

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 1 of 11

Implementation of Role-based Command Hierarchy Model for Actor

Cooperation

Jungyoon Kim, Hee-Soo Kim, Jihyun Jang Sangjin Lee, Samjoon Park

 REALTIMEVISUAL Agency for Defense Development

 Seoul, Republic of Korea Daejeon, Republic of Korea

 jkim@realtimevisual.com, hskim@realtimevisual.com,

jhjang@realtimevisual.com

sangjinlee@add.re.kr, samjoon@add.re.kr

ABSTRACT

Many approaches to agent collaboration have been introduced in military war-games, and those approaches address

methods for actor- (agent-) collaboration within a team to achieve given goals, where the team’s abstract mission is

translated into concrete tasks for each actor. To meet fast-changing battlefield situations, an actor must be 1) loosely

coupled with their tasks and be 2) able to take over the role of other actors if necessary to reflect role handovers

occurring in real combat. Achieving these requirements allows the transfer of tasks assigned one actor to another

actor in circumstances when that actor cannot execute its assigned role, such as when destroyed in action. Tight

coupling between an actor and its tasks can prevent role handover in fast-changing situations. Unfortunately,

existing approaches and war-game software strictly assign tasks to actors during design, therefore they prevent the

loose coupling needed for successful role handover. To overcome these shortcomings, we have defined Role-based

Command Hierarchy (ROCH) model that dynamically assigns roles to actors based on their situation at runtime. In

the model we devise “Role” to separate actors from their tasks. Described in this paper, we implement the ROCH

model as a component that uses a publish-subscribe pattern to handle the link between an actor and the roles of its

subordinates (other actors in the team). Therefore, an actor can indirectly send a message (order or report) to another

actor without knowing which actor is recipient. The sender actor is only required to know the relevant roles. The

model has been implemented and tested in a military project, and we briefly show the outcomes in this paper.

ABOUT THE AUTHORS

Jungyoon Kim is a research engineer in REALTIEMVISUAL Inc., Seoul, Korea. He has been working on

development of military logistics systems and joined the M&S area in 2010. He obtained BS in Aeronautical

Engineering from Korea Air Force Academy, received MS. from Texas Tech University and Ph.D from Korea

Advanced Institute of Science & Technology (KAIST) in computer science.

Hee-Soo Kim is presently a Ph.D. candidate in Graduate School of Information and Communication at Ajou

University and works as a research engineer in REALTIMEVISUAL Inc. He has received M.Sc. in Graduate School

of Information and Communication from Ajou University in 2005. Areas of his interest include modeling and

simulation, software engineering, and large-scale system infrastructure based on knowledge engineering.

Sangjin LEE is a Senior Researcher in the Modeling and Simulation Division of the Agency for Defense

Development in the Republic of Korea. He received a Ph. D in Industrial Engineering from the Korea Advanced

Institute of Science and Technology (KAIST) in 2008. He has worked in developing applications of modeling and

simulation since 2011. He is interested in composable simulation framework architectures and computer generated

forces.

Samjoon PARK is a Principal Researcher and Director of the Modeling and Simulation Division of the Agency for

Defense Development in the Republic of Korea. He received a Ph.D. in Industrial Engineering from the Korea

Advanced Institute of Science and Technology (KAIST) in 2006. He has worked in optimization for integrated

logistics support and developing information systems since 1989. He is interested in composable simulation

framework architectures, computer generated forces, and munitions effectiveness.

Jihyun Jang has been working as an engineer in REALTIMEVISUAL Inc. for two years. He has received B.S. and

MS. in Bio & Brain Engineering from Korea Advanced Institute of Science and Technology (KAIST).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 2 of 11

Implementation of Role-based Command Hierarchy Model for Actor

Cooperation

Jungyoon Kim, Hee-Soo Kim, Jihyun Jang Sangjin Lee, Samjoon Park

 REALTIMEVISUAL Agency for Defense Development

 Seoul, Republic of Korea Daejeon, Republic of Korea

 jkim@realtimevisual.com, hskim@realtimevisual.com,

jhjang@realtimevisual.com

sangjinlee@add.re.kr, samjoon@add.re.kr

INTRODUCTION

War games model and simulate military elements (combatants, activities), test the effectiveness of combat

participants and their tactics or doctrines in an anticipated real engagement with a reduced budget. In a war game,

Actor is a structural element, and Tactics is a behavioral element. Table 1 provides two important definitions to

these terms.

