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ABSTRACT 

 

Simulations based on disease models can be used as a training tool for patient education or caregiver support to 

improve effectiveness of practice. Disease models provide predictions of patient outcomes, costs, and quality of life 

information over time. They are typically constructed by various teams around the world based on local data, and 

currently those do not validate well against multiple external populations. Therefore, universal understanding of 

disease progression is still unsolved. 

  

The Reference Model for Disease Progression addresses this problem by implementing a league of disease models 

that compete for fitness towards publicly available clinical data. Currently, diabetic populations are of interest and 

data for the model is drawn from published clinical trials, while model building blocks are based on published risk 

equations and modeling hypotheses. The Reference Model creates model combinations from those building blocks, 

then simulates and validates them against multiple populations. High Performance Computing (HPC) techniques are 

used to cope with the combinatorial number of models that, until recently, took roughly a year of computation time 

on a single processor.  

 

Recently new building blocks have been added to the model, and the number of combinations became too large to 

compute in reasonable time without access to a large cluster. To cope with this, the structure of the model was 

changed from a competitive discrete ensemble model, where building blocks are selected from a discrete pool of 

options to construct the best model, to a cooperative continuous ensemble model, where all building blocks are 

merged using linear combination. Moving the model toward continuous combination space allowed creation of an 

assumption engine that employs optimization algorithms to better deduce the most fitting model. This significantly 

reduces simulation time and produces a better fitting model. This paper will focus on recent modifications, and 

results obtained from the latest simulations.   
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INTRODUCTION 

 

Disease models typically describe the progression of disease and its impact on a population. Disease models were 

typically used for economic evaluation (Lasry &  Zaric, 2007), (Harvey, 2016)  or for evaluation of impact of a 

disease (Salem & Smith?, 2016), (Asche & Kim, 2016). Much work has been done to study the outcomes of a 

disease to better understand factors driving the disease (Hayes & Leal 2013), (Clarke & Gray 2004). Those models 

typically have long term predictions counted in years ahead. Yet recent advances started the process of incorporating 

simple decision support models into Electronic Medical Record (EMR) systems (Sperl-Hillen & Averbeck, 2010), to 

make them more accessible to practitioners.  

 

Practitioners will therefore be increasingly exposed to computational medical models in the foreseeable future. 

Furthermore, new virtual simulators that help medical training are becoming much more realistic (Body Interact, 

n.d.). Such simulations track many biomarkers and conditions that change during simulations. Although such 

simulations are often driven by preset scenarios, there is a recognized need for high fidelity models that properly 

predict changes in patient condition in shorter time spans. Yet a helpful training tool will allow long term scenarios 

where a doctor sees the progression of a disease in a patient in the very long term and can study the effect of their 

treatment in virtual environment. Such a training tool requires good longer term models to break away from preset 

scenarios.  

 

The appearance of wearable medical devices, that will monitor our biomarkers such as heart rate monitors, 

thermometers, cholesterol meters, blood glucose meters, and blood pressure monitors, will increase the potential of 

predictive medical models. Medical models have the potential of being incorporated for analysis of abundant 

information that will be generated during constant monitoring of wearer condition. These are still in their infancy, 

yet technologies are being developed for monitoring (Santamaria & Serianni, 2016) and analysis towards use in 

clinical trials (Gore & Chandra, 2016). These simulation technologies are already slowly becoming available, yet do 

not broadly integrate predictive disease models, partially since those are being developed slowly. In summary, 

predictive disease models are already being used to study long term impact on a population, are starting to be used 

by practitioners, have future potential in medical training, and they will increase their potential in the near future in 

conjunction with medical devices. 

 

However, there is still a large gap between desired modeling capabilities needed to support predictive medical 

modeling and our understanding of diseases. This gap is evident when disease modelers compare their models as 

done in the Mount Hood challenge (The Mount Hood Modeling Group, 2007), (Palmer, 2013) where diabetes 

models are compared and contrasted, typically every other year. A typical challenge provides a base population as 

input for modeling teams that then have to predict disease outcomes after several years of disease progression. The 

predicated outcomes are then compared to observed outcomes that actually took place for the modeled population. 

