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ABSTRACT 

 

The accelerating effects of adaptive training systems are well established (Lesgold, 2012; Cohn & Fletcher, 2010). 

This power might be enhanced further by scheduling training to accelerate acquisition and scheduling re-training to 

reduce decay. Models of acquisition and decay have been available to support scheduling since the early days of 

memory research (Ebbinghaus, 1913). But these models are derived mainly from laboratory tasks that are learned 

and executed over seconds or minutes, and performed in isolation from competing tasks. The models are much less 

explanatory or predictive over real world tasks that are complex, learned and executed over hours and days, and 

situated in a river of daily assignments that impose the scientifically acknowledged cause of skill decay: interference 

with memory retrieval (Farr, 1987; Arthur, et al., 1998).  In this paper, we propose a new approach to acquisition 

and decay modeling to make the science of skill acquisition and decay more useful and usable. The approach applies 

machine learning techniques to model skill acquisition and decay. We apply these methods to a large dataset from a 

game-ified working memory exercise, compare the performance of these methods with a conventional technique, 

and present the argument for applying these methods to predict learning and schedule training for realistically 

complex tasks such as system diagnosis and corrective maintenance. 
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INTRODUCTION 

 

Training is efficient when it accelerates the acquisition of skills and slows their decay. This entails measuring 

learning, modeling acquisition and decay, and using such models to specify when and what the trainee can most 

profitably study to build skills or retain them. Few if any training systems do this, unfortunately. A robust 

measurement and modeling solution that forecasts and manages learning in training and on the job would enable the 

military to implement training that is more efficient, and talent management that delivers and applies trained 

personnel more effectively.  

 

To realize such systems requires new modeling techniques. Models of acquisition and decay have been available to 

support scheduling from the early days of memory research (Ebbinghaus, 1913) through today (Fitts and Posner, 

1967; Pavlik and Anderson, 2003; Jastrzembski, et al., 2006; Wang, et al., 2013). But these models are derived 

mainly from laboratory tasks that are learned and executed over seconds or minutes, and performed in isolation. The 

models are much less explanatory or predictive over real world tasks that are complex, learned and executed over 

hours and days, and situated in a river of daily assignments that impose the scientifically acknowledged cause of 

skill decay: interference with memory retrieval (Farr, 1987; Arthur, et al., 1998).  

 

In this paper, we explore methods of analyzing skill acquisition and decay using the traditional General Performance 

Equation (GPE) and two machine learning models: Hidden Markov Models (HMM) and Multi-Layer Perceptron 

Models (MLP). As we report, below, the alternatives to the GPE produced respectable accuracy scores: Mean 

Absolute Deviation (MAD, a measure of error) was 8% for the GPE, 10% for the HMM, and 27.5% and  18.0% for 

iterative and fixed trajectory MLP models respectively. Importantly, these models offer functionality that the GPE 

cannot. They can:  

1. Automatically refine their estimates of acquisition and decay over time, as data concerning student 

performance accumulates. This enables the system to model skill acquisition and decay curves roughly at 

first, by drawing on the research literature, and to gradually develop curves that fit real-world training and 

operational phenomena well. 

2. Incorporate a relatively rich array of factors that influence learning, such as characteristics of students (e.g., 

their experience with related tasks, their physiological state, age), knowledge and skill requirements, 

problems or tasks, and training environments.  

3. Represent learning and acquisition curves, either in whole or in part, that do not have the canonical form 

determined by the GPE.   

4. Discriminate between specific students or sections of the student population that exhibit different learning 

patterns, thus improving the fit of predictions and the quality of recommendations to the student(s).  

5. Prescribe an optimal training schedule, by enabling an instructor or a Monte Carlo curriculum generator to 

test the effect of alternative schedules on acquisition and decay. 

 

Applications 

 

Systems for scheduling training have high value, directly and indirectly, to Defense operations. Consider the talent 

management challenge of building and sustaining a corps of Naval system maintenance technicians. Navy systems 

are complex and often vary in their form and functionality between vessels. Navy maintenance personnel have 

sound training, but informal reports by operators suggest that diagnostic expertise is hard won in training, and hard 

to maintain in the operational environment.  
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Few current training systems integrate 

