
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2016 

 

2016 Paper No. 16025 Page 1 of 11 
 

Interactive Procedural Ground Texturing and Model Scattering for Synthetic Environments 
 

Andrew Tosh 

GameSim Inc 

Orlando, FL 

andrew.tosh@gamesim.com 

Eric Snyder 

Raydon Corporation 

Port Orange, FL 

esnyder@raydon 

Pedro Ramos 

Independent Consultant 

Orlando, FL 

pedro.pablo.ramos.alonso@gmail.com 

 

ABSTRACT 

Developing procedural ground textures and scattering geotypical models based on geospatial surface material data is 

often a time consuming process of trial-and-error for artists and terrain database engineers. Procedural texturing is the 

process of using material classification rasters or polygonal land coverage definitions, along with digital elevation 

models to generate textures that can be applied to the terrain. This technique is used to generate high quality geotypical 

textures for ground simulations, as well synthetic imagery for air simulations. Likewise, these same techniques are 

useful for scattering appropriate geotypical models, such as vegetation or urban clutter. While the results of this 

technique can produce high quality synthetic environments, the process for generating the environment is often tedious 

and time consuming. The process can typically put artists and database engineers into a long feedback loop of 

configuring the inputs and evaluating the output. This investment in time, with no guarantee of success, can prevent 

procedural techniques from being adopted by cost and time sensitive synthetic environment production efforts. This 

paper details research and development work that addresses the performance and quality issues in building procedural 

terrains from geospatial source data. The developed algorithms exploit the Graphics Processing Unit (GPU) in order 

to provide a near real-time visualization of the procedurally generated assets. This interactive mode has the capacity 

to accelerate the process of building procedural ground texturing and smart model scatter placement by allowing users 

to immediately see the effects of configuration changes. This research improves efficiency in the usage of procedural 

generation technology in the production of synthetic environments for the military simulation and training community. 
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INTRODUCTION 

The military simulation and training (MS&T) industry has a long history of using procedural techniques to help 

automate the process of building 3D terrain databases for training systems (Smelik, Tutenel, Kraker, & Bidarra, 

2010b). It is common practice to use satellite photo imagery as the ground based texture that is draped on the terrain 

skin (Ephanov & Coleman, 2006). This strategy has the benefit of being accurate to the real world, which is a major 

need within MS&T system, as well as scalable to terrain sizes which can reach millions of square kilometers. However, 

it has a number of drawbacks. Often the imagery resolution (typically 1m per pixel) is not adequate for low flight or 

ground based training systems. In these situations, the imagery can become extremely blurry and distracting for 

trainees to understand the environment. Even if the imagery resolution was high enough quality, another drawback 

remains: the imagery may contain objects that are not meant to be part of the training system. For example, there may 

be cars on the roads, or tree images in forests, or buildings in the imagery. These objects, which are “burned into” the 

ground texture, may conflict with 3D features that are added, making it confusing for trainees to understand that they 

are not part of the simulated system.  Removal of the objects from the imagery is possible but can create visual 

anomalies as well as being a time intensive operation. See Figure 1 for a visual depiction of these two drawbacks to 

using photo imagery as ground texturing. 

  
Figure 1. The image on the left shows how vehicles can appear on roads when using photo imagery as the ground texturing, 

which may create training confusion in MS&T systems. The image on the right demonstrates the blurriness of the photo 

imagery when visualizing close to the ground, making situational awareness within the MS&T system difficult. 

This has led some MS&T terrain database generation systems to rely upon repeating, geotypical texturing based on 

geospatial land coverage definitions. Often these systems will use geographic information systems (GIS) polygonal 

land coverage definitions to appropriately texture the terrain skin in the specified area. This technique has been plagued 

by two major drawbacks: (1) hard edges on coverage definitions boundaries, and (2) long processing times before 

database generation engineers can view the output. The later issue can have significant impacts on the timeline for 

building terrain databases, hence, there is a desire to provide capabilities that provide real-time feedback (Bruneton & 

Neyret, 2008). 
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The gaming community has long employed a different strategy for ground texturing and model scattering. The gaming 

community has used real-time generated splatmaps (“Texture splatting” is a term used to describe the computer 

graphics process of composting multiple textures) as the ground texture (Bloom, 2000). Game engine terrain editors 

often provide a means to define terrain areas using limited combinations of material definitions. These editors provide 

terrain painting tools to lay out the material definitions, as well as blend between the areas. For example, you can paint 

an area of the terrain to use a grass based material and blend that grass area into a mud area. In addition to manually 

painting, there is also often a means to map these material definitions to terrain elevations and slopes values (Olsen, 

2004). 