The challenge consists of comparing outcomes amongst modeling teams. Previous challenges showed than different 

modeling teams provide different models that led to different predictions, sometimes with considerable gaps. Since 

modeling teams are well trained and work hard for the challenges, then overlooking human error, it is fair to assume 

that different structures, data sources, and assumptions result in different predictions for similar base populations.  

 

Those different results are reasonable considering that there are many differences between models and that new risk 

equations are being added constantly to the pool of available equations. For example, the United Kingdom 

Prospective Diabetes Study (UKPDS) (Stevens & Kothari, 2001) and QRisk (Hippisley-Cox & Coupland, 2008) 

modeling teams provided different models throughout the years. Considering that those equations faithfully 

represent phenomena observed in different populations, it is reasonable to assume those are good models. 
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Nevertheless, due to different structure, those will produce different results. Moreover, those will behave differently 

for different base populations, i.e., different initial conditions.  

 

The Reference Model for Disease Progression (Barhak, 2014), (Barhak, 2015a), (Barhak, 2015b), (Barhak & 

Garrett, 2016) was built to try and explain those differences. It is composed of multiple competing risk equations 

and assumptions and populations. It is an ensemble model meaning that it is composed from multiple models.  Other 

ensemble models examples include (Bell & Bennett, 2009) where viewer movie preference was predicted, and 

(KLusek & Dzwinel, 2016) where multiple models were merged to create a better cancer model. The Reference 

Model basic function was to test which equations work better for what populations, and what model constructs 

better explain observed data from multiple clinical studies for a given query. The Micro Simulation Tool (MIST) 

(Barhak, 2013) is the simulation framework upon which the model is executed. It is free software that provides 

object oriented population generation, Monte-Carlo micro-simulation, and reporting tools. Moreover it provides 

High Performance Computing (HPC) capabilities that allow coping with the large number of 

model/assumption/population combinations (Barhak, 2015b).  

 

The Reference Model grew since 2012 adding more models and populations each year. In 2016 the number of 

combinations became unreasonable to compute all combinations, and a computational wall was reached. Therefore 

the model structure was changed. Instead of using model-combination competition, it was decided to allow model 

cooperation. So instead of calculating all combination of models/assumptions in discrete combination space, models 

would be allowed to cooperate by linearly combining them and creating continuous model space. This change 

allowed for the breaking of the computational wall and adding more equation/assumptions to the models. This paper 

will describe the implementation of the new technique and will explore the new results and benefits associated with 

this change. Let us start with discussing model structure. 

 

 

THE REFERENCE MODEL STRUCTURE CHANGE 

 

Original Structure Supporting Competing Model Combinations 

 

The Reference Model is currently focused on diabetic populations and is composed of three main disease processes, 

heart disease, stroke, and competing mortality as shown in Figure 1. The Reference Model currently models and 

validates against 9 diabetic populations ASPEN (Atorvastatin Study for Prevention of Coronary Heart Disease 

Endpoints in Non-Insulin-Dependent Diabetes Mellitus), ADVANCE (Action in Diabetes and Vascular Disease: 

Preterax and Diamicron Modified Release Controlled Evaluation), ACCORD (Action to Control Cardiovascular 

Risk in Diabetes), UKPDS (United Kingdom Prospective Diabetes Study), KP (Kaiser Permanente), NDR (Swedish 

National Diabetes Register), Look AHEAD (Action for Health in Diabetes), ADDITION (Anglo-Danish-Dutch 

Study of Intensive Treatment In PeOple With screeN Detected Diabetes in Primary Care), and CARDS 

(Collaborative Atorvastatin Diabetes Study). Most of these populations describe published clinical trials, while NDR 

and KP summary data was provided by owners of data for the Mount Hood diabetes challenge participants in 2012. 

