Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

hTEC: A Layered MSaaS Architecture for Training and Experimentation

Cloud
Erdal Cayirci Lutfu Ozcakir, Hakan Karapinar
Research Center for S.T.E.A.M., FMV Isik University Simulation Training and Test Sys Dep, HAVELSAN
Istanbul, Turkey Ankara, Turkey
erdal.cayirci@isikun.edu.tr ozcakir@havelsan.com.tr, hakank@havelsan.com.tr
ABSTRACT

A layered and distributed architecture for a training and experimentation cloud (hTEC) is introduced. The technical
challenges of hTEC are discussed, and the solutions are explained. The hTEC layered architecture is aligned with
the hierarchy and interrelations among the infrastructure, platform and software as a service models. The interfaces
between the layers are also specified to complete the architecture. Prototypes for a subset of the hTEC services and
interfaces are being implemented in a testbed called BSigma, where the hTEC architecture is evaluated. Preliminary
results from our experiments are presented.

ABOUT THE AUTHORS

Erdal Cayirci graduated from Army Academy in 1986 and from Royal Military Academy, Sandhurst in 1989. He
received his MS degree from Middle East Technical University, and a PhD from Bogazici University both in
computer engineering in 1995 and 2000, respectively. He retired from the Army when he was a colonel in 2005. He
was a faculty member and a researcher at Istanbul Technical University, Yeditepe University, Naval Sciences
Institute and Georgia Institute of Technology between 2000 and 2005. He was Head, CAX Support Branch in
NATO’s Joint Warfare Center in Stavanger, Norway, and also a professor in the Electrical and Computer
Engineering Department of University of Stavanger between 2005 and 2016. He is currently the Director of
Research Center for S.T.E.A.M. in FMV Isik University. He received the “2002 IEEE Communications Society
Best Tutorial Paper” Award for his paper titled “A Survey on Sensor Networks” published in the IEEE
Communications Magazine in August 2002, the “Fikri Gayret” Award from Turkish Chief of General Staff in
2003, the “Innovation of the Year” Award from Turkish Navy in 2005 and the “Excellence” Award in ITEC
2006. He co-authored two books titled as “Security in Wireless Ad Hoc and Sensor Networks,” and “Computer
Assisted Exercises and Training: A Reference Guide” both published by John Wiley & Sons in 2009.

Lutfu OZCAKIR graduated from Hacettepe University Electronics Engineering Department in 1996. He received
his MS degree from Bilkent University in Electronics Engineering Medical Signal Processing in 1998. He studies
for a PhD on simulation of anatomical structures at Hacettepe University, Ankara. In 1998, he joined HAVELSAN,
and worked as a team leader, the group manager and a project manager between 1998-2005, a project manager and
the program director at HAVELSAN Simulation Systems Division between 2005-2011. He has been the Executive
Vice President of Simulation, Training and Test Systems Division and a board member of HAVELSAN Technology
Radar (HTR) since 2011. His research interests include Medical Signal Processing, Tactical Environment
Simulation, Real Time Modelling, Distributed Joint Simulation Systems and C2 Simulation.

Hakan KARAPINAR graduated from Hacettepe University Electrical & Electronics Engineering Department in
1996. He received his MS degree from Bilkent University in 1998 about antenna simulation. He started working at
HAVELSAN Company; Simulation, Training and Test Systems department in 1998 and he is still working as
Program Director in that division. He studies for a PhD at Hacettepe University Electronics Engineering Department
and an MBA at Cankaya University, Turkey. His research interests include Real Time Simulation, Modelling,
Distributed Interactive Simulation, Electronic Warfare, Radar, Antenna, Tactical Environment Simulation and
Sensor Simulation.