Table 1. Element Naming in Existing Models

Terms Meaning

Actor

– The agent in agent based simulation area. (We use the term ‘agent’ differently in this paper.)

– Individual entities (rifleman, tank, aircraft …) that interact with physical elements

– Group of entities (platoon, company, battalion …) that exist within a virtual unit

Tactics

– Actor’s behavior. Realized into simulation scenario. Simulation engine translates the scenario

into Actor’s tasks and the transition requires ways to interpret group’s Tactics into Actors’ tasks

(cooperation, specifically mission transfer).

– Plan (a realized Tactics) defines participants and their goals in a simulation. The participants

(combatants) should achieve goals collaboratively.

Existing models are successful in modeling the activities of aggregate units or individual entities. Some follow

modularized model development, making them reusable and composable (Logsdon, Nash, & Barnes, 2008; Ternion

Corporation, 2012; VT MÄ K, 2012). However, the Actors and Tactics are tightly coupled, making some situations

difficult to represent within a simulation. Since a mission is just a sequence of tasks given and attached to an Actor,

without the ability to transfer an Actor’s tasks to another, the inability of an Actor to continue its mission within a

simulation necessarily results in the loss of its mission within the simulation. This is an inappropriate representation

of real-world situations in which a mission-transfer to another live combatant occurs frequently as a combatant

injury or other casualty. The left side of Figure 1 illustrates this situation.

• Figure 1. Tightly coupled missions and separated missions (Roles)

To overcome such shortcoming, we have introduced Role-based Command Hierarchy (ROCH) (Kim & Lee, 2013)

based on the concept of right side of Figure 1. It separates the Tactics from Actor components using a role concept.

Role is a logical connection between an Actor’s Tactics and its subordinates (other Actors) and it is defined at design

time. The Actor is dynamically bound to its subordinates through Roles according to situations at runtime. This

architecture enables simulations to be more composable, reusable, and scalable, in that a Role can be reused with

minimal modification of its Actor and an Actor can be reused without considering its mission. After some minor

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 3 of 11

corrections ROCH has been implemented as a part of Korean military simulation. This paper is about explanation of

ROCH and of actual implemented interfaces.

REATED WORKS

US Army has developed a simulation product line, OneSAF, to supports various military simulation areas including

engagement analysis, personnel training, and acquisition decision (Logsdon, Nash, & Barnes, 2008). It enables

military users to cover a wide range of constructive and virtual simulator solutions. Additionally, various

commercial simulation architectures are successful in modeling tactics of aggregate or individual entities. Among

them, FLAMES and VR-Forces model physical domains (land, sea, air, and space) at a wide range of fidelity and

resolution levels (Ternion Corporation, 2012; VT MÄ K, 2012). They are founded on the concept of component

based development. The elements of a simulation such as units, entities, and their tactics are implemented as

modularized components.

OneSAF, FLAMES, and VR-Forces are highly reusable. Their component based modularity helps developers to

rapid develop M&S systems with low cost. However, they are limited to model tactics in real combat and do not

effectively reflect fast-changing combatants’ missions. (e.g., a combatant may be removed from its mission such as

killed in action, with the mission left usually transferred to another combatant.) Reflecting such situation requires a

more complex specification at design time to describe all possible task handover situations.

Other related works have similar problems, such as hierarchical agent control (HAC) (Atkin, Westbrook, & Cohen,

2001), commander model (CB) (Vakas, Prince, Blacksten, & Burdick, 2001), command-based multi-agent system

(CMAS) (Song, & Yang, 2006), tactical team behavior (TTB) (Bisht, Malhotra, & Taneja, 2007), agent-group-role

(AGR) (Ferber, Gutknecht, & Michel, 2004), and so forth. Each model is helpful to represent the tactical behaviors

of aggregate units and to enable the units to perform the tactical activities. However, the activities are tightly

coupled, making it difficult to reuse units or activities.