The Reference Model was compared and contrasted against multiple other models in two challenges in 2012 and 

2014. The Reference Model uses publicly available summary data for those populations as a source of inputs and 

published outcomes as validation information. During each simulation year each virtual individual generated from 

those populations goes through a set of rules that can change their biomarkers and other parameters, then transition 

probabilities are set for all transitions and Monte-Carlo simulation determines for each individual if they progress to 

the different stages in each process. Finally outcomes and costs are determined for each person during simulation-

year post processing. The process is repeated for a cohort of individuals for several years and may be repeated more 

times to reduce Monte-Carlo error. At the end of the process simulation results are compared to known outcomes of 

that cohort and a fitness function is employed to determine the fitness score. This fitness score is essentially the 

distance/error of simulated results from observed results in real life.  

 

The Reference Model structure is shown in Figure 1 with some simplification for illustration purposes. Generally, 

each transition in the model holds at least one possible equation for the yearly transition probability.  However, 

some transitions have more than one equation, e.g., the probability of Myocardial Infarction (MI) can be computed 

by equations denoted          and the probability of stroke can be computed using equations        . Therefore, 

there are 4x4=16 competing models combinations in this simple example to choose from when executing 

simulations:                                                . Each one of these model combinations 
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is different and while looking for the best model that fits multiple populations, every model should be executed for 

each of the populations. Availability of computing power and parallelization of execution using HPC techniques 

makes this possible in reasonable time. Running all models would generate a fitness matrix that is similar to a score 

board that shows how models behave for all populations. This can be color coded and analyzed to deduce the best 

model for certain populations, or the best model on average.  

 

Since the number of combinations is a multiplication of the number of options for each component, the number of 

model combinations increases combinatorially, which is close to exponential growth. Notice that the example in 

Figure 1 can easily grow out of reasonable proportions very quickly if more equations or assumptions are added 

without excluding any combinations from consideration. Consider that multiple equations are used to determine 

multiple transitions, and that more simulations are required for additional assumptions that increase the number of 

simulations. 

 

Table 1 shows both the equation options available in 2015 and those that were planned for 2016. The table lists all 

options that can be taken per category. The row titled: “Possible Model/Assumption Combinations” multiplies all 

above rows to calculate the number of model combinations, the number is multiplied by number of population 

cohorts to figure out the number of simulations needed to build the full fitness matrix. This number of simulations, 

after some model exclusions, required roughly 10-11 days in 2015 to calculate using a 16 core cluster – the 

equivalent of roughly half a year of computing time. Therefore the 8 fold increase in number of simulations 

projected for 2016 would require roughly 3 months of computation on the same cluster, equivalent to about 4 years 

of computing time. This increase seemed unreasonable. Moreover, future model additions would increase simulation 

time even further. Therefore, it was decided to change the structure of the model from competitive model 

combinations in discrete model space to cooperating models in continuous model space.  

 

Table 1.  Model components in 2015 and 2016. *=strictly competing components 

 

Number of Options for: Year  

2015 2016 

Population Correlation Assumption * 2 2 

Biomarker Change Assumption* 2 2 

Model Temporal Correction* 2 2 

MI  10 11 

MI Death 2 3 

Stroke 10 12 

Stroke Death 1 2 

Competing Mortality 1 2 

Possible Model/Assumption Combinations 1,600 12,672 

Population Cohorts 47 47 

Possible distinct Simulations 75,200 595,584 

 

New Structure Supporting Cooperating Model Combinations 

 

Figure 1 illustrates this change in modeling paradigm where the bottom describes the cooperative model 

combination. Instead of 4 equations for MI and stroke probabilities, there is a single equation that combines those 

probabilities using a linear combination with four coefficients,         for MI and         for stroke. Note that 

now each time a model is executed, all equations potentially contribute to the simulation results with different 

weights whereas with competitive combinations, only one equation for each category would contribute for each 

scenario. For example, it is possible to have the average of equations     and the average of equations     

contribute to the model equally by setting                     and                    . This 

combination of models can be represented as a vector in 8D space so z                   describes the model 

combination. Note that the discrete competition space is fully contained within the continuous cooperative model 

space, i.e., the competitive discrete model combination    can be written in cooperative model space as   
                 .  
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Figure 1.  The Reference Model transformed from model competition (Top) to model cooperation (Bottom). 