Many game engines are executing the procedural shader splatting at run-time (Andersson & Tatarchuk, 2007). 

Performing the composition at run-time provides the greatest amount of control for dynamically controlling the ground 

texturing based on game play, e.g., performing dynamic terrain features. Figure 2 shows how a user of the Unreal 

game engine can configure surface materials and manually paint them onto the terrain surface. 

While performing the compositing at run-

time does provide the highest level of 

control, this is often not an option for 

constructing terrain databases for MS&T 

programs for a number of reasons: 

1. Many existing programs are 

using image generators (IG) that 

do not support the procedural 

shader splatting, and updating the 

existing system is not an option 

2. The design is meant for artists to 

manually paint the entire 

environment (Smelik et al., 

2010a), which lacks scalability 

3. A limited number of textures can 

be used based on video card and 

performance requirements 

Therefore, the MS&T industry must look 

for creative ways to leverage the 

techniques for procedural shader splatting 

as part of the offline, terrain database generation process. 

This paper outlines an algorithm that brings the benefits of game engine procedural shader-based splatting to the 

MS&T community by avoiding the stated drawbacks. The algorithm exploits the GPU to provide MS&T terrain 

database engineers an interactive experience for configuring the ground texturing and modeling scattering based upon 

real-world geospatial source data. 

PROCEDURAL RESEARCH APPROACH 

A cooperative research effort was performed among the authors of this paper to build the ground texturing and model 

scattering from source geospatial data based on a configuration mapping between the real-world, land usage coverage 

classifications and a visual coverage definition. The output of the system are textures and geotypical model references 

that can be integrated into existing, standard MS&T terrain database formats, which can be rendered by current MS&T 

IGs. Therefore, many existing MS&T systems will not require IG upgrades or game engine replacements to utilize the 

produced ground texturing. The goals of the procedural approach to processing are to (1) allow a large number of 

textures to be blended together to produce a high quality visual output, (2) solve the lack of scalability in game engine 

environments that require hand-editing/painting of the terrain surface, (3) not require any updates to existing MS&T 

systems in order to prevent costly upgrades (assuming the existing hardware has sufficient video card memory), and 

(4) provide an interactive tuning experience for MS&T database engineers to configure the procedurally generated 

output. 

Figure 2. Unreal terrain editor allows users to paint materials onto the 

terrain skin. 
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With the goals of the research established, an architecture was designed, along with a prototype implementation. The 

initial design was heavily dependent upon processing within the central processing unit (CPU), but this design lacked 

the throughput required to achieve the goal of providing an interactive tuning experience. Therefore, the architecture 

was updated to rely more upon the GPU to provide near real-time performance. 

Architecture 

As seen in the architecture diagram in Figure 3, there are three sources of input to the system. 

1. Land usage coverage definitions; GIS data 

2. Elevation data; Digital elevation model 

3. Repository of visual coverage definitions 

Output Textures and Model Scattering, per Tile

Inputs

Repository of Visual Coverage Definitions

CPU Processing

GPU Processing

Land Usage 
Coverage 

Definitions
(GIS Feature 

Data)

Elevation Data

Mapping Geospatial 
Land Usage to Visual 
Coverage Definitions 

Draw Land Usage 
Coverages as 
Polygons, per 
Terrain Tile

Shader-based 
Procedural Texture 

Generation 

Composite 
Ground 

Texture per 
Terrain Tile 
(splatmap)

Material Map

Shader-based Model 
Scattering 

Model 
Placement per 

Terrain Tile

Material 
Definition
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Outer Border

Inner

Inner Border

Material 
Definition

Material 
Definition

Texture/Model 
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Construct Land 
Coverage Polygons 
and Polygons for 
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Figure 3. Architecture for how the source geospatial data is used to procedurally build the ground textures and model 

placements. 

