primary care. Upon return, these physicians are expected to continue to see
patients as they did before interruption, maintaining competency in their primary care field. Having a system to
support identification of skill decay across cognitive skills could be used to tailor training, resulting in substantial
improvements in readiness to practice clinical skills.

Table 2: Skill Decay Framework Requirements

1. Support tracking of a broad range of KSAs for each individual participant being tracked

2. Support tracking of KSAs related to individual skills, interaction with technology, team
interactions, organizational structures, institutional functions, and regulations

3. Support tracking of different types of both absolute and relative skill decay

4. Support use of existing data for mining patterns of skill decay in order to reduce physician
workload and buy-in

5. Support existing organizational processes to support seamless integration and reduce
physician workload
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6. Support the use of categorization and characterization of KSAs to provide individual KSA
skill decay models

7. Support use of multiple types of data to predict likelihood of skill decay (e.g., retention
intervals) while supporting direct assessment to confirm skill decay (e.g., direct measures of
performance).

8. Support characterization of individual participants on variables that may influence skill
decay

9. Support integration of measures of performance and thresholds to identify levels of skill
proficiency

SKILL-DETECT FRAMEWORK

Utilizing the requirements outlined in Table 2, the Skill Degradation Evaluation Toolkit for Eliminating
Competency-loss Trends framework has been conceptualized to assess decay in cognitive skills for family practice
physicians (Figure 2). The proposed framework is designed to (1) identify when degradation of cognitive clinical
skills occurs, (2) predict probable and confirm onset of cognitive skills degradation through the analysis of EHR
data or other data sources, and (3) prescribe retraining regimens which enable physicians to preemptively refresh
knowledge and maintain proficiency. In order to accomplish this, the framework will utilize existing sources of data
where possible and infer from them the possible onset of skill decay. Specifically, the framework is designed to
utilize information gleaned from electronic health records (EHR) to evaluate task complexity and frequency. EHR
data has the potential to be a critical source of information on physician delivery of care and proficiency, and is
already being used in the United Kingdom to measure providers’ performance for a small subset of chronic diseases,
organization of care, and patient experience (Baker et. al, 2007). What has not been explored to date is the potential
to leverage EHRs to preemptively identify and remediate cognitive clinical skill gaps, ultimately improving
performance and preventing clinical errors. The Skill-DETECT framework is designed to scan copious historical
EHRs for a provider within a specified timeframe, flagging skills that show potential for cognitive clinical decay. In
order to make this possible, it is necessary to make inferences from this data. A hybrid modeling approach is utilized
to assess skill decay, wherein a power law model is utilized as a first pass filter. Additional filters utilize rule-based
and statistical modeling methods to further refine decay prediction based on patterns of performance compared to
standards of care.

Because EHR data can only be used to evaluate KSAs at a high level, a secondary evaluation approach is designed
into the Skill-DETECT framework which utilizes a real-time assessment component. This allows physicians who are
flagged as potential decay candidates to complete a specific simulated scenario designed to target specific KSAs
identified. For example, if EHR data reveals a physician has not assessed or treated a patient with asthma within a
specific period of time, they may be alerted to complete an assessment that would guide them through a simulated
patient-doctor interaction for that condition to assess KSAs such as their diagnostic skills, communication skills, and
knowledge of current medications to determine their current level of proficiency.

2R Hybrid Cognitive Model Trainee Skill T
Health —>] ¢ Mathematical Models [ Decay —>] Retraining
Records & Rule Based Models Predictions Regimens
* Cognitive Models
Figure 2: Skill-DETECT Framework
DISCUSSION
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The development of a framework to objectively assess skill decay utilizing available, existing data sets across
cognitive skills related to clinical medical tasks is challenging due to the variety of skills involved, the numerous
factors that can impact decay parameters, and the complexity in existing data records As was discussed in the
overview of the different challenges, the development of such a framework is not trivial. In particular, it is evident
that skill decay is influenced differently by a broad range of variables. Thus, it is not possible to create a one-size-
fits-all approach that would be able to integrate all possible variables. Every procedure or sub-procedure in a
physician skillset is bound to have its own skill decay curve that is influenced differently by the variables discussed.
This challenge is further complicated by the operational constraints that exist in an outpatient clinical environment.
In the operational environment, the likelihood of obtaining all the data needed to make objective and direct
assessments of skill decay is limited for a number of reasons. Among them is physician workload, which limits the
ability to make direct assessments via tests or other observation methods. Other constraints include the available
data that may be utilized to assess proficiency which is likely to be limited in detail such that only partial
assessments may be possible.

While challenges do exist, the value promised by the Skill-DETECT framework is worth pursuing. If successful, it
promises to support the identification of skills that are in higher likelihood of requiring remediation allowing both
physician and medical organizations to fine tune training efforts. Next steps will include validation of the Skill-
DETECT framework, comparing the model output based on EHR data to subject matter expert (SME) performance
ratings. It is expected that the predictive model will correlate with SME ratings, thus demonstrating the utility in
objectively evaluating and flagging skill decay on a continual basis through EHR data assessment.
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