Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

Implementation of Role-based Command Hierarchy Model for Actor
Cooperation

Jungyoon Kim, Hee-Soo Kim, Jihyun Jang Sangjin Lee, Samjoon Park
REALTIMEVISUAL Agency for Defense Development
Seoul, Republic of Korea Daejeon, Republic of Korea
jkim@realtimevisual.com, hskim@ realtimevisual.com, sangjinlee@add.re.kr, samjoon@add.re.kr

jhjang@realtimevisual.com

ABSTRACT

Many approaches to agent collaboration have been introduced in military war-games, and those approaches address
methods for actor- (agent-) collaboration within a team to achieve given goals, where the team’s abstract mission is
translated into concrete tasks for each actor. To meet fast-changing battlefield situations, an actor must be 1) loosely
coupled with their tasks and be 2) able to take over the role of other actors if necessary to reflect role handovers
occurring in real combat. Achieving these requirements allows the transfer of tasks assigned one actor to another
actor in circumstances when that actor cannot execute its assigned role, such as when destroyed in action. Tight
coupling between an actor and its tasks can prevent role handover in fast-changing situations. Unfortunately,
existing approaches and war-game software strictly assign tasks to actors during design, therefore they prevent the
loose coupling needed for successful role handover. To overcome these shortcomings, we have defined Role-based
Command Hierarchy (ROCH) model that dynamically assigns roles to actors based on their situation at runtime. In
the model we devise “Role” to separate actors from their tasks. Described in this paper, we implement the ROCH
model as a component that uses a publish-subscribe pattern to handle the link between an actor and the roles of its
subordinates (other actors in the team). Therefore, an actor can indirectly send a message (order or report) to another
actor without knowing which actor is recipient. The sender actor is only required to know the relevant roles. The
model has been implemented and tested in a military project, and we briefly show the outcomes in this paper.

ABOUT THE AUTHORS

Jungyoon Kim is a research engineer in REALTIEMVISUAL Inc., Seoul, Korea. He has been working on
development of military logistics systems and joined the M&S area in 2010. He obtained BS in Aeronautical
Engineering from Korea Air Force Academy, received MS. from Texas Tech University and Ph.D from Korea
Advanced Institute of Science & Technology (KAIST) in computer science.

Hee-Soo Kim is presently a Ph.D. candidate in Graduate School of Information and Communication at Ajou
University and works as a research engineer in REALTIMEVISUAL Inc. He has received M.Sc. in Graduate School
of Information and Communication from Ajou University in 2005. Areas of his interest include modeling and
simulation, software engineering, and large-scale system infrastructure based on knowledge engineering.

Sangjin LEE is a Senior Researcher in the Modeling and Simulation Division of the Agency for Defense
Development in the Republic of Korea. He received a Ph. D in Industrial Engineering from the Korea Advanced
Institute of Science and Technology (KAIST) in 2008. He has worked in developing applications of modeling and
simulation since 2011. He is interested in composable simulation framework architectures and computer generated
forces.

Samjoon PARK is a Principal Researcher and Director of the Modeling and Simulation Division of the Agency for
Defense Development in the Republic of Korea. He received a Ph.D. in Industrial Engineering from the Korea
Advanced Institute of Science and Technology (KAIST) in 2006. He has worked in optimization for integrated
logistics support and developing information systems since 1989. He is interested in composable simulation
framework architectures, computer generated forces, and munitions effectiveness.

Jihyun Jang has been working as an engineer in REALTIMEVISUAL Inc. for two years. He has received B.S. and
MS. in Bio & Brain Engineering from Korea Advanced Institute of Science and Technology (KAIST).

2015 Paper No. 15166 Page 1 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

Implementation of Role-based Command Hierarchy Model for Actor
Cooperation

Jungyoon Kim, Hee-Soo Kim, Jihyun Jang Sangjin Lee, Samjoon Park
REALTIMEVISUAL Agency for Defense Development
Seoul, Republic of Korea Daejeon, Republic of Korea
jkim@realtimevisual.com, hskim@realtimevisual.com, sangjinlee@add.re.kr, samjoon@add.re.kr

jhjang@realtimevisual.com

INTRODUCTION

War games model and simulate military elements (combatants, activities), test the effectiveness of combat
participants and their tactics or doctrines in an anticipated real engagement with a reduced budget. In a war game,
Actor is a structural element, and Tactics is a behavioral element. Table 1 provides two important definitions to
these terms.