Table 2. Element Naming in Existing Models

Common Model

We surveyed four simulation architectures to determine their representations of their elements. They are three

outstanding architectures, OneSAF, FLAMES, and VR-Forces, which can be applied to military or commercial

areas, and one architecture, Composable Software Architecture Framework (CSFA) (Petty, Kim, & Byun, 2014),

developed by us as a national defense research project to show the feasibility of composable and modular simulation.

CSFA can be regarded as an outcome from benchmark of OneSAF, reflecting indigenous features for Korean Army.

Modeling Elements OneSAF FLAMES VR-Forces CSFA

Actor Actor Unit Entity Unit

Atomic actor Entity Unit Entity Entity

Aggregate actor Unit - Aggregate Entity Aggregate Unit

Physical model
Physical Agent /

Physical Model
Equipment Sensor / Actuator

Equipment Agent/

Equipment Model

Behavior logic
behavior Agent /

behavior Model
Cognition Model Controller behavior Agent

Intra unit

communication
Trigger Specific interface Port Trigger

Inter unit

communication
Event Message Message Event

Cooperation behavior Agent Cognition Model Controller Behavior Agent

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 4 of 11

Since OneSAF aims to reflect global level military operations including non-conventional wars such as anti-terrorist

activities, its vast list of tasks (behaviors) is inappropriate to the Korean situation.

As a result of the survey, we have introduced a Common Model by comparing the elements of the architectures

above and categorizing them with their similarities into modeling elements as shown in Table 2. Thus Common

Model can be regarded as an average categorization of existing models and their elements. Because the

architectures are component-based warfare M&S software products, in many aspects most elements in a same

category are mainly similar concepts or the same character with just different names.

Figure 2. Common Model from existing models

Elements in some software architectures can be seen as structural or behavioral. Figure 2 shows such elements of

Common Model introduced from the survey. Most names, such as Actor and Behavior, mainly borrowed from

OneSAF. In the model, a Warfare Scenario includes organizational information for each blue or red force in that an

Aggregate Actor is organized by Atomic Actors or other types of Aggregate Actors. A Warfare Scenario also

defines the Mission, which is composed of Tasks. An Actor can be Atomic or Aggregate: Atomic Actor (an entity in

a battlefield) has no subordinates and is composed of Physical and Behavior Agents, while an Aggregate Actor (or

organizational unit) includes group of Actors and is composed only of Behavior Agents. Relations between a higher

Actor and its subordinate Actors reflect a command chain. An Actor also includes Agents that are equivalent to the

interfaces of a component and are categorized into physical and behavioral: A Physical Agent represents one of

Actor’s parts such as sensor, mobility, weapons. A Behavior Agent decides the Behavior for its unit. Inside an Actor,

Agents communicate with other Agents through Triggers. Actor detects or makes changes in the environment

through its Physical Models/Agents.

The behavioral elements of Common Model are Behavior, Task, Mission, Event and Trigger. A Behavior can be

Composite or Primitive Behavior. A Composite Behavior is composed of other behaviors that are arranged in order.

A Primitive Behavior controls its relevant Behavior Agent by generating Triggers to initiate Actor’s Behavior.

Tasks are delivered to an Actor in the form of an Event. A Task is specified as a combination of Behaviors. Actors

perform Tasks by executing its Behaviors. A Mission is a conceptual goal that an Actor must achieve and is

composed of a sequential set of Tasks. A Mission forms the long-term plan that Actor executes. Finally, Trigger is

the transformed Event capture from the outside of an Actor, and initiates Actor’s Behavior. Trigger is equivalent to

Event, for example “being attacked” as a change of the environment is delivered in the form of an Event and then is

called Trigger once it gets inside of an Actor. At the beginning of a simulation, each Agent subscribes to some

Events in which the Agent is interested, then once an Event happens simulation engine notifies the Agent that

subscribed for the Event. Finally the Agent acts according to the Event (publish-subscribe pattern).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 5 of 11

Common Model can be seen with four different viewpoints as

circled with dotted lines in Figure 2: operational, organizational,

environmental, and unit viewpoints. The Operational Viewpoint is

the aspect of tactics executed in a real battlefield. It implies the

behavioral elements of a simulation. The Organizational Viewpoint

is the aspect of combatants participating in an engagement and

implies the structural elements of a simulation. Environmental

Viewpoint is simply the aspect of interaction between environment

and Actor. The Event is transferred to Actor through Physical

Model. The Physical Model represents any mediator which can

detect any change in environment or can give effect to environment,

such as sensors, fire arms, mobility, or communication devices.