 

Due to containment this reconfiguration of model space is superior. However, the number of models is now infinite, 

since our space is now continuous in 8D. So computing the fitness matrix is no longer practical, since traversing the 

entire continuous model space, as previously done in the discrete competitive model space, will require infinite time. 

Since parameter space is now continuous it is possible to: 1) Locate better models since continuous space is higher 

resolution than discrete model space –higher resolution allows locating better models in between discrete model 

combinations. 2) Employ optimization algorithms to find best fitness – the model function is continuous considering 

the coefficients constructing the linear combination. 

 

The idea now is that instead of traversing the discrete models space to build the fitness matrix to locate the best 

model, the system is asked to find the best fitting model. The system employs an iterative Gradient Descent (GD) 

algorithm to locate the best fitting model. The GD algorithm starts with a guess, then each GD iteration calculates 

the direction to step towards that will best improve the fitness score, then GD takes a small step in that direction and 

repeats until convergence. This process can take much less time than computing all model combinations to converge 

and can produce better models. The reason is that the complexity is no longer determined by number of 

combinations, instead it is determined by the number of coefficients and the step size of the GD algorithm and its 

convergence. Considering each step will require calculating the fitness function 8+1 times in order to calculate the 

gradient, 9 simulations will be conducted for each GD iteration. This is not significant when 4x4 combinations will 
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map the entire space. Yet looking at the amount of combinations in Table 1 considering non-strictly competing 

component, there are roughly 30 possible dimensions for cooperating model combination 2016. It is clear that 30+1 

calculations per iteration are fewer than the thousands of calculations needed to calculate the fitness matrix in 

discrete space, even when repeating iterations for the GD algorithm to converge. In other words complexity of one 

iteration with the GD algorithm grows linearly with the addition of each equation to the model, while calculating the 

entire discrete space can grow combinatorially with each new equation. 

 

HPC is still heavily employed during computation because all gradient components are calculated in parallel. Also, 

strictly competitive model options that have not yet converted to cooperation mode still required consideration. All 

those options are executed in parallel in order to figure out the best fitness there. Moreover, the parallelism can be 

employed to get several good model combinations in an attempt to find a global minimum rather than a local 

minimum. This can be accomplished by starting the GD algorithm with different initial guesses. Therefore, both 

model cooperation and model competition are employed by merging equations and by using multiple initial guesses 

and using strictly competing model components that cannot be merged. The number of parallel processes of each 

GD is the multiplication of 1) The number of initial guesses to starting with, 2) The of number of options for each 

competing component, typically the a Cartesian product that can be manipulated by the user to exclude unwanted 

combinations, and 3) Number of cooperating components + 1 for calculating the derivation in each dimension.  

 

The latter set of parallel computations is required to calculate the gradient using a forward finite difference scheme. 

In each such parallel simulation the fitness score       is computed, where           and    is Kronecker 

delta in dimension   and    is a small number used to calculate the derivative using forward difference 

approximation for cooperating equation   . So the gradient vector       components are approximated by        
         and      and       can be all computed in parallel. Each such computation requires full Monte-Carlo 

simulation of the model for a population, comparison of simulation for observed outcomes for that population, and 

applying the fitness function. Note that this simulation contains Monte-Carlo error, therefore the derivative is not 

accurate. Longer simulations and fine tuned step size    may improve the accuracy. Also note that multiple 

iterations of the GD algorithm will improve the results on average, so more computing power will eventually 

improve results, even with the presence of noise as demonstrated in (Barhak and Garrett, 2016 ) so HPC is an 

essential component.  

 

To properly use HPC, the modeler has do determine what components cooperate and what components compete. 