performance assessment, fewer still 

adapt instruction to performance, and 

none to our knowledge adapt 

instructional schedules to optimize 

learning curves. An efficient, effective 

training technology could accelerate the 

acquisition of maintenance knowledge 

and skill, and maintain those skills over 

time to the extent that it reliably 

recommends the right (re)training at the 

right time to technicians, their 

instructors, or their supervisors. The 

recommender component requires data 

concerning the activities and 

performance of maintainers in training 

and on the job. Objective, reliable data 

might be gathered in two ways. We 

might instrument technicians and 

technology with sensors that log 

maintenance training and job activity to 

support inferences about proficiency. A 

more modest approach would embed 

activity and proficiency assessment into 

training systems only (as illustrated in 

Figure 1). Either approach would 

provide data needed for a robust adaptive training recommender. Either could undergird a quantified talent 

management system that enables the DoD to assess and restructure the pipeline from accession through training, 

deployment, and retirement. It would enable DoD to assess the effectiveness of training regimens, job assignments, 

and career paths. Finally, it would inform research concerning all of these matters. 

 

In the remainder of this paper, we set aside the challenge of measuring proficiency and turn to the problem of 

predicting the acquisition and decay of skills using from good measurement data.   

 

MODELS FOR SCHEDULING 

Current methods of computing knowledge acquisition and decay curves interpolate points that are collected based on 

successful performance of a single, specific training task.  These interpolation techniques assume fixed, specific 

forms of learning behavior among students, and they do not represent the range of factors that may influence 

learning by a specific population of students in a specific domain under specific learning conditions. Skill 

acquisition and decay rates for an individual or group can be modeled as a function of the numerous data sources 

collected before, during, and following a training session. In this sense, prediction of skill acquisition and learning 

curves becomes a data-driven problem, one that requires the capabilities, enumerated above, of HMMs, MLPs, and 

other machine learning models.  

 

Below, we describe and test three models of acquisition and decay. We begin with the standard regression model, 

which serves as a benchmark: the General Performance Equation; we then investigate Hidden Markov Models 

(HMM), and Multi-layer Perceptrons (MLP) as the two machine learning models for comparison. To our knowledge 

this is the first comparison of these machine learning models to the standard GPE.   

 

The General Performance Equation (GPE) 

The General Performance Equation (GPE; Anderson and Schunn, 2000) specifies the power law of practice, the 

power law of forgetting, and the multiplicative effect of practice and retention.  Specifically, it is given by: 

 

𝐺𝑃𝐸 = 𝐴𝑁𝑐 𝑇−𝑑       (1) 

 

Figure 1: Flow of a training system that embeds activity and 

proficiency assessment into the tool itself to  assess learning of 

complex tasks and adapt instructional schedules to learning 

curve forecasts. 
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where A is a free parameter scalar, N is the amount of practice, c is the rate of learning, T is the time since learning, 

and d represents memory decay.  Parameters A, c, and d are found to best fit the data (Jastrzembski, Gluck, and 

Gunzelman, 2006).  These model parameters are now fixed for a student and implicitly assume that the student will 

not deviate from these parameters as their mastery grows or shrinks.  However, since this equation is widely viewed 

as the standard in the literature and has been shown to work well with a fixed set of data, we will use it as our 

ground truth to compare the performance of the machine learning models described below. 

 
Hidden Markov Models (HMMs) 

A Hidden Markov Model (HMM) is describes the transitions between a trainee’s states (e.g., Novice (N), 

Intermediate (I), Expert (E)) given a set of measures of performance or observations (O). In Figure 2, circles 

represent the state of a student, while O|* represents the probability of an observation given a student is in a certain 

state: N, I, or E. Specifically, with known past observations of a student, the Baum-Welch algorithm is used to infer 

the transitions of a student between each state, as well as the probability of emitting an observation from a specific 

state.  As an example, a new electronics technician is most likely to start off in the state novice.  When in the state 

novice, their performance on test items requiring expert K&S will likely be between 0-33%.  As they advance in 

training, they will likely move to the I state where their performance will be between 34%-66%, and lastly they will 

advance to being an expert with performance between 67%-100%.   

 

 
Figure 2: A HMM representing learning and decay.  The nodes represent skill levels (N=Novice, 

I=Intermediate, E=Expert) on a task, and the links between the nodes represent the probability of transition 

from one level to the next.  The O|* are the observations that are made from the training cycle shown in 

Figure 1 to infer the level of a trainee. 