2016 Paper No. 16005 Page 1 of 11

mailto:ozcakir@havelsan.com.tr

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

hTEC: A Layered MSaaS Architecture for Training and Experimentation

Cloud
Erdal Cayirci Lutfu Ozcakir, Hakan Karapinar
Research Center for S.T.E.A.M., FMV Isik University Simulation Training and Test Sys Dep, HAVELSAN
Istanbul, Turkey Ankara, Turkey
erdal.cayirci@isikun.edu.tr ozcakir@havelsan.com.tr, hakank@havelsan.com.tr

INTRODUCTION

A highly scalable, layered and distributed architecture that supports interoperability, service discovery and
composability is paramount in a service oriented cloud approach to modelling and simulation (M&S) for training
and experimentation. Standardized services and simple interfaces to access them are required. The layered
architecture, the services provided by each layer and their interfaces should be agreeable and amenable by all the
stakeholders, including academia, industry, and the user community. An overly complex and centralized approach
needs to be avoided to promote standardization and sustainability. It is preferable that the architecture supports the
adoption of the previously developed services for the M&S as a service (MSaaS) ecosystem. A NATO Modelling
and Simulation Group Technical Activity, namely MSG-136, is facilitating stakeholders from over 20 nations to
achieve these goals.

MSaaS (Cayirci 2013) (Siegfried, Berg, Cramp and Huiskamp 2014) offers many advantages. A layered MSaaS
architecture, such as Havelsan Training and Experimentation Cloud (hTEC) depicted in Figure 1 can promote
reusability, interoperability and flexibility. hTEC follows an approach similar to Open System Interconnection
(OSI). Any service can receive services from the lower layers through simple and standardized interfaces, and
provide services to the higher layers. Therefore, in hTEC, it is possible to compose a simulation service mashup
made up of models with various resolution and fidelity levels.

In Figure 1, the hTEC layers and their mapping to cloud service models including MSaaS (Cayirci 2013) is
illustrated. The bottom layer in hTEC is a platform as a service layer (PaaS). In our test bed called BSigma, Armada,
which is a HAVELSAN product, is used as PaaS. All the details related to the infrastructure and platforms are
autonomously taken care by the PaaS according to the quality of service requirements specified by the higher layers.

User Interface Layer

Simulation / Session Layer

Simulation as a Service

i

I

- I

I

I

Modelling / Service Composition Layer 1 Software \ Modelling as a Service ‘ ;
I

: jasa | |

| > . I

£ | | Service [Model as a Service ‘ I

Model / Service Layer § I

e I

Infrastructure as a Service

Physical Infrastructure

a. hTEC Layers b. Cloud Service Models Including MSaaS

Figure 1. Mapping of hTEC Layers to Cloud Service Models including MSaaS

2016 Paper No. 16005 Page 2 of 11

mailto:ozcakir@havelsan.com.tr

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

The service layer runs on top of the PaaS layer. The models in this layer manage and process the data related to the
synthetic environment by using the services from Armada. The service layer provides models as services (MaaS)
(Cayirci 2013), including database management functions. The users can manipulate the synthetic environments by
using the services provided by the service layer. Please note that the security service is a sublayer within the service
layer.

The service composition layer can compose a service mashup from the models provided by the service layer. It can
be mapped to modelling as a service in cloud service models with a difference. Modelling as a service can be used to
create new atomic or composed models (Cayirci 2013). In hTEC, the service composition layer (Cayirci 2013b) is
not used for creating new atomic models but models composed of the services provided by the service layer. Please
note that, when service composition is complete, a composed model, or in other words a simulation application (i.e.,
software) is compiled. Therefore, the layers below the red line in Figure 1 are before the compilation of a simulation
application, and the layers above the red line provide run time services.

The session layer in hTEC runs the models composed by the service composition. Therefore, it is equivalent to the
simulation as a service model (Cayirci 2013). It enables users to run multiple instances of the composed services or
even federating them by using various interoperability technologies such as high level architecture (HLA) (IEEE
2010). Each instance runs with its own image of the synthetic environment, therefore the master copy of the
synthetic environment is preserved for the usage of the others as long as needed. The instance management service
also provides the users with the capability to run each of these instances as different types of simulations such as
time stepped, continuous, static or dynamic.