Unit viewpoint is the aspect of an Actor composition. It sees an

Actor’s composition and executes its mission.

Limitation of Existing Models

One limitation of the Common Model is that it is difficult to reflect certain situations (such as role-transfer

aforementioned). As an Actor and its Tasks are tangled each other through Warfare Scenario and Mission, it is hard

to reuse an Actor or Task alone. As shown in Figure 2, each Actor has its own missions, and the schema can be

redrawn as Figure 3. In Figure 3, Superior Unit receives task and each Units receives subtask from Superior Unit.

Generally such task and subtasks are defined at design time (scenario editing), considering that each subtasks are to

achieve Superior Unit’s task. As a result, the task and subtasks are tightly coupled with its Actors (the units).

In the scheme of Common Model, task cannot be swapped with other units’ tasks, thus if the owner Actor of the task

is destroyed and removed from the simulation, its task also will be removed. HAC (Atkin, Westbrook, & Cohen,

2001), CM (Vakas, Prince, Blacksten, & Burdick, 2001), and TTB (Bisht, Malhotra, & Taneja, 2007) focus on

modeling of tactics with little consideration of unit components’ composability. CMAS (Song, & Yang, 2006) and

AGR (Ferber, Gutknecht, & Michel, 2004), can specify the tactics of units as interaction between roles that they

play but do not clearly provide the method to separate units from the roles. This tight coupling means that a superior

unit should be dependent on its subordinates or vice versa.

ROLE BASED COMMAND HIERARCHY (ROCH)

Figure 4 briefly illustrates the basic concept of ROCH architecture.

The Goal of ROCH is to separate tactics from units in order to

overcome the drawback of tight coupling. The distinguished part

of ROCH is Role. It is a virtual seat that indicates an actual

subordinate unit, which is not predetermined at design time. It

bounds Tactics (set of Tasks) to an Actor at runtime, making the

subordinates (Unit) of the Superior Unit tactically behave. A sub-

task is the subordinate’s contribution to achieve the goal of

Superior Unit’s task. A Role has a set of sub-tasks that its owner

(Unit) should be able to execute. Thus the set of all Subtasks can

be regarded as the Tactics for the Superior Unit.

ROCH is composed of two artifacts: a Meta-Model and a

Framework. The Meta-Model is used to specify Actors and Plans

as a machine-readable representation using XML, which is

different from the previous role-based approaches (Xu, Zhang, &

Patel, 2007; Cabri, Leonardi, & Zambonelli, 2003; Becht, Gurzki,

Klarmann, & Muscholl, 1999; Hahn, Madrigal-Mora, & Fischer,
Figure 4. ROCH Architecture

Figure 3. Command Hierarchy in

Common Model

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 6 of 11

2009) where role (tactics) is usually hard coded within its player at design time. The Meta-Model allows the tactics

of Unit to be freely modified by users without knowing Unit’s Condition. The Framework provides the facilities

for each Unit to execute their Plans with mechanism dynamically assigning Roles considering situation at runtime.

Figure 5. ROCH Meta Model

Figure 5 shows Meta-Model in UML. Meta-Model is based on the context of the model-driven architecture (Object

Management Group, 2012) and the Common Model mentioned in previous chapter. Meta-Model is composed of

Actor Meta-Model and Tactics Meta-Model. In Actor Meta-Model Attribute is a variable which comprises the

Actor’s state and Tasks is what Actor performs. Tactics Meta-Model represents the plan in which Actor and its

subordinate Actors are specified. A Plan is composed of Roles and a Plan Expression. Role is the distinguishing

characteristic of ROCH and has attributes and tasks (responsibilities) and two Conditions (assigning and

withdrawing Conditions). Role can be regarded as the requirements to the Actor. For a subordinate Actor (the Unit

in Figure 4) to take the role, it must have the attributes and capability to perform the tasks of the role.