 

Multi-layer Perceptrons (MLP) 

As a final model for comparison Multi-Layer Perceptron-based Models were developed to predict the learning curve 

of a learner/trainee over N future sessions. Multi-Layer Perceptrons (MLPs) are a common type of feed forward 

artificial neural network. For this effort, we investigated the development of two different types of MLP-based 

models: iterative MLPs and fixed trajectory MLPs.  An iterative MLP predicts the learner/trainee performance for 

the next session (i.e. one session in the future) and then use its output iteratively to generate an estimate of a learning 

curve over N future sessions. Conversely, fixed trajectory MLPs are similar in design and structure to the iterative 

MLP with the only difference being that model outputs are not used iteratively (i.e., there are fixed model inputs 

based on concurrent and historical available input data) and the model is constrained to generate a fixed number of 

outputs N (as an estimate of a learning curve over N future sessions). The structure of an iterative MLP implemented 

in this effort is shown below in Figure 3. MLPs and other neural network-based models have a structure consisting 

of three types of layers: 1) an input layer, 2) hidden processing layer, and 3) an output layer. All MLPs developed in 

this effort were trained via back-propagation and used the Levenberg-Marquardt algorithm to determine optimal 

model weights. (Back-propagation is short for "backward propagation of errors" and is a common method of 

training neural network models.) During model training, the error of the model with respect to a desired/target 

output is “back-propagated” to the various layers of the neural network model, where weights are continuously 

adapted via an optimization method (Levenberg-Marquardt algorithm in this case) in order to identify a set of 

weights which yield optimal model performance (i.e. minimization of model error).   

 

The input layer of the MLP consists of N processing elements based on the number of features (i.e. inputs) used by 

the model. For the MLPs developed in this study, model inputs included: performance of a learner/trainee (on a 0-

100 scale), the intended difficulty of a lesson/task, the amount of time between training sessions (in days), and the 
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duration of a training session/lesson (in minutes). These inputs were included in the model for the most recent 

session and N historical sessions. The weights of each perceptron, 𝑤𝑖𝑗 , were found by using the Levenberg-

Marquardt optimization algorithm. The advantage it provides over the GPE is, again, that  the weights are changed 

dynamically to better fit and predict the learning curve.   

 

 
Figure 3: An iterative MLP-based model for prediction of learner/trainee learning curves takes an easily 

extensible set of input measures and identifies the appropriate weights to model the effect each measure has 

on the performance of a trainee.  Layers of sigmoid functions are used to transform the input measures to the 

appropriate performance score. 

 

The architecture of this MLP represents fairly few and conventional learning factors. However, the MLP is most 

appropriate when we must represent a large variety of features (e.g., time delays, difficulty, student characteristics, 

task characteristics), or when the history of training events strongly influences learning. 

 

EXPERIMENTAL TRIALS & RESULTS 

The three models described have different input and output parameters, making a direct comparison challenging.  

Specifically, the GPE’s inputs are the trial number and the spacing between sessions, and its output is the accuracy, 

given a time delay between training sessions. The HMM takes as input the sequence of accuracy observations, and 

outputs a new predicted sequence of accuracies at each trial.  Lastly, the MLP, the most generalized time-series 

model, takes multiple features as input, such as difficulty, time delay, and session duration, to output a predicted 

time-series of the accuracies. 

  

To compare the predictions of each model with actual learning data, we used the mean absolute difference for N 

training points as a figure of merit. Mean Absolute Deviation (MAD) was computed thus: 

 

𝑀𝐴𝐷 =   
∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑃𝑒𝑟𝑓(𝑡𝑖)−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑃𝑒𝑟𝑓(𝑡𝑖)|𝑁

𝑖=1

𝑁
*100   (2) 
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Dataset: Cognitive Skills Training 

We tested these models on data that documents the acquisition and decay of well-defined and fundamental cognitive 

skills in a Western-themed game called Mind Frontiers (Ward, Paul, et. al, in review), by 241 anonymized 

participants over a 17 week period of play. Participants played 7 games at 9 different difficulty levels. Each game 

was specifically designed to exercise one of the following functions: working memory, reasoning, switching (or 

categorization), or executive function. The participants executed more than 815,000 trials (or “turns”) of one of 

these games: an implementation of the dual n-back task (Jaeggi, et al., 2008). Each trial lasted three seconds. Blocks 

of trials were separated by one or more days during which skill decay could theoretically occur. Thus, this dataset 

was thus well-suited to the planned analysis: it was collected under experimental conditions that ensured the quality 

of the data, it could contain evidence of both acquisition and decay of a skill over an interestingly long time span of 

months, and it was large enough (both in terms of participants and trials) to support the development of new models 

using certain machine learning applications.  