The instance service can also decide on the parts of the services that need to be run in the front end due to stringent
end to end delay constraints. The part of a MaaS with stringent delay constraints is called as the cerebellum function
of the service (Cayirci, Karapinar and Ozcakir 2015). Cerebellum functions are migrated to the machines close
enough to the front end (i.e., the machines that satisfy the delay constraints) by the PaaS layer.

In Section 2, hTEC architecture including the cerebellum function is explained in detail, where we also elaborate on
the challenges and solutions. In Section 3, BSigma test bed is introduced and the preliminary results from the
experiments are reviewed. In the same section, we also present our experience with virtualization, which is an
important technology for cloud computing. Finally, the paper is concluded in Section 4.

hTEC OVER BSIGMA

In Figure 2, the examples for the services in each hTEC layer are illustrated. hTEC is designed as a distributed
architecture. Therefore, there may be thousands of services available around the world when it is implemented as a
public cloud. The hTEC architecture can also be used in a private cloud model where hundreds of services are
available. Hence, service discovery and service composition is the first challenge. Please note that the interfaces
between the control layer and applications are called as the northbound interfaces in software defined networking
(SDN), and SDN Composition and Session Applications in Figure 2 are the hTEC services for SDN. We will further
elaborate on that in this Section.

Service composition is a hard but solvable problem when a feasible solution that meets the criteria is sought instead
of the optimum (Cayirci 2013b). In hTEC, the service composition does not have a time constraint because the
services are wired into a single application during compilation, and then run in a machine in the cloud that satisfies
the quality of service (QoS) requirements. As long as a standard approach is followed to define the services and to
interface with them, service discovery is also a trivial task. There are already many standardized and scalable
directory (X.500 2016) and service discovery (Helal 2002) mechanisms that can be used for this purpose.

The interfaces of the hTEC services are shown in Table 1, which has two parts: the meta data and the interface for
the service. The meta data are the detailed and machine readable description of the service. It includes key
information, such as, the service type, the fidelity, the resolution and the service model. The notation and the values
for this information have to be standardized for interoperability. For BSigma purposes, we use a proprietary standard
which is flexible. Please note that the first two fields in our structure are about the standard followed by the interface

2016 Paper No. 16005 Page 3 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

and its version. Therefore, hTEC allows multiple standards in the ecosystem. However, for composing services that
follow different standards, there will be a need for standard conversion before service composition.

ExerciseManagementService

Session Layer
TimeManagementService

anchronizationService

Service Composition Layer
\ SimulationApplication ’ ServiceRegistry ’SimulationEngine |

SessionContext

Northbound
Interface

SDN

ApplicationContext || InterfaceManager ‘

Composition
App

l RelationalDBAccessService ‘ |

~ Service Laver :
FilesystemAccessService |

| ObjectDBAccessService H ConfigurationFiIeAccessService’

l ImageAccessService J \ WeatherService H SoundAccessService |

} TerrainService H VideoAccessService ” TacticalMovementService ‘

I WeaponEffectsService ’ I OceanService I ' FaultCasuaItyServiceJ

Security Service

| EntityEngineService H RuleEngineService H SpaceService |

Figure 2. Examples for the Services in hTEC

The interface has three kinds of parameters similar to the structure of the subroutine calls in many programming
languages: Please note that the name of the service is already among the meta data. That name is used for calling the
service from inside the composed service. Apart from the name, the other fields in the interface are the return value
and range, input parameter list including their types and ranges, and finally the output parameter list including their
types and ranges.

Table 1. The Meta Data and The Interface for a Service

Type

Name

Remarks

Meta Data about the Service

The standard

The standard followed for the description and the interface of the service

The version of the standard

The version of the standard followed

The name of the service

The name of the service

The service type

The type of the service (from the list in the standard)

The resolution

The level of resolution (from the list in the standard)

QoS Parameters

Values for the quality of service parameters (from the list in the standard)

The fidelity

The level of fidelity (from the list in the standard)

The description of the service

The details and important remarks about the service

The version of the service

The version of this particular service

The date

The date that this version is released

The developer

The details of the developer

The service model

Modelling as a service, model as a service, payment model and price, etc.