Meta-Model defines Role conditions which are capabilities for a superior Actor that dynamically selects a player of

the Role among their subordinate Actors according to their capabilities. The Assigning Condition requires that a

subordinate can play the Role assigned. The Withdrawing Condition indicates that a subordinate, which is playing

an assigned Role, cannot play it anymore. In implementation, we removed the Withdrawing Condition from the

architecture since it is equivalent to not meeting an assigned condition. However, this is an important concept in

ROCH, so we kept the Withdrawing Condition in the ROCH Meta-Model. Plan is the series of the sub-tasks to be

achieved by the superior Actor. It is represented to be a sequential, concurrent, conditional, or Role Task expression

(other expression) for achieving a task assigned by a simulation user or its superior Actor. A role-task is the

terminal expression to represent a task that a role’s player should perform.

Framework is another major part of ROCH, as shown in Figure 6 and 7. The main function of the Framework is to

execute plans under the behavior agent of a Unit in Figure 6. The state informing function is for units to inform its

superior Actor about its own capabilities and attributes. It is called when the Actor participates in its superior’s

group or any capability/attribute of the Actor is changed. In the publish-subscribe pattern for the handling link

between an Actor and Roles of its subordinates (other Actors), an Actor can indirectly send message (order or report)

to another Actor without knowing which Actor is recipient. The sender Actor is only required to know the relevant

Roles. Plan Lib loads the Plans for a Unit. Also, it selects and activates the Plan for the Task received from a

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 7 of 11

simulation user or a superior unit. The Role Manager assigns/withdraws the Roles according to

assigning/withdrawing Conditions, and the State Manager maintains the states of its owner (Unit) and the

subordinates. The Framework operates based on Scenario that includes the organizational information (hierarchy).

Scenario also has references to the configuration of a Unit (subordinate). Unit includes the unit model, an

implementation package. Its state informing function is to report about its own capabilities and attributes, and Role

assigning process.

Figure 6. ROCH Framework

Figure 7. Role Assignment and Withdrawing

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 8 of 11

The plan execution function is to execute the plan. When a Unit receives a task (4), its Plan Lib selects and activates

the Plan (5). Role Manager assigns the proper subordinates to the Roles specified in the Plan (6). Each Role is

bound to a subordinate, and a series of sub-tasks are delivered to the role-playing subordinate (7). If a role-playing

subordinate cannot play the Role (i.e., the subordinate’s state meets the withdrawing condition), the Role is

reassigned to another possible subordinates by Role Manager.

In Figure 7, the Behavior Agent of a Unit periodically calls the Update function (1.1). It checks if there are Roles to

be withdrawn from/assigned to its subordinates using Roles’ withdrawing/assigning Conditions (1.2 and 1.3).

These steps use the information of Roles and subordinates obtained by State Managers. The last step is to assign a

Role to a subordinate if the assigning condition of the Role is met by the current state. After Role assignment, a pair

of Role and subordinate is created in the framework (1.4).

IMPLEMENTATION

Figure 8. Simple Scenario for Test and Expected Result

Figure 9. Role Definition in the Scenario

To show how ROCH realizes the mission transfer situation in a war game simulation, simple combat scenario is

applied as shown in Figure 8 and 9. The scenario defines that the Blue tank platoon engages with a Red tank

platoon. For Blue, a platoon model and three tank models are defined. The plan for the platoon is to occupy the

location Point X. For Red, another platoon is defined with three tank models. Its plan is to defend against the Blue

tank platoon. Figure 9 shows the Role definitions for each tank in Blue side. Roles are Leader, FrontWingman,

and Wingman. Leader is to lead the platoon at the front row in formation, FrontWingman keeps position to be in the

same row with Leader (at front), and Wingman is to support for the front row tanks. Leader and FrontWingman

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 9 of 11

must have their CombatPower over 90 while Wingman can have over 50 (The value of Combat Power can be

regarded as percentage). We expected the Wingman takes over the role of Leader or FrontWingman.