 

The General Performance Equation (GPE) 

 

The GPE is a simple regression model that fits a power-law curve of positive exponent for acquisition, and negative 

exponent for decay to the data. In our dataset, each user contributed multiple trials from about 109 sessions.  These 

sessions were separated by a variable time difference between consecutive sessions.  That is, within these 109 

instances, there were multiple instances where there was a gap of, for example, 1 day, and other instances where 

there were gaps of 30 minutes.  With these considerations in mind, the data was processed thus for the GPE.  

Focusing on a specific user session at a specified difficulty level, the time deltas between consecutive session start 

times were found.  The accuracy at a specific trial was the average accuracy between consecutive trials to 

correspond with the appropriate time delta between trials.   The results for one specific participant chosen at random 

from the dataset are shown in Figure 4 which achieved an error of 6.3%. 

 

 
Figure 4: GPE (curve) and actual student performance (points) for student i3017 at difficulty level 4.  The 

model shows continued but diminishing acquisition of skill from session to session. 

 

Overall, 10 randomly selected students from the dataset were modeled and they produced an average MAD of 

8.03% with a standard deviation of 1.06%.   
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Hidden Markov Models (HMM)  

The HMM described in the models section is a sequential model that adapts its transition and observation 

probabilities as it is continually supplied with new performance data; thereby making it an advantageous model over 

the GPE.  In this case, the sequence of accuracies that are observed from the student are used to infer a state 

(Novice, Intermediate, Expert) that the user may be in.  Given a state, a Gaussian model is found that exhibits the 

observations at the stage of the sequence.  The model outputs the most likely sequence of observations exhibited by 

the user, given the user’s past observations. The input to this model is the sequence of observations for the same set 

of data that was used to build the GPE model. Figure 5 shows the performance of the HMM predicting the sequence 

of accuracies as compared to the actual sequence. 

 

 
Figure 5: HMM predictions of a sequence of accuracy values over trials (in blue) err by 11.7% from actual 

accuracies (in red). 

It should be noted that the HMM takes in the sequence of observations to produce a sequential output that predicts 

the user’s performance at each session.  This allows the HMM to adapt its output sequence based on the current 

instance without assuming a fixed form for the model.  However, the use of only sequential information adds one 

shortcoming to the model.  The concept of time is lost in this model and the inputs are interpreted as an ordered 

sequence of trials at a specific difficulty level (see the x-axis).  Therefore, this model is appropriate when training 

sessions occur at uniform time intervals; it is not generalizable to training sessions that have a high variance in 

delays between them.  In addition, the HMM will not make very accurate predictions for sessions that are held at 

times beyond that on which the model was trained. 

 

Multi-Layer Perceptron Models (MLP) 

A generalized temporal model is needed to account for prior information, capitalize on the advantages of the HMM, 

and use time as a ratio measure (rather than as an ordering of events).  The MLP described in the modeling section 

accounts for the needs beyond that of the GPE and HMM.  As a true predictor model, the data from 10 of the 

participants was left out of the model training set and used for model validation. The test phase of this “train, test” 

method of model performance analysis and validation represents how the developed models would perform on new 

participants in a real-world use case and scenario.  The model is generalized over 231 participants, and is a temporal 

model that is able to easily input all the available features within the dataset to account for all prior information to 

make its predictions.  MLPs developed for this effort included a history of 20 trials and as such included a total of 8 

inputs (20 past sessions x 4 features/session + 4 features for current session, where the features include: task 

difficulty, time delta (i.e. time between sessions), historical performance, trial duration). When historical data was 

not available as inputs (i.e. trainees had not completed 20 historical sessions), model inputs were defaulted to “0” 

values. Iterative MLPs were validated using prediction horizons (i.e. number of future sessions to generate learning 

curve estimate) of 1, 3, 5, 10, and 15 sessions. The fixed trajectory MLPs developed for this effort implemented 

prediction horizons of 5 and 10. 
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The performance of the iterative MLP was evaluated across five prediction horizons. As expected, the iterative MLP 

was most accurate using a prediction horizon of 1 future session.  However, error did not significantly increase for 

prediction horizons > 1. Error of model-generated predictions (expressed as MAD%) was calculated as 24.2%, 

27.8%, 28.7%, 28.6%, and 28.4% for prediction horizons of 1, 3, 5, 10, and 15 sessions respectively (see Figure 6 

for PH 1 form a specific student).  An interesting finding of this validation was that it did not appear that an 

increased prediction horizon had a significant effect on overall model accuracy. One of the potential limitations of 

this modeling approach is that if model outputs (used iteratively as inputs) are erroneous, future predictions have a 

corresponding increase in error after each, subsequent iteration.  Participants 111, 196, and 213 had the worst model 

performance. Learning by these participants differed significantly from that of the larger group that the model was 

trained to estimate. Participant 115 had a limited dataset (<10 trials), and as such, predictions could not be generated 

for models with prediction horizons >=10.  Over all 10 participants, error (expressed as MAD%) was calculated as 

28.4% for the largest prediction horizon.  