Land Usage Coverage Definitions 

GIS feature data is used as a primary input to the system for obtaining classification of the terrain surface. This vector-

based data can represent the surface using polygonal and linear features. For example, a waterbody may be represented 
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with a polygonal outline and an attribute that classifies the area as being water. Linear features, such as roads and 

rivers, do not explicitly have an outline. However, these features are often attributed with a width attribute, which can 

be used to derive a polygonal outline of the feature.  

The source land coverage definitions from polygon and linear features are used to drive appropriate construction of 

the procedural ground texturing and model scattering, as opposed to game engine terrain environments that rely upon 

artists to manually paint the terrain skin. 

Elevation Data 

The digital elevation models provide the elevation of the terrain skin. The slope of the terrain, as well as the absolute 

elevation, are used as part of the mapping to the visual coverage definitions. For example, if the land usage polygon 

classify an area as being a forest region, but the slope is too great within that polygonal area in some regions to support 

vegetation—the algorithm can use slope thresholds to ensure vegetation is not scattered in those slopped areas. 

Likewise, if the absolute elevation is high enough to imply ice caps, we can map that region to a visual coverage 

definition that includes snow texturing. 

Visual Coverage Definition 

The visual coverage definitions provide a configuration on how an area shall 

be textured, as well as model scattering. The definition links to at least three 

material definitions. There are two material definitions for how the inner and 

outer borders should be visualized, and another for the interior of the area (see 

Figure 4). Additionally, other materials may be specified based on elevation 

slope thresholds and absolute elevation.  

The borders are constructed based on a configurable width around the source 

land usage coverage outline.  

A visual coverage definition will be required for each unique input land usage 

coverage definition. For example, a land usage coverage definition that is 

classified as being a forest shall be mapped to an appropriate forest based 

visual coverage definition. The visual coverage definitions can reference 

material coverage definitions for controlling the visual texturing and model 

scattering for borders, as well as the inner area. 

Below is an example visual coverage definition file for a forest region. 

material: Mixed_Forest 

 

outer_border_enable: true 

outer_border_material: Grass_Land 

outer_border_width: 15 

outer_border_blend_type: noise 

outer_border_noise_blend_scale: 1 

 

inner_border_enable: false 

inner_border_material: None 

inner_border_width: 0 

inner_border_blend_type: smooth 

inner_border_noise_blend_scale: 1 

 

Material Coverage Definition 

The material coverage definition stores the necessary attributes and art assets for constructing the visual representation. 

 A set of textures that are composited to construct the final texture, based on weight, noise, and scaling 

attributes associated with each texture 

Figure 4. A source land coverage 

definition is shown in blue, with a 

generated outer boarder in orange 

and inner border shown in green. The 

visual coverage definition can map 

each of these areas to a separate 

material definition. 
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 A set of 3D models that are to be scattered within the coverage, based on density, range, tinting, and 

positioning attributes associated with each 3D model 

 A detail texture 

 Surface material codes (SMC) and feature ids (FID) in order to support run-time specific behaviors, such as 

thermal rendering modes 

Below is an example material coverage definition file for a forest region. 

parameters: 

  noise: 

    frequency_scale: 0 

    sharpness: 1.2 

  rows: 

    - texture_name: Sand_Gray.dds 

      noise_weight: 2 

      tex_scale: 400 

      real_world_size: 1 

    - texture_name: Rocks_Gray_Medium.dds 

      noise_weight: 3 

      tex_scale: 300 

      real_world_size: 1 

    - texture_name: Grass.dds 

      noise_weight: 3.7 

      tex_scale: 100 

      real_world_size: 1 

models: 

  - name: Atlas_1/BlueSpruce_RT.fbx 

    density: 0.002 

    range: 1000 

    tint_min: 0.1 

    tint_max: 0.7 

    xyscale_min: 1 

    xyscale_max: 2 

    jitter: 1 

    zscale_min: 1 

    zscale_max: 1 

    z_offset: 0 

    is_grass: false 

  - name: Atlas_1/FraserFir_RT.fbx 

    density: 0.005 

    range: 1000 

    tint_min: 0.1 

    tint_max: 0.7 

    xyscale_min: 3 

    xyscale_max: 4 

    jitter: 1 

    zscale_min: 1 

    zscale_max: 1 

    z_offset: 0 

    is_grass: false    

detail_texture_name: "detail.dds" 

detail_texture_scale: 1 

smc: 0 

fid: 0 

 