Figure10. Screen Capture for Behavior Editor

Even though it is simple scenario; it

contains the context of the benefits of

ROCH. Figure 10 is the captured UI

screen of actual simulation software that

incorporates ROCH as a part of its

behavior editor. In the screen, the green

boxes are Roles and they include

behaviors that are connected to their next

behaviors. The Leader executes “Move”

behavior then engages with the

encountered enemy. Wingman executes

“Follow” behavior as reserve force for

support. The left upper pane “Role”

shows the two Roles defined in the

Behavior Editor. It says if Leader loses

power under “High” and there is any

Wingman that has power over “High”

then the Leader and the Wingman swap

their roles. (In this case, the Leader does

not mean actual leader in real combat. It

rather means the tank who leads at the

foremost in the formation.) The threshold

value for High and Medium are defined in

different UI. In implementation, two

Role assignment conditions (assigning

and withdrawing) became one, as

aforementioned. Only the assigning

condition is needed for the two

Figure 11. Part of Simulation Log for #3 Tank (Time flows from

bottom to up)

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 10 of 11

conditions. As shown in the Roles pane the condition does not differentiate assigning or withdrawing. Through the

implementation of ROCH, we can have confidence on our claim that composability and reusability are improved.

As Role links superior and subordinate as medium between them (as no direct dependency between platoon and tank

components), a component of tank with predefined capabilities could be reused with little consideration about its

tactics.

Figure 11 shows the part of the simulation log for Tank #3, defined in

figure 8. The log table shows the action record of the tank, with each

row giving the timestamp of behavior occurrence. Time flows from

the bottom to upper. Each row begins with a behavior which is the

first rounded box. Whenever the tank checks whether the behavior is

proper for a certain situation at a time, the rounded box appears. Also

the tank checks role condition then the second rounded box appears. If

the role in a row (usually the second box in the row) is changed by the

simulation engine, then a rounded box with different name is shown in

the later (upper) row. In the figure the tank was assigned as Wingman

at the beginning. If there is no need to change the role, then a role of

the same name appears next. As time goes upward in the table, the

tank has changed role two times. The initial role of the tank,

Wingman, has changed to Leader as engagement started and the

Leader tank was destroyed. It means the ex-Wingman tank took

Leader role. But then the tank was also damaged; it transferred the

role to another tank, so it became the Wingman again. The

explanation for other rounded boxes is omitted because those are the

issues of behavior re-planning (Kim, & Choi, 2013) and out of scope

for this paper. However, the combination of re-planning and

cooperation enables the Actors in simulation to be more humanlike.

The ROCH is scalable in the resolution aspect as shown in Figure 12. It is applicable from soldier level to brigade

level in that it formally and systematically specifying the tactical model of Actors from individual soldier or tank to

a large scale unit (brigade) with the same scheme. Any Actor (e.g., Brigade) assigns Task to only its immediate

subordinate Actor (e.g., battalions) and has no need to assign any Task to the subordinate’s subordinates (e.g.,

companies), only to its direct subordinates. This mechanism can be applied to overall organization which is

specified in scenarios. The Plan of a superior (e.g., regiment, squad) merely specifies what direct subordinates (e.g.,

battalions, soldiers) are required to behave.

CONCLUSION

We surveyed current outstanding war game software including OneSAF, FLAMES, and VR-Forces, and we derived

a Common Model. Through the survey we figured out that existing models have scheme of tightly coupled

activities (set of Tasks) with its player (Actor). Because of such coupling, it is not easy to reuse existing

components (Actor) and activity definition (Tactics). Specifically it is impossible to simulate mission transfer

among simulation players, which can frequently occur in real world battlefield.

To overcome such shortcomings, we have introduced ROCH model to execute the tactical models specified in the

Meta-Model. It separates Tactics from its Actor, thus such loosed coupling enhances composability and reusability

of the components of Actors and Tactics. The assignment mechanism of ROCH framework enables simulation to

assign Roles dynamically, thus it helps simulation users to simulate more dynamically adaptable Tactics reflecting

fast changing battle situation. It is also scalable from an individual soldier to brigade with the same design scheme.

Thus users can specify Tactics in the same manner along the whole hierarchy.

Future Works

In implementation some exceptional cases identified. Some failures of Role assignment and re-assignment occur

when an Actor loses a combat power during simulation. To solve the problem more complex plan was required.