Table 1. Element Naming in Existing Models

Terms Meaning

—The agent in agent based simulation area. (We use the term ‘agent’ differently in this paper.)
Actor | —Individual entities (rifleman, tank, aircraft ...) that interact with physical elements
— Group of entities (platoon, company, battalion ...) that exist within a virtual unit

—Actor’s behavior. Realized into simulation scenario. Simulation engine translates the scenario
into Actor’s tasks and the transition requires ways to interpret group’s Tactics into Actors’ tasks

Tactics (cooperation, specifically mission transfer).

—Plan (a realized Tactics) defines participants and their goals in a simulation. The participants
(combatants) should achieve goals collaboratively.

Existing models are successful in modeling the activities of aggregate units or individual entities. Some follow
modularized model development, making them reusable and composable (Logsdon, Nash, & Barnes, 2008; Ternion
Corporation, 2012; VT MAK, 2012). However, the Actors and Tactics are tightly coupled, making some situations
difficult to represent within a simulation. Since a mission is just a sequence of tasks given and attached to an Actor,
without the ability to transfer an Actor’s tasks to another, the inability of an Actor to continue its mission within a
simulation necessarily results in the loss of its mission within the simulation. This is an inappropriate representation
of real-world situations in which a mission-transfer to another live combatant occurs frequently as a combatant
injury or other casualty. The left side of Figure 1 illustrates this situation.

* \Em

To overcome such shortcoming, we have introduced Role-based Command Hierarchy (ROCH) (Kim & Lee, 2013)
based on the concept of right side of Figure 1. It separates the Tactics from Actor components using a role concept.
Role is a logical connection between an Actor’s Tactics and its subordinates (other Actors) and it is defined at design
time. The Actor is dynamically bound to its subordinates through Roles according to situations at runtime. This
architecture enables simulations to be more composable, reusable, and scalable, in that a Role can be reused with
minimal modification of its Actor and an Actor can be reused without considering its mission. After some minor

* Figure 1. Tightly coupled missions and separated missions (Roles)

2015 Paper No. 15166 Page 2 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

corrections ROCH has been implemented as a part of Korean military simulation. This paper is about explanation of
ROCH and of actual implemented interfaces.

REATED WORKS

US Army has developed a simulation product line, OneSAF, to supports various military simulation areas including
engagement analysis, personnel training, and acquisition decision (Logsdon, Nash, & Barnes, 2008). It enables
military users to cover a wide range of constructive and virtual simulator solutions. Additionally, various
commercial simulation architectures are successful in modeling tactics of aggregate or individual entities. Among
them, FLAMES and VR-Forces model physical domains (land, sea, air, and space) at a wide range of fidelity and
resolution levels (Ternion Corporation, 2012; VT MAK, 2012). They are founded on the concept of component
based development. The elements of a simulation such as units, entities, and their tactics are implemented as
modularized components.

OneSAF, FLAMES, and VR-Forces are highly reusable. Their component based modularity helps developers to
rapid develop M&S systems with low cost. However, they are limited to model tactics in real combat and do not
effectively reflect fast-changing combatants’ missions. (e.g., a combatant may be removed from its mission such as
killed in action, with the mission left usually transferred to another combatant.) Reflecting such situation requires a
more complex specification at design time to describe all possible task handover situations.

Other related works have similar problems, such as hierarchical agent control (HAC) (Atkin, Westbrook, & Cohen,
2001), commander model (CB) (Vakas, Prince, Blacksten, & Burdick, 2001), command-based multi-agent system
(CMAS) (Song, & Yang, 2006), tactical team behavior (TTB) (Bisht, Malhotra, & Taneja, 2007), agent-group-role
(AGR) (Ferber, Gutknecht, & Michel, 2004), and so forth. Each model is helpful to represent the tactical behaviors
of aggregate units and to enable the units to perform the tactical activities. However, the activities are tightly
coupled, making it difficult to reuse units or activities.

Table 2. Element Naming in Existing Models

Modeling Elements OneSAF FLAMES VR-Forces CSFA
Actor | Actor Unit Entity Unit
Atomic actor | Entity Unit Entity Entity
Aggregate actor | Unit - Aggregate Entity Aggregate Unit
Physical model Physical Agent / Equipment Sensor / Actuator Equipment ~ Agent/

Physical Model

Equipment Model

behavior Agent /

Behavior logic behavior Model Cognition Model Controller behavior Agent
Intra unit . - .
communication Trigger Specific interface Port Trigger
Intgr u_nlt Event Message Message Event
communication
Cooperation | behavior Agent Cognition Model Controller Behavior Agent

Common Model

We surveyed four simulation architectures to determine their representations of their elements. They are three
outstanding architectures, OneSAF, FLAMES, and VR-Forces, which can be applied to military or commercial
areas, and one architecture, Composable Software Architecture Framework (CSFA) (Petty, Kim, & Byun, 2014),
developed by us as a national defense research project to show the feasibility of composable and modular simulation.
CSFA can be regarded as an outcome from benchmark of OneSAF, reflecting indigenous features for Korean Army.