The URL

The link for the service

The cerebellum function

Null if none, the offset if the service has a cerebellum function

The delay constraint

The distribution and statistics for the delay constraint

Inter
face

Return Type

Type and range of the return value by the service

Input Parameters

The input parameter list including the type and range of each of them

Output Parameters

The output parameter list including the type and range of each of them.

Another challenge for hTEC is due to the propagation delay between the back end (i.e., the data center where the
composed service runs) and front end (i.e., the machine used for interacting with the system). This becomes critical,

2016 Paper No. 16005 Page 4 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

especially when interactive audio-visual systems are used. We developed a scheme called the cerebellum function to
solve this issue.

The Cerebellum function includes the part of an MSaaS which is time sensitive in responding the user commands
(i.e., inputs). Please note that the delay in responding to user commands by the simulation has to be the same as the
delay in response to user commands by the real system. For example, if the delay in the real system d; is between 90
and 100 msec, the delay in the virtual system needs to be within the same 90-100 msec window. As visualized in
Figure 3, our scheme is based on the idea that the maximum delay between the user interface and cerebellum
function dmax must be shorter than the lower bound of the real life system delay r.min according to a given confidence
level «. Hence, the delay can be managed such that negative training is avoided and immersion is maintained. The
maximum delay dmax includes not only the propagation delay pmax introduced by the physical distance between two
ends of a communications link but also computational delays cmax due to processes, such as encryption, decryption,
routing, service federating, etc. We treat dumax @S @ random variable, and make our computations based on the upper
bound according to the given confidence level a.

back-end

MSaaS
Federation

Cerebellum

Cerebellum

front-end

Figure 3. hTEC Cerebellum Function (d; is the simulation delay between the user and Cerebellum
Function 1 and r; is the associated real system delay. d: is the simulation delay between the user and
Cerebellum Function 2 and r; is the associated real system delay.)

When the services are designed, the designer should design the time sensitive part of the service as decomposable
(i.e., can be separated from the rest of the service). Hence, the entire service and data does not need to be migrated
closer to the front end but only the time sensitive part of the service. For example, the part of an interactive
visualization service (IVS) that fetches the terrain data and weather conditions and creates three dimensional virtual
environments can be designed separately from the part that makes the projections based on the user commands. The
later part, which is time sensitive, becomes the cerebellum function for IVS. Please note again that this is only a
simplified example to clarify the meaning of the cerebellum function.

In some cases, not only the cerebellum function of a service, but all of the service must be treated as a cerebellum
function depending on the configuration of a composed service. If an input of Service sa uses another Service sp,
which has a part that needs to be treated within the cerebellum function, s, as a complete service has to be within the
cerebellum function. Moreover, a cerebellum function may also have a nested structure, which means that the inputs
of a cerebellum function may be coming from another cerebellum function. Therefore, the location of a cerebellum
function is selected such that the conditions in Equations 1 and 2 are met.

2016 Paper No. 16005 Page 5 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

dnamax :Zu(pkamax)+u(Ckamax)' (1)
k=1
dnemax < U(MMamax)- 2

where n-1 is the number of cerebellum functions preceding the cerebellum function n in the nested structure. Please
see (Cayirci Karapinar Ozcakir 2015) for the detailed description of the cerebellum function.

The cerebellum function can also provide better security for military MSaaS. Although the environmental data and
specifications of military equipment, such as maximum speed and altitude that a military aircraft can reach are
unclassified, the turn rates and similar data about the aircraft may be classified. Since the effects like turn rates are
time sensitive and therefore will be typically treated by a cerebellum function in I1VS, the cerebellum function
approach may become useful also for dealing with the security related challenges of MSaaS because it stays in the
front end.