 

The fixed trajectory MLPs developed in this effort were found to have better predictive accuracy than the iterative 

MLP models summarized above. We hypothesize that this is likely attributed to the fact that MLP outputs are fixed 

and do not have the potential sources of error that model inputs used in the iterative MLP (i.e. where model 

outputs/predictions are used as inputs as described above). Overall, MAD for the fixed trajectory MLP models 

developed for this effort was calculated as 17.3% and 18.7% for prediction horizons of 5 and 10 respectively when 

evaluated using data from the same 10 participants used for iterative MLP validation described above.  

 

Figure 6 illustrates that the developed iterative MLP tracks trends in performance reasonably well for each 

participant. The developed MLP also appears to be sensitive to regions of “learning decay” which appear to have 

occurred sporadically across the participant population used for model training and validation. We hypothesize that 

the inclusion of time between sessions (in days) as a model input feature will help the model better predict these 

instances of decay. It appears there exist some instances where the model-generated estimates “lead” or are 

“delayed” with respect to the actual performance measures. Although these instances occur, a priori knowledge of 

significant changes in trainee learning curve that evolve over time may be sufficient to optimize curriculum.  

 
Figure 6: Iterative MLP model performance for participant 107 where the next point is predicted (in blue) 

based on all previous trials, and is shown to be comparable to the actual performance of the participant (in 

black). 

 

CONCLUSION 

The research reported in this paper explored methods of analyzing skill acquisition and decay using the traditional 

General Performance Equation, and two machine learning models: Hidden Markov Models and Multi-Layer 

Perceptron Models.  The HMM very closely approached the accuracy of the GPE (see Table 1). The MLP-based 
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models exhibited higher error in model predictions, but these models were evaluated across more extended 

prediction horizons (i.e. predicting performance >1 session ahead). Additionally, the iterative MLP-based models 

provide the additional capability  to generate predictions over any desired prediction horizon.   

   

Table 1: MAD error for the three models tested 

 GPE HMM Iterative MLP 

(PH=1,3,5,10,15) 

Fixed 

Trajectory 

MLP (PH = 

5,10) 

Error (average over 10 participants) ~8.03% 10.3% 27.5% 18.0% 

 

We speculate that prediction accuracy may be significantly improved using additional data concerning training 

tasks, training objectives, and trainees themselves.  This is one strength of the HMM and MLP. Specifically, they 

can easily incorporate features or variables that may have an effect learning acquisition and decay, as well as 

provide a method to identify said features or variables.  For example, if we have a student’s past scores on a 

supposedly unrelated task, the MLP provides a method to test whether these scores (and, thus, the tasks) are 

correlated with their current performance as well as incorporate them in the model to provide for more accurate long 

term predictions. Table 2 summarizes the advantages and disadvantages of all of the models tested here. 

 

Table 2: Description, advantages, and disadvantages of the various modeling techniques investigated 

Model Short Description Advantages Disadvantages 

GPE Regression model assuming 

exponential learning and decay 

models 

Well-researched and most 

accurate method for simple 

training tasks 

Assumes fixed functional 

form and fits data to that 

form for all time and 

student performance. 

HMM Machine learning model assuming 

a student is in a state and models 

the transition between states as 

learning/decay with a set of 

observations (grades) from each 

state 

Modeling explicit transitions 

between states of a student allows 

for incorporating different 

observation models in each state. 

Temporal component 

implicitly assumes a fixed 

time delta between each 

transition.  Prior 

information only includes 

single past state. 

MLP Machine learning model based on 

neural networks 

Easily incorporates multiple 

features and other pertinent 

information that could affect 

student performance 

Requires a lot of data for 

comparable performance 

to GPE 

 

Future research in this area should examine the impact on forecasting accuracy of representing attributes of the 

student, domain, and learning environment. Future training technology development efforts should extend and 

integrate the capability, explored here, to estimate learning curves from performance data captured in training 

systems and task management systems. The goal is to use those estimates to recommend specific training or job 

experiences at specific times to accelerate acquisition and manage decay of key knowledge and skills. The effect 

will be a workforce whose skills are faster learned, better held, and better known to America’s Armed Forces. 
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