2015 Paper No. 15166 Page 3 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

Since OneSAF aims to reflect global level military operations including non-conventional wars such as anti-terrorist
activities, its vast list of tasks (behaviors) is inappropriate to the Korean situation.

As a result of the survey, we have introduced a Common Model by comparing the elements of the architectures
above and categorizing them with their similarities into modeling elements as shown in Table 2. Thus Common
Model can be regarded as an average categorization of existing models and their elements. Because the
architectures are component-based warfare M&S software products, in many aspects most elements in a same
category are mainly similar concepts or the same character with just different names.

Operational Viewpoint Organizational Viewpoint

|
I
I
. defines Warfare I
Mission i1 Scenario :
ry i Environmental ', |
has Viewpoint | !
Event ! i
| i
| 1. |
..................................... . SRR, | S (R _i
' | [
I |
Physical ! Actor i
Task ' :
1.2 j Model ! ¥
+] | = |
S Y ! ¥
Physical | Atomic Aggregate | | :
! N
Primitive Agent | Actor Actor ¥
|
Behaviour - ft ____________) SR
. 1 ey 1.7 1.*
Composite | | o L iour enables_ Triager . SENSes Agent | Behaviour
Behaviour - 99 < g Agent
generates

T 1.%

e m e e Unit Viewpoint

Figure 2. Common Model from existing models

Elements in some software architectures can be seen as structural or behavioral. Figure 2 shows such elements of
Common Model introduced from the survey. Most names, such as Actor and Behavior, mainly borrowed from
OneSAF. In the model, a Warfare Scenario includes organizational information for each blue or red force in that an
Aggregate Actor is organized by Atomic Actors or other types of Aggregate Actors. A Warfare Scenario also
defines the Mission, which is composed of Tasks. An Actor can be Atomic or Aggregate: Atomic Actor (an entity in
a battlefield) has no subordinates and is composed of Physical and Behavior Agents, while an Aggregate Actor (or
organizational unit) includes group of Actors and is composed only of Behavior Agents. Relations between a higher
Actor and its subordinate Actors reflect a command chain. An Actor also includes Agents that are equivalent to the
interfaces of a component and are categorized into physical and behavioral: A Physical Agent represents one of
Actor’s parts such as sensor, mobility, weapons. A Behavior Agent decides the Behavior for its unit. Inside an Actor,
Agents communicate with other Agents through Triggers. Actor detects or makes changes in the environment
through its Physical Models/Agents.

The behavioral elements of Common Model are Behavior, Task, Mission, Event and Trigger. A Behavior can be
Composite or Primitive Behavior. A Composite Behavior is composed of other behaviors that are arranged in order.
A Primitive Behavior controls its relevant Behavior Agent by generating Triggers to initiate Actor’s Behavior.
Tasks are delivered to an Actor in the form of an Event. A Task is specified as a combination of Behaviors. Actors
perform Tasks by executing its Behaviors. A Mission is a conceptual goal that an Actor must achieve and is
composed of a sequential set of Tasks. A Mission forms the long-term plan that Actor executes. Finally, Trigger is
the transformed Event capture from the outside of an Actor, and initiates Actor’s Behavior. Trigger is equivalent to
Event, for example “being attacked” as a change of the environment is delivered in the form of an Event and then is
called Trigger once it gets inside of an Actor. At the beginning of a simulation, each Agent subscribes to some
Events in which the Agent is interested, then once an Event happens simulation engine notifies the Agent that
subscribed for the Event. Finally the Agent acts according to the Event (publish-subscribe pattern).