Algorithm 

Once the mapping between the geospatial land usage coverage and the visual coverage definitions has been 

established, the procedural generation of the texturing and scattering can be largely executed in the GPU. The benefit 

to performing this implementation within the GPU is that database engineers that are configuring the mappings and 

coverage definitions can get near real-time feedback on the final look of the ground texturing and model scattering. 
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The algorithm for building the procedural ground texture for a terrain tile is shown below. 

1. Establish a target frame buffer at the resolution of a terrain tile size. 

2. Apply the elevation data as a texture for the given terrain tile. 

3. Apply the slope data as a texture for the given terrain tile. 

4. Group the source land usage polygons (including laid linear features, e.g., roads, are constructed into 

polygons using their width attribution) that are contained within the terrain tile. 

5. Bind the inner material coverage definition as shader parameters. 

6. Draw the land usage polygons. 

7. A shader applies the material coverage definition to the drawn polygons. 

8. Bind the inner border material coverage definition as shader parameters. 

9. Construct and draw the land usage polygons inner border strip along the edge of the source polygon. 

10. A shader applies the material coverage definition to the inner border polygons being drawn. 

11. Bind the outer border material coverage definition as shader parameters. 

12. Construct and draw the land usage polygons outer strip border along the edge of the source polygon. 

13. A shader applies the material coverage definition to the outer border polygons being drawn. 

14. Read back the final frame buffer (this is the final image to be used as a texture across the terrain tile). 

The logic for 5, 8, and 9 is all executed within a pixel shader on the GPU. The logic is able to apply any number of 

source textures from the material coverage definition, based on the slope and height of the terrain, which is provided 

in two texture slots to the shader in step 2 and 3. Figure 5 presents an example of configuring the system to use a snow 

visual coverage definition for high elevations and a rocky, unvegetated visual coverage definition for extreme slopes. 

The algorithm for performing the model scattering utilizes an aspect of the procedural ground texturing algorithm. 

While the shader is building the final visual texture, it is also building a material map into a separate texture slot. This 

material map will provide the basis of executing the scatter model placement. The material map stores the material 

coverage definition id for each pixel in the raster. This raster is then fed into a geometry shader program, along with 

the material coverage definition scatter parameters to place appropriate 3D models across the terrain. 

  

  
Figure 5. Using the land usage coverage definitions (upper left) and elevation data (upper right) as inputs, ground texturing 

(lower left) and appropriate vegetation models (lower right) are produced as the outputs. 
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Overlapping Coverages 

It is not uncommon for the land usage coverage definitions to overlap, which is handled by the algorithm prioritizing 

the definitions. Figure 6 shows a forest areal feature mapped to a forest visual coverage definition. The generated 3D 

visualization, with appropriate ground texturing and model scattering, is displayed to the user in milliseconds. The 

second set of images in Figure 6 shows when a higher priority feature is rendered on top of the forest region, a trail 

that runs through the forest. The trail visual coverage definition is given priority over the forest definition, causing 

appropriate ground texturing and removal of the vegetation models. It is important that the feature processing be 

prioritized based on the visual preferences. However, the ground texturing visual coverage definition can use the alpha 

channel such that overlapping feature types are blended together.  

MS&T database engineering using the proposed research can configure the feature priorities, configure the visual 

coverage definitions, and edit the source vectors, while immediately visualizing the results. 

  
Figure 6. The set of the images on the left shows a source forest land coverage definition and the conversion of that region 

into an appropriate ground texture along with vegetation models scattered. The set of the images of the right, shows the 

same area with a trail running through the forest. 

Borders 

In order to avoid hard edges between land coverage definitions, boarders can be configured to blend with random or 

smooth techniques from one surface definition to another. These border techniques are implemented in the shader. In 

order to facilitate rendering of the inner and outer boarders, the edge of the source surface coverage must be 

constructed into a separate polygon to be rendered by the GPU, with a border specific visual coverage definition. 