In hTEC, two services (i.e., one in the service composition and one in the application layer) are introduced for
software defined networking (SDN) (Hu, F., Q. Hao and K. Bao. 2014), namely the SDN composition and SDN
session services. Both of these services are applications to provide northbound interfaces for the control layer in
SDN as shown in Figure 4. The SDN composition application provides the service to retrieve the data about the
network, such as the average delays between the nodes (i.e., hosts, switches and routers). These data are used for
designing an SDN and determining the cerebellum functions and their locations during service composition. The
SDN session application interacts with the SDN control layer to create and manage the designed SDN during the
execution of the simulation

SDN

S LU Northbound
App

Interface

API

Application Layer

Control Layer Control

Southbound
Interface

OpenFlow
Infrastructure

Layer

PETE]
Armada [E Center -2

Data Center

Figure 4. Software Defined Networking (SDN) for hTEC
EXPERIMENTAL RESULTS

In this section, the results from two different sets of experiments are presented. One of them is from NATO
Computer Assisted Exercises (CAX). Since 2007, NATO CAXs in the Joint Warfare Center have been run in a
completely virtualized environment. First, the findings from these exercises are summarized. Then, the results from
the measurements for the hTEC architecture in BSigma are given.

NATO CAX support tools are run in a completely virtualized architecture during major exercises. These exercises

were the first step for the realization of a service oriented simulation as a service (SOSaS) concept, and proved that
all SOSaS services can be virtualized. Moreover, the virtualization of these services is more cost effective, easier to

2016 Paper No. 16005 Page 6 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

prepare and administrate, and perform better than the conventional approach, i.e., not virtualized architecture. We
summarize memory and CPU utilization data from NATO exercises below.

A typical virtualized architecture used during a NATO CAX is depicted in Figure 5. Six physical servers each with
32 GB of RAM and 1 TB of HD are used in this architecture. One of these servers is for backup. Three of the
servers are for the simulation server processes. The other two servers are for virtual desktops. VMWare ESXi is
used for the server virtualization and VMWare View is used for the desktop virtualization. In this architecture, 27
thin clients are used to provide the end users with CAX services. Each virtual machine for end users is dedicated 3
GB of RAM in our server pool. Before virtualization, 11 powerful servers with 16 GB of RAM and 512 GB of HD
on average, and 27 powerful PCs used to be allocated for the same set of services.

Physical Server 1 5 virtual ‘mach'ines fqr real |
game, i.e., sim engine. ;
web & DB services, etc.
1
!
1

Physical Server 2 6 virtual machines for !
test, shadow and run ahead :

games and administration

|
___________________________________]

Physical Server 3 5 virtual machines for
test, shadow and run ahead
games and administration

Thin Clients

Exercise
Control
Cloud

Physical Server 4

Virtual machines for
virtual desktops

Physical Server 5)
Virtual machines for

virtual desktops

!
" 1
3 (three) virtual '
machines as backup !

Figure 5. Virtualized Simulation Services during a Computer Assisted Exercise (CAX)

After testing this architecture in the first virtualized CAX in 2009, the number of servers is increased from 6 to 8,
and one of the additional servers became the virtualized data center for the architecture. Please note that a five server
architecture is already providing the required level of performance as shown in Figures 6-9. Additional servers are to
further improve the performance and provide redundancy for fault tolerance.

CPU Usage

I : ' ' : ' ' : ' : Ly
Mon 26 Wed 28 Fri0 Sun 0l Tus 03 Thu 05

Figure 6. CPU Utilization of One of the Servers Used for VMWare ESXi

2016 Paper No. 16005 Page 7 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

Figures 6-9 give the hourly averages of memory and CPU utilization for servers day by day throughout the exercise.
Some parts of the graphs indicate 0% utilization. Those parts of plots are for night, when the exercise stops, and
therefore servers are not utilized.