2015 Paper No. 15166 Page 4 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

Command Hierarchy

Common Model can be seen with four different viewpoints as Su,ﬁﬁirtlor
circled with dotted lines in Figure 2: operational, organizational, R
environmental, and unit viewpoints. The Operational Viewpoint is —
the aspect of tactics executed in a real battlefield. It implies the
behavioral elements of a simulation. The Organizational Viewpoint
is the aspect of combatants participating in an engagement and
implies the structural elements of a simulation. Environmental
Viewpoint is simply the aspect of interaction between environment
and Actor. The Event is transferred to Actor through Physical
Model. The Physical Model represents any mediator which can
detect any change in environment or can give effect to environment,
such as sensors, fire arms, mobility, or communication devices. -

Unit viewpoint is the aspect of an Actor composition. It sees an Unit Unit Unit
Actor’s composition and executes its mission. / "

Limitation of Existing Models Figure 3. Command Hierarchy in
Common Model

One limitation of the Common Model is that it is difficult to reflect certain situations (such as role-transfer
aforementioned). As an Actor and its Tasks are tangled each other through Warfare Scenario and Mission, it is hard
to reuse an Actor or Task alone. As shown in Figure 2, each Actor has its own missions, and the schema can be
redrawn as Figure 3. In Figure 3, Superior Unit receives task and each Units receives subtask from Superior Unit.
Generally such task and subtasks are defined at design time (scenario editing), considering that each subtasks are to
achieve Superior Unit’s task. As a result, the task and subtasks are tightly coupled with its Actors (the units).

£ task

ULl
a
<
0
un

\

S—sy

b-
rasks

<——sub-tasks

In the scheme of Common Model, task cannot be swapped with other units’ tasks, thus if the owner Actor of the task
is destroyed and removed from the simulation, its task also will be removed. HAC (Atkin, Westhrook, & Cohen,
2001), CM (Vakas, Prince, Blacksten, & Burdick, 2001), and TTB (Bisht, Malhotra, & Taneja, 2007) focus on
modeling of tactics with little consideration of unit components’ composability. CMAS (Song, & Yang, 2006) and
AGR (Ferber, Gutknecht, & Michel, 2004), can specify the tactics of units as interaction between roles that they
play but do not clearly provide the method to separate units from the roles. This tight coupling means that a superior
unit should be dependent on its subordinates or vice versa.

Command Hierarchy

ROLE BASED COMMAND HIERARCHY (ROCH) task
Superior

Figure 4 briefly illustrates the basic concept of ROCH architecture. U““

The Goal of ROCH is to separate tactics from units in order to : ¢

overcome the drawback of tight coupling. The distinguished part 5;;’-‘ ~§UF:F_”W

of ROCH is Role. It is a virtual seat that indicates an actual -FP Tactics

subordinate unit, which is not predetermined at design time. It @ .

subordinates (Unit) of the Superior Unit tactically behave. A sub-
task is the subordinate’s contribution to achieve the goal of
Superior Unit’s task. A Role has a set of sub-tasks that its owner
(Unit) should be able to execute. Thus the set of all Subtasks can

be regarded as the Tactics for the Superior Unit. Late Blndlng

4
g
bounds Tactics (set of Tasks) to an Actor at runtime, making the b @

R

Unit Unit Unit

Framework. The Meta-Model is used to specify Actors and Plans
as a machine-readable representation using XML, which is
different from the previous role-based approaches (Xu, Zhang, &
Patel, 2007; Cabri, Leonardi, & Zambonelli, 2003; Becht, Gurzki, Figure 4. ROCH Architecture
Klarmann, & Muscholl, 1999; Hahn, Madrigal-Mora, & Fischer,

ROCH is composed of two artifacts: a Meta-Model and a /

2015 Paper No. 15166 Page 5 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2009) where role (tactics) is usually hard coded within its player at design time. The Meta-Model allows the tactics
of Unit to be freely modified by users without knowing Unit’s Condition. The Framework provides the facilities
for each Unit to execute their Plans with mechanism dynamically assigning Roles considering situation at runtime.

Actor Meta-Model

goal - Task subgoal
- I1I'A name : String !
‘ capabilities 1.* [responsibilities
Actor. lo——Atirs| Attribute
name : String name : String
=7 NA type : String
d - attrs ™
o 4 e N
- e \\\
Unit | | Entity | Y
LT ST TS TP FTISTSTPITIFTISTUPSTIIR WOLSY VETIUTOTeTPRTIN S TIOTPPNISPe FORPOTTS
1.7 :!F{_:ILE subject
plans | 1.. ‘ roles name : String !
—| Plan }0
'Y
plan |1 subexp|1.- * withdrawing| 1 1 |assigning