Figure 7 presents how a forest area can blend into a snowcapped mountain area, based on elevation data, using this 

border technique to blend in a noisy pattern from the forest into snow.  

 

Figure 7. Borders are fused to blend from one land surface coverage to surrounding coverages in order to prevent hard 

lines.  
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Multiple Visual Coverage Styles 

IGs in MS&T often require multiple versions of the ground texturing and scatter in order to support all seasons of an 

environment (e.g., winter and summer), as well as the various sensor modes (e.g., thermal). In order to support multiple 

ground texturing and scatter sets, each visual coverage definition can have several versions. For example, a single 

forest visual coverage definition may have the following versions. 

 Summer  Forward Looking Infrared 

 Autumn  Night Vision Goggles 

 Winter  

 Spring  

  

The algorithm executes the same set of steps using the visual coverage version for each style. 

Performance 

By using a shader based implementation for generating the ground texturing and model placement, the prototype 

achieved near real-time performance in generating and visualizing the output. This performance is vital for users to 

quickly preview the coverage mappings and make necessary adjustments to achieve the desired look. 

For example, a ground texture and model scattering was configured for downtown Pittsburgh. In the 2500m by 2500m 

tile below (see Figure 8), there are 783 source land usage coverage features. On an Intel Core i5-3570 CPU with an 

NVIDIA GTX 970 Windows machine, the algorithm produced the procedural ground texturing in 350 milliseconds 

and the vegetation model scattering in 150 milliseconds. These times feel nearly instantaneous to users of the system. 

This facilitates rapid configuration iterations on the visual coverage definitions to achieve the desired look.  

 

Figure 8. Procedurally generated terrain texturing and model scattering produced for a 2500m by 2500m terrain tile. 
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Distributed Builds 

Once the desired look has been achieved, a full build of the environment can be generated using a distributed, cloud-

based architecture. A concern that arises when using distributed multi-machine systems in a secure environment is the 

nature of the communications and coordination of execution across the participating machines. 

Most of the security constraints that impact the system architecture revolve around the nature of the communication 

connections established between the participating machines, and although constantly evolving, limit the remote 

execution of processes, the acceptance of remote connections on non-server machines, and limit the environments 

where multi-machine coordination processes that need to “connect” to multiple machines may run. 

In order to satisfy these concerns, user interactive application modes can take advantage of localized, small area on 

interest environments and generate the data locally by taking advantage of GPU implementations, thus avoiding the 

multi-machine cross-communication issues. 

In cases when multiple machines are needed, as in the case of batch processing of larger areas, the software needs to 

be set up so that the work load is carefully distributed in such a way that non-server, worker machines initiate their 

own connections to receive data generation instructions and are able to execute approved, machine-local applications 

locally in order to avoid remote procedure execution issues. This can normally be achieved through a combination of 

local and network services as well as server-level data sharing and centralized coordination services, and these 

distributed systems need to provide a variety of deployment options in order to be able to customize the distribution 

of work given the local information assurance needs of the organizations. 

Drawbacks 

One noteworthy drawback of the proposed approach is the increased amount of necessary texture memory of the run-

time system, as each tile will have a unique ground texture, as opposed to using repeating, geotypical texturing. Low 

cost video cards are equipped with a large amount of video card memory, making this a minimal limitation; however, 

some legacy MS&T systems may not be using modern video card hardware. Therefore, when building the procedural 

ground texturing, the video card memory budget of the run-time system must be taken into account when selecting 

the resolution of the generated ground textures. The algorithm can easily support producing any power-of-two 

resolution, by specifying that resolution when setting up the target frame buffer.  

CONCLUSIONS 

The algorithm outlined in this paper details an approach for bringing the visual quality of game engine style procedural 

ground texturing to the MS&T community in order to avoid the pitfalls of using photo imagery as the ground texturing. 

The process provides a realistic solution for existing training solutions to adopt, as it does not require any runtime 

modifications to the existing IGs. Additionally, the performance of the system may produce a significant cost savings 

to programs by supporting an interactive, near real-time configuration capacity. This interactive mode facilitates 

database engineers to rapidly produce high quality ground texturing and model scattering for their synthetic 

environments.  
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