When the exercise is running, the CPU utilization of servers for CAX services is typically around 40%. The
utilization is never close to 100%. The CPU utilization is flat, i.e., not bursty and in 35-55% band. On the other
hand, the memory utilization is always above 85% but never over 95%. We can conclude that three powerful servers
were sufficient to run the CAX servers comfortably. Please note that Joint Theater Level Simulation (JTLS) together
with other CAX services, such as the joint exercise management module and C2 stimulation tools are run in this
environment. The scenario is medium to high, which includes 10 brigades, 300 sea platforms and 1000 air sorties a
day for one side in the average.

The utilization of the servers for the virtualized clients is different from the utilization of the servers for the
virtualized servers as shown in Figures 8 and 9. The load created by virtualized clients is burstier. The utilization is
sometimes close to 100% both for CPU and memory. Still it very seldom becomes a bottleneck and for only short
time periods. Moreover, the users could hardly notice that.

Memary Usage

Mon 26 Wed 23 Fri 30 Sun 01 Tus 03 Thu 05 v
Figure 7. Memory Utilization of One of the Servers Used for VMWare ESXi

CPU Usage

' : ' ' ' : ' ' ' ' —Lg
Maon 26 Wed 28 Fri 3 Sun 01 Tuz 03 Thu 05

Figure 8. CPU Utilization of One of the Servers Used for VMWare View

2016 Paper No. 16005 Page 8 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

Memary Usage

, + + + + + + + + + +]
Maon 16 Wed 28 Fri3d Sun 01 Tue 03 Thu 05

Figure 9. Memory Utilization of One of the Servers Used for VMWare View

In hTEC, we aim to reduce the hardware deployed to the remote sites (i.e., front end) significantly by keeping most
of the infrastructure in the data centers (i.e., the back end) as shown in Figures 3 and 4. The front ends are used
mainly to run cerebellum functions. Typically around 15 high end servers are deployed with the conventional full
virtual simulators (i.e., aircraft, armored vehicle and submarine simulators). In BSigma, this capacity is reduced 80%
in the average (down to two or three servers). When hTEC is complete, the cerebellum functions will be
autonomously migrated to the front ends as designed by the SDN composition application.

In Figure 10, the actual response times to the controls (i.e., the response times of a helicopter to the controls) of a
real helicopter and its virtual simulator are depicted. This shows that when the servers for a virtual simulator are at
the site with the simulator, the realistic response times are achievable. Figure 10 also indicates that the simulator has
to be able to start responding the controls within around10 millisecond in the average.

Collective | %6]

Torque | %]

Longitudinal | % |

Latesal [%4]

30
Figure 10. Response Times in mSec of Various Helicopter Controls (Blue is Actual Helicopter, Red is
Minimum or Maximum Time for the Simulator.)

2016 Paper No. 16005 Page 9 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

Figure 11 and Table 2 show the remote sites in BSigma and the propagation delays in the average between the hosts
in these remote sites. These delays are very low, and we do not think that they can get lower in medium term. Please
note that the processing delays are not included into the numbers in Table 2. The delays given in Table 2 are at least
twice longer than the time constraints implied by Figure 10. This proves the necessity for the cerebellum function.
We continue implementing hTEC and BSigma to test if our cerebellum function can provide realistic response

times.

Bnaanion KRR R RN b Z =

iy 20" GORCISTAN Y

i

€D

; }‘\‘

oENIZI

T

I

|~

o <

S 2 2 7

a/ R ¥ ac
; ;
Figure 11. The Planned Sites for BSigma
Table 2. The Average Propagation Delay Among the Remote Sites in BSigma.
CITIES A B C D E F AVERAGE
CLOCK |9:00 |13:00/17:00| 9:00 |13:00|17:00| 9:00 |13:00|17:00| 9:00 |13:00|17:00| 9:00 |13:00|17:00| 9:00 |13:00|17:00| ™ME (ms)