Plan Conditional 1 —
ExpreSSIOH -/-J @’ i HH condltlon |
- precondition

;;ubexp 1.0 N subexplt-) J“\&

T Y [RoleTask
Sequential Concurrent
Expression Expression

Tactics Meta-Model
Figure 5. ROCH Meta Model

Figure 5 shows Meta-Model in UML. Meta-Model is based on the context of the model-driven architecture (Object
Management Group, 2012) and the Common Model mentioned in previous chapter. Meta-Model is composed of
Actor Meta-Model and Tactics Meta-Model. In Actor Meta-Model Attribute is a variable which comprises the
Actor’s state and Tasks is what Actor performs. Tactics Meta-Model represents the plan in which Actor and its
subordinate Actors are specified. A Plan is composed of Roles and a Plan Expression. Role is the distinguishing
characteristic of ROCH and has attributes and tasks (responsibilities) and two Conditions (assigning and
withdrawing Conditions). Role can be regarded as the requirements to the Actor. For a subordinate Actor (the Unit
in Figure 4) to take the role, it must have the attributes and capability to perform the tasks of the role.

Meta-Model defines Role conditions which are capabilities for a superior Actor that dynamically selects a player of
the Role among their subordinate Actors according to their capabilities. The Assigning Condition requires that a
subordinate can play the Role assigned. The Withdrawing Condition indicates that a subordinate, which is playing
an assigned Role, cannot play it anymore. In implementation, we removed the Withdrawing Condition from the
architecture since it is equivalent to not meeting an assigned condition. However, this is an important concept in
ROCH, so we kept the Withdrawing Condition in the ROCH Meta-Model. Plan is the series of the sub-tasks to be
achieved by the superior Actor. It is represented to be a sequential, concurrent, conditional, or Role Task expression
(other expression) for achieving a task assigned by a simulation user or its superior Actor. A role-task is the
terminal expression to represent a task that a role’s player should perform.

Framework is another major part of ROCH, as shown in Figure 6 and 7. The main function of the Framework is to
execute plans under the behavior agent of a Unit in Figure 6. The state informing function is for units to inform its
superior Actor about its own capabilities and attributes. It is called when the Actor participates in its superior’s
group or any capability/attribute of the Actor is changed. In the publish-subscribe pattern for the handling link
between an Actor and Roles of its subordinates (other Actors), an Actor can indirectly send message (order or report)
to another Actor without knowing which Actor is recipient. The sender Actor is only required to know the relevant
Roles. Plan Lib loads the Plans for a Unit. Also, it selects and activates the Plan for the Task received from a

2015 Paper No. 15166 Page 6 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

simulation user or a superior unit. The Role Manager assigns/withdraws the Roles according to
assigning/withdrawing Conditions, and the State Manager maintains the states of its owner (Unit) and the
subordinates. The Framework operates based on Scenario that includes the organizational information (hierarchy).
Scenario also has references to the configuration of a Unit (subordinate). Unit includes the unit model, an
implementation package. Its state informing function is to report about its own capabilities and attributes, and Role
assigning process.

\ T Mnit2 s Deliver a Task applled J

Unit A Component Scenario Unit B Component
W L7
_ | Superior
— Unit —
. Config. ~ Config. _
Flans ng;;Ae =] _ofunita i=- e of Unit B -— PU“: B
9 Component - (’1, A Component ackage
y Sub. | Sub. |][=
1 Unit !~ I
g L
Plans instantiates Crg. Info. Capabilities instantiate
) Capabilities Attribute Values .
r-—- — I A e — e T
| Behavior Agent of Unit A : Behgvior Agent of Unit B :
! 4. Execute |)
: IR ! ’_‘ 2. Publish !
| ' : P ;
I W W7 1. Subscribe . [
! 3. Notify . Ay
| I i State Mng. ("= % e
— = [
') N) . ' subscribe |
X Plan Lib y Unit 1] I
X e ——— I pattern)
| vy Sub. :
I
L
I
)
1
l
I
1
I
L
I

Instance of Unit Component A

Behavior Model of Unit A (start Role Assignment
1.1.Update(t)

For role in unassigned roles

Responsibilities,
Attributes,
Assigning &
Withdraw Conditions

77T 2.Cheok ol withdrawing T T T T | 7= role®s Responsiblties

For role in assigned roles

For subunit in units without a role

Is
Withdrawing
Condition

True?

C = subunit's Capabilities
A':= subunit's Attributes

Withdraw role

11.4.Binding

Sub. R
Unit B 1.3.Check role assignment

o S Conaer
K\ 1_Unit2 .