This is done by separating components into groups upon definition. For example considering Figure 1 the modeler 

will separate the vector z into groups {         and           for such group of equations, the modeler can also 

define additional behavior methods. Notable behavior methods are: 1) Static, 2) Scaled components. Static 

components do not participate in the GD optimization. Instead they can be initialized as competing components to 

provide multiple initial conditions for all of the cooperating components in order to improve fitness during each GD 

iteration. Scaled components are given a certain scaling value that their sum is scaled to match after each iteration. 

This is an important element in simulation since the assumption is that each equation faithfully represents the 

phenomenon that it observed, so their combination should not change the probability by using a linear combination 

that will cause scaling. For example, under the assumption that each equation         represents the probability of 

heart disease as calculated in a clinical study, then if                    is chosen, the MI probability will 

be reduced by half and therefore will no longer be representing the same phenomenon. To honor our assumption that 

all those equations represent the same phenomenon, a constrain such as           should be added to the 

parameters. The Reference Model optimization algorithm accomplishes this by defining a scaling value to which 

each group of cooperating scaled components is scaled to. To supplement this, the optimization algorithm also 

allows defining bounds for parameter values, so the modeler can define               thus not allowing 

probability subtraction and magnification beyond original purpose. This narrows down the search space during 

optimization to find reasonable values that honor the equation used. The belief is that all risk equations used are 

reasonable and describe the phenomenon. The goal is to identify the best combination of these equations that will 

provide better fitness towards a certain fitness function defined by the modeler. This keeps continuous model 

parameter space within a convex hull where the extreme vertices define the discrete values previously used in the 

fitness matrix for model combination competition.  

 

The new structure that combines 1) model competition 2) model cooperation through optimization towards a fitness 

function 3) parallel computing and use of HPC is called an “assumption engine”. An assumption engine allows the 

modeler to “throw” many assumptions at it and the engine will try to figure out the best model that fits a validation 
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data set. In this case, the assumption engine will find the model/assumption combination that validates best against 

clinical study outcomes as reported in the literature. Bad assumptions such as a bad cooperating equation will be 

rejected by the engine by zeroing the coefficient associated with that equation. This indicates to the modeler that this 

equation does not work well with other equations. Note that a different combination of equations or different initial 

conditions may cause the equation to be more useful. This allows the modeler to explore model and assumption 

space while validating against known phenomena. Recall that a model is an assumption of the modeler on how 

phenomena observed in reality behave. Now computing power can replace some of the effort that was previously 

placed on the modeler for constructing a good model. The modeler’s role is now converted to figuring out building 

blocks to place in the model and assumptions to combine them with. The assumption engine is used as a powerful 

tool to complete the job for the modeler. The next section will demonstrate results of employing this newly 

developed assumption engine. 

 

RESULTS 

 

The reason for the transformation to cooperative model combination was due to addition of new equations as 

reported in Table 1 at the 2016 column. Since calculating the best competitive model required an unreasonable 

amount of computing resources, the initial guess chosen was that all cooperating equations had equal contributions. 

Such an initial guess located in the center of the convex hull of the continuous model space allows the optimization 

algorithm to head in the direction of the most beneficial equation locally and to continue on this path. The idea is 

that equations with more beneficial effects will eventually remain while equations that perform poorly with regards 

to improving fitness will be eliminated. Multiple competing components can be explored and optimized in parallel. 

With those ideas in mind a set of new simulations followed and analyzed. Those simulations used the same model, 

fitness function, base populations definitions and query. The differences between simulation sets are explained 

hereafter per simulation set. 

 

Simulation 1: Partial Cooperation 

 

In this simulation set there was one active competing component from Table 1: biomarker change during simulation. 