Figure 12. Scalability in ROCH

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2015

2015 Paper No. 15166 Page 11 of 11

By adding more complex conditions or conditional expressions into Plans, Plans became more complicated because

of considering every exceptional case. At the initial stage of ROCH application to a simulation system, we realized

that a solution is needed: Self-adaptive plan generation which enables a Unit to adaptively modify their plans

according to its situation. It is possible to be applied in other domains such as Multi-Agent Systems, Pervasive

Systems, and so on, to improve the composability, reusability, and adaptability of agents, components, or services.

ACKNOWLEDGEMENTS

Funding for this research was provided by the Republic of Korea’s Agency for Defense Development. The support

for this work is gratefully acknowledged. The authors also thank the anonymous reviewer for useful comments that

helped to improve the clarity of the paper.

REFERENCES

Logsdon, J., & Nash, D., & Barnes, M. (2008). One semi-automated forces (OneSAF): capabilities, architecture, and

processes. DoD M&S (Modeling and Simulation) Conference Presentations, Orlando, Florida, DoD M&S

Conference.

Ternion Corporation. (2012). FLAMES Simulation Framework: Online Document Version 10.0.1, accessed on 01-

07-2012, from http://www.ternion.com.

VT MÄ K. (2012). VR-Forces: Developers Guide, accessed on 05-03-2012, from

http://www.mak.com/products/simulate/computer-generated-forces.html,

Atkin, M. S., & Westbrook, D. L., & Cohen, P. R. (2001). HAC: A unified view of reactive deliberation activity,

Proceedings of the 5th International Conference on Autonomous Agents, 92-107.

Vakas, D., & Prince, J., & Blacksten, H. R., & Burdick, C. (2001). Commander behavior and course of action

selection in JWARS, Proceedings of the 2001 Winter Simulation Conference, 697-705.

Song, Y., & Yang, Y. (2006). Modeling organization of multi-agent system with command mechanism, Proceedings

of the 1st International Multi-Symposiums on Computer and Computational Sciences, 732-736.

Bisht, S., & Malhotra, A., & Taneja, S. B. (2007). modeling and simulation of tactical team behavior, Defence

Science Journal, Vol. 57, No. 6, 853-864.

Ferber, J., & Gutknecht, O., & Michel, F. (2004). From agents to organizations: an organizational view of multi-

agent systems. Agent-Oriented Software Engineering IV, Lecture Notes in Computer Science, Vol. 2935, 214-

230, doi: 10.1007/978-3-540-24620-6_15.

Xu, H., & Zhang, X., & Patel, R. J. (2007). Developing role-based open multi-agent software systems. International

Journal of Computational Intelligence Theory and Practice, Vol. 2, No. 1, 39-56.

Cabri, G., & Leonardi, L., & Zambonelli, F. (2003). BRAIN: A framework for flexible role-based interactions in

multiagent systems. On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE,

Lecture Notes in Computer Science, Vol. 2888, 145-161, doi: 10.1007/978-3-540-39964-3_11.

Becht, M., & Gurzki, T., & Klarmann, J., & Muscholl, M. (1999). ROPE: role oriented programming environment

for multiagent systems. Proceedings of the 4th IFCIS International Conference on Cooperative Information

Systems, 325-333.

Hahn, C., & Madrigal-Mora, C., & Fischer, K. (2009). A platform-independent metamodel for multiagent systems.

Autonomous Agents and Multi-Agent Systems, Vol. 18, Issue 2, 239-266, doi: 10.1007/s10458-008-9042-0.

Object Management Group. OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1,

accessed on 30-11-2012, from http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF.

Petty, M., & Kim, J., & Byun, J. (2014). Software Frameworks for Model Composition, Modeling & Simulation in

Engineering, vol. 2014, article ID 492737.

Kim, H., & Lee, S. (2013). Role-based Command Hierarchy Model for War Fare Simulation, International Journal

of Simulation Model 12 (2013) 4, 252-263.

Kim, J., & Choi, D. (2013). Implementation of Goal Oriented Behavior Planning, Re-planning for SAF,

Interservice/ Industry Training, Simulation, and Education Conference 2013, Orlando, National Training and

Simulation Association.