Role Assignment

Capabilities™
Attributes

Figure 7. Role Assignment and Withdrawing

2015 Paper No. 15166 Page 7 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

The plan execution function is to execute the plan. When a Unit receives a task (4), its Plan Lib selects and activates
the Plan (5). Role Manager assigns the proper subordinates to the Roles specified in the Plan (6). Each Role is
bound to a subordinate, and a series of sub-tasks are delivered to the role-playing subordinate (7). If a role-playing
subordinate cannot play the Role (i.e., the subordinate’s state meets the withdrawing condition), the Role is
reassigned to another possible subordinates by Role Manager.

In Figure 7, the Behavior Agent of a Unit periodically calls the Update function (1.1). It checks if there are Roles to
be withdrawn from/assigned to its subordinates using Roles’ withdrawing/assigning Conditions (1.2 and 1.3).
These steps use the information of Roles and subordinates obtained by State Managers. The last step is to assign a
Role to a subordinate if the assigning condition of the Role is met by the current state. After Role assignment, a pair
of Role and subordinate is created in the framework (1.4).

IMPLEMENTATION

1. Initial conditions 2. During engagement 3. After engagement
Point X @
<> O OO N
95% | C
* role Swapﬁ“-:’ 1
) 85%
move mgge p C:j
W - 0%
2
@ SUEDISH D ; 70% ,’,:i? D Assumption:
T00% N o role swap = - 52T 1 * Two tank platoons (blue and red forces)
D (-:) clashes and each platoon has three tanks.
3 » Blue force's mission is to occupy point X
100% 100% * Red force's mission is to defend .
Figure 8. Simple Scenario for Test and Expected Result
Role - Leader (front unit) . isCloseToFire(hostile)
» Responsibilities : move, support, engage 3 =naa
« Attributes: CombatPower, Location move (x1) | (hoqst'cl;e)
* AssigningCond' . CombatPower = 90
« WithrawingCond' : CombatPower < 70 position ==X & ! isCloseToFire(hostile)

Role : Fr”“‘WiF‘Qma” (front unit) isCloseToFire(hostile
» Responsibilities : move, support, engage ﬁ
« Attributes: CombatPower, Location
» AssigningCond' : CombatPower = 90
« WithrawingCond' : CombatPower = 70 ‘ position ==X & ! isCloseToFire(hostile)
Role : Wingman
* Responsibilities . move, support, engage
« Attributes: CombatPower, Location
« AssigningCond' - CombatPower = 50
» WithrawingCond' : Leader = 70 == null V
FrontWingman == null

support

isCloseToFire(hostile
) en a_cl;
(front units, x) Je "\ (hostile)

position ==X & ! isCloseToFire(hostile) w

Figure 9. Role Definition in the Scenario

To show how ROCH realizes the mission transfer situation in a war game simulation, simple combat scenario is
applied as shown in Figure 8 and 9. The scenario defines that the Blue tank platoon engages with a Red tank
platoon. For Blue, a platoon model and three tank models are defined. The plan for the platoon is to occupy the
location Point X. For Red, another platoon is defined with three tank models. Its plan is to defend against the Blue
tank platoon. Figure 9 shows the Role definitions for each tank in Blue side. Roles are Leader, FrontWingman,
and Wingman. Leader is to lead the platoon at the front row in formation, FrontWingman keeps position to be in the
same row with Leader (at front), and Wingman is to support for the front row tanks. Leader and FrontWingman

2015 Paper No. 15166 Page 8 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

must have their CombatPower over 90 while Wingman can have over 50 (The value of Combat Power can be
regarded as percentage). We expected the Wingman takes over the role of Leader or FrontWingman.

Leader

CombatPower = High DistanceToHostile = CloseToFire

-
o

y
Wingman Paosition = CloseToDestination : i
= 2 DistanceToHostile = CloseToFire L
CombatPower = Medium
S . Y

DistanceToHostile = CloseToFire >

r
~ Links :
Hostile = None
Start

ESTT]
o 3 =
Move

n

Move Win!

branch0 e

branch0

Engage DistanceToHostile = CloseToFire

Engage S Z >

Move Pasition = CloseToDestination <’
branch0 = {DistanceToHostile = cnoseToFire> o

EndSynch

StartSynch
Follow

Follow
branchl

Engaqge

Figurel0. Screen Capture for Behavior Editor

Even though it is simple scenario; it
contains the context of the benefits of Rttt b Ll e e