A Time (ms) 30,465| 30,824| 33,544| 8,213 13,591 8,483| 15,975| 15,897| 15,459 9,334| 16,372| 11,240| 13,979| 12,452| 11,877 18,396
B Time (ms) 29,425| 30,570 35,407 36,954| 39,158| 40,474| 42,666| 44,031| 43,693 24,304| 26,092 25,329(35,754| 32,495| 35,224 36,686
C Time (ms) 8,947| 9,520/ 8,167 41,776| 39,914| 34,422 26,007| 25,925 28,343| 20,432| 16,705| 16,077| 19,897 21,292| 19,913 24,413
D Time (ms) 20,157| 18,158| 17,182 44,711| 44,596| 44,509| 34,367| 25,826/ 26,503 24,187| 25,632| 24,439| 24,997| 25,651 24,310 30,451
E Time (ms) 9,212 9,468 9,327| 24,912 25353| 24,452| 17,017| 15,040 14,816 22,537| 23,306| 25,138 16,703| 20,163| 14,181 20,407
F Time (ms) 17,216 19,701| 15,044| 35,783 34,273| 35,559 19,928| 25,632| 20,304| 25,375 25,172| 24,187| 15,589 14,618| 14,615 24,557
AVERAGE TIME (ms) 18,752 37,289 25,478 28,084 20,569 24,739

The MSaaS approach not only reduces the cost but also introduces many other benefits such as: flexibility in
capacity and architecture, ease in management and licensing, need for fewer number of engineers and technicians,
more efficient and reliable system and security engineering.

hTEC is our service oriented implementation of MSaaS, which is a layered architecture. Havelsan ARMADA
provides PaaS for hTEC. The hTEC service layer is over ARMADA and provides various M&S services in the form
of libraries. Security related services are treated as a sublayer within the hTEC service layer. The hTEC service
composition layer selects a subset of the services from the hTEC service layer according to the requirements of the
simulation, and wires them into a simulation application. The hTEC service composition layer has the SDN
composition application which communicates with the control layer of the SDN to design a network and configure
the cerebellum functions accordingly. The hTEC session layer is the topmost layer, which controls the SDN by
using the SDN session application and executes the required number of instances of the composed hTEC
application. The hTEC session layer is responsible also for federating the instances by using technologies such as
HLA when required. The hTEC architecture is implemented as a testbed called BSigma. The preliminary results
from the experiments in BSigma are encouraging.

ACKNOWLEDGEMENTS

We thank Nick Giannias for comments that greatly improved our manuscript.

2016 Paper No. 16005 Page 10 of 11

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016

REFERENCES

Cayirci, E. (2013). Modelling and Simulation as a Service: A Survey. In Proceedings of the 2013 Winter Simulation
Conference, edited by R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, forthcoming. Piscataway,
New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Cayirci E. (2013b). Configuration Schemes for Modelling and Simulation as a Service Federations.
Simulation Transactions of the Society for Modelling and Simulation International, Vol. 89, Issue
11, pp. 1388 — 1399.

Cayirci, E., Karapinar, H., & Ozcakir, L. (2015). Cerebellum Function for MSaaS. EMSS 2015.

Helal, S. (2002). Standards for Service Discovery and Delivery. IEEE Pervasive Computing, Vol. 1, Issue 3, pp. 95-
100.

Hu, F., Hao, Q., & Bao, K. (2014). A Survey on Software Defined Network and OpenFlow: From Concept to
Implementation. IEEE Communications Surveys and Tutorials, Vol, 16, Iss 4, pp. 2181-2206.

IEEE, (2010). 1516-2010 - IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)--
Framework and Rules.

Siegfried, R., Berg, T., Cramp, A., & Huiskamp, W. (2014). M&S as a Service: Expectations and challenges. SISO
2014 Fall Simulation Interoperability Workshop, Paper 14F-SIW-040, Orlando, USA.

X.500, (2016). Retrieved April 2016, from http://www.x500standard.com/

2016 Paper No. 16005 Page 11 of 11