ROCH. Figure 10 is the captured Ul SSSARTY ... ior cxecution info
screen of actual simulation software that —

incorporates ROCH as a part of its Ll

behavior editor. In the screen, the green 00:02:08.8153678

boxes are Roles and they include 00:02:08.8133677

behaviors that are connected to their next 00:02:07.8133105

behaviors. The Leader executes “Move” RO

behavior then engages with the - v

encountered enemy. Wingman executes SOt SN I

“Follow” behavior as reserve force for 00:00:58 8083636
support. The left upper pane “Role” 00:00:58.8073636

shows_ the _two Roles d_eflned in the R o
Behavior Editor. It says if Leader loses ‘

power under “High” and there is any bl

Wingman that has power over “High” 00:00:55.8071920
then the Leader and the Wingman swap 00:00:08.8035035

their roles. (InI tlhisdcase, the ILeadebr does 00:00:08.8015034

not mean actual leader in real combat. It

rather means the tank who leads at the it

foremost in the formation.) The threshold SR St

value for High and Medium are defined in 00:00:07.8014462

different Ul. In implementation, two 00:00:05.2003318

Role assignment conditions (assigning
and withdrawing) became one, as = = z z
aforementioned. Only the assigning Figure 11. Part of Simulation Log for #3 Tank (Time flows from

condition is needed for the two bottom to up)

> 00:00:04.8112752

2015 Paper No. 15166 Page 9 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

conditions. As shown in the Roles pane the condition does not differentiate assigning or withdrawing. Through the
implementation of ROCH, we can have confidence on our claim that composability and reusability are improved.
As Role links superior and subordinate as medium between them (as no direct dependency between platoon and tank
components), a component of tank with predefined capabilities could be reused with little consideration about its
tactics.

Figure 11 shows the part of the simulation log for Tank #3, defined in
figure 8. The log table shows the action record of the tank, with each
row giving the timestamp of behavior occurrence. Time flows from
the bottom to upper. Each row begins with a behavior which is the
first rounded box. Whenever the tank checks whether the behavior is
proper for a certain situation at a time, the rounded box appears. Also =
the tank checks role condition then the second rounded box appears. If r‘
the role in a row (usually the second box in the row) is changed by the —
simulation engine, then a rounded box with different name is shown in

the later (upper) row. In the figure the tank was assigned as Wingman T
at the beginning. If there is no need to change the role, then a role of D
the same name appears next. As time goes upward in the table, the

tank has changed role two times. The initial role of the tank,

Wingman, has changed to Leader as engagement started and the

Leader tank was destroyed. It means the ex-Wingman tank took | squad || squad || squad |
Leader role. But then the tank was also damaged,; it transferred the
role to another tank, so it became the Wingman again. The

Assigned only
to immediate
subordinate

Battalion

| PIatn | | Platoon | | Platoon |

explanation for other rounded boxes is omitted because those are the Q} d} & é}

issues of behavior re-planning (Kim, & Choi, 2013) and out of scope L L L L

for this paper. However, the combination of re-planning and

cooperation enables the Actors in simulation to be more humanlike. Figure 12. Scalability in ROCH

The ROCH is scalable in the resolution aspect as shown in Figure 12. It is applicable from soldier level to brigade
level in that it formally and systematically specifying the tactical model of Actors from individual soldier or tank to
a large scale unit (brigade) with the same scheme. Any Actor (e.g., Brigade) assigns Task to only its immediate
subordinate Actor (e.g., battalions) and has no need to assign any Task to the subordinate’s subordinates (e.g.,
companies), only to its direct subordinates. This mechanism can be applied to overall organization which is
specified in scenarios. The Plan of a superior (e.g., regiment, squad) merely specifies what direct subordinates (e.g.,
battalions, soldiers) are required to behave.

CONCLUSION

We surveyed current outstanding war game software including OneSAF, FLAMES, and VR-Forces, and we derived
a Common Model. Through the survey we figured out that existing models have scheme of tightly coupled
activities (set of Tasks) with its player (Actor). Because of such coupling, it is not easy to reuse existing
components (Actor) and activity definition (Tactics). Specifically it is impossible to simulate mission transfer
among simulation players, which can frequently occur in real world battlefield.

To overcome such shortcomings, we have introduced ROCH model to execute the tactical models specified in the
Meta-Model. It separates Tactics from its Actor, thus such loosed coupling enhances composability and reusability
of the components of Actors and Tactics. The assignment mechanism of ROCH framework enables simulation to
assign Roles dynamically, thus it helps simulation users to simulate more dynamically adaptable Tactics reflecting
fast changing battle situation. It is also scalable from an individual soldier to brigade with the same design scheme.
Thus users can specify Tactics in the same manner along the whole hierarchy.

Future Works

In implementation some exceptional cases identified. Some failures of Role assignment and re-assignment occur
when an Actor loses a combat power during simulation. To solve the problem more complex plan was required.

2015 Paper No. 15166 Page 10 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

By adding more complex conditions or conditional expressions into Plans, Plans became more complicated because
of considering every exceptional case. At the initial stage of ROCH application to a simulation system, we realized
that a solution is needed: Self-adaptive plan generation which enables a Unit to adaptively modify their plans
according to its situation. It is possible to be applied in other domains such as Multi-Agent Systems, Pervasive
Systems, and so on, to improve the composability, reusability, and adaptability of agents, components, or services.

ACKNOWLEDGEMENTS

Funding for this research was provided by the Republic of Korea’s Agency for Defense Development. The support
for this work is gratefully acknowledged. The authors also thank the anonymous reviewer for useful comments that
helped to improve the clarity of the paper.

REFERENCES

Logsdon, J., & Nash, D., & Barnes, M. (2008). One semi-automated forces (OneSAF): capabilities, architecture, and
processes. DoD M&S (Modeling and Simulation) Conference Presentations, Orlando, Florida, DoD M&S
Conference.

Ternion Corporation. (2012). FLAMES Simulation Framework: Online Document Version 10.0.1, accessed on 01-
07-2012, from http://www.ternion.com.

VT MAK. (2012). VR-Forces: Developers Guide, accessed on 05-03-2012, from
http://www.mak.com/products/simulate/computer-generated-forces.html,

Atkin, M. S., & Westbrook, D. L., & Cohen, P. R. (2001). HAC: A unified view of reactive deliberation activity,
Proceedings of the 5th International Conference on Autonomous Agents, 92-107.

Vakas, D., & Prince, J., & Blacksten, H. R., & Burdick, C. (2001). Commander behavior and course of action
selection in JWARS, Proceedings of the 2001 Winter Simulation Conference, 697-705.

Song, Y., & Yang, Y. (2006). Modeling organization of multi-agent system with command mechanism, Proceedings
of the 1st International Multi-Symposiums on Computer and Computational Sciences, 732-736.

Bisht, S., & Malhotra, A., & Taneja, S. B. (2007). modeling and simulation of tactical team behavior, Defence
Science Journal, Vol. 57, No. 6, 853-864.

Ferber, J., & Gutknecht, O., & Michel, F. (2004). From agents to organizations: an organizational view of multi-
agent systems. Agent-Oriented Software Engineering 1V, Lecture Notes in Computer Science, Vol. 2935, 214-
230, doi: 10.1007/978-3-540-24620-6_15.

Xu, H., & Zhang, X., & Patel, R. J. (2007). Developing role-based open multi-agent software systems. International
Journal of Computational Intelligence Theory and Practice, Vol. 2, No. 1, 39-56.

Cabri, G., & Leonardi, L., & Zambonelli, F. (2003). BRAIN: A framework for flexible role-based interactions in
multiagent systems. On The Move to Meaningful Internet Systems 2003: CooplS, DOA, and ODBASE,
Lecture Notes in Computer Science, Vol. 2888, 145-161, doi: 10.1007/978-3-540-39964-3_11.

Becht, M., & Gurzki, T., & Klarmann, J., & Muscholl, M. (1999). ROPE: role oriented programming environment
for multiagent systems. Proceedings of the 4th IFCIS International Conference on Cooperative Information
Systems, 325-333.

Hahn, C., & Madrigal-Mora, C., & Fischer, K. (2009). A platform-independent metamodel for multiagent systems.
Autonomous Agents and Multi-Agent Systems, Vol. 18, Issue 2, 239-266, doi: 10.1007/s10458-008-9042-0.
Object Management Group. OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1,

accessed on 30-11-2012, from http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF.

Petty, M., & Kim, J., & Byun, J. (2014). Software Frameworks for Model Composition, Modeling & Simulation in
Engineering, vol. 2014, article ID 492737.

Kim, H., & Lee, S. (2013). Role-based Command Hierarchy Model for War Fare Simulation, International Journal
of Simulation Model 12 (2013) 4, 252-263.

Kim, J.,, & Choi, D. (2013). Implementation of Goal Oriented Behavior Planning, Re-planning for SAF,
Interservice/ Industry Training, Simulation, and Education Conference 2013, Orlando, National Training and
Simulation Association.

2015 Paper No. 15166 Page 11 of 11