Populations were generated using two population correlation assumptions and the fitness score was averaged. In this 

simulation the assumption is that the risk equations provided by modelers properly describe the phenomenon 

observed and do not need temporal correction for time passing between model inception timestamp and data 

timestamp. All other modeling components in Table 1 were considered cooperative, while all death probabilities 

were set to static, i.e., they were not changed during optimization, e.g., the probability for stroke death was the 

average of two equations and the weight of those equations did not change during optimization. So in this simulation 

the optimization algorithm was only changing the weights amongst the 11 MI probability equations and the 12 

stroke probability equations, i.e., there were 23 dimensions during optimization. So during each iteration of the 

optimization algorithm there were 96=(23+1)x2x2 parallel simulations accounting for gradient calculation and the 4 

competing initial guesses. Optimization was executed for 10 iterations. Those simulations took 18 days on a 16 core 

cluster which is corresponds roughly to a month of computing time per iteration.  

 

Results from the four competing model components are shown in the left most result columns of Table 2. The first 

two rows in the table show the fitness after the optimization process compared to the initial guess fitness score. This 

clearly shows improvement since a lower fitness score = better fitting model after optimization. The four columns 

represent the four competing model components simulated in parallel. Double border lines separate the risk 

equations to contain cooperating model components in Table 2. Recall that those coefficients should sum to 1 for 

each such cooperating model component.  

 

There is certainly variability in results between the two biomarker scenarios, which makes sense because some 

equations will behave differently and there are some equations in the mix that are very similar to each other. 

However, it is clear that some equations are more useful than others. For example MI equation #5 and #8 seem to be 

dominant in both scenarios while MI equations #1, #4, and #11 seem to be rejected by the assumption engine. This 

does not mean that those equations are useless; instead this suggests that those equations do not cooperate well with 

other model components considering the data within the system. In fact, some of the equations that did not work 

used to be in good positions in past simulations in 2015, when solely competing models were used. Yet recall that 

new death equations were added in 2016, and in this simulation those equations were static and were averaged so 

other equations now operate in different environment and therefore may be less efficient than in the past. Also, one 
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must consider that the simulation was stopped after 10 iterations and started from a certain initial guess in the center 

of the convex hull of model space. The fitness function is very complicated and may have been attracted to a local 

minimum away from other possible local minima. Finally, one should also consider the Monte-Carlo noise that may 

redirect solution and this is the main purpose of the next simulation set. 

 

Simulation 2: Partial Cooperation Repeated 

 

This simulation was totally equivalent to the previous simulation in all parameters. Furthermore the same exact 

populations were reused and not regenerated. So all disease simulations started from the same initial conditions. The 

only thing that changed during this simulation was the random numbers generated through simulation. So this 

simulation set serves as sensitivity analysis to Monte-Carlo noise. The results can be seen in Table 2 on the column 

dedicated to the second simulation. Those results should be compared to the previous results on the left side. There 

are some variations, yet once can clearly see dominance of MI equations #5 and #8 whereas MI equation #1,#7,#9, 

and #11 are rejected. So there is a nice overlap in some phenomenon yet it is evident that the gaps are wide and 

more computing power is required to reduce the Monte-Carlo noise. Recall that theoretically, the noise should drop 

by the square root of the amount of computing power invested. So to gain one digit of accuracy there is a need to 

spend 100 times more computing power, i.e., each iteration of the algorithm should take 100 months to calculate 

instead of a month. Although such computing power is available these days and not expensive, and there may be 

other ways to reduce computation burden, it was decided to continue simulations with current amount of computing 

power and explore full cooperation amongst modeling components.   

 

Simulation 3: Full Cooperation 

 

This simulation releases the static constrained over the death equations that were new to the system. This is a larger 

model space that translated to 124 parallel simulations = 30 [perturbed parameters] + 1 [unperturbed simulation] * 2 

[population correction assumptions] * 2 [biomarker change assumptions]. Executing 10 optimization iterations took 

roughly 3 weeks on the 16 core cluster which is close to a year of computation time on one core. Again, in this 

simulation populations were not regenerated so initial conditions are exactly the same as previous simulations. 

 

The results are organized in Table 2 in the column dedicated to the third simulation. The results show interesting 

behavior where not correcting for biomarkers provided slightly better results in one simulation. Considering Monte-

Carlo noise effects this result might not be significant. Although death equations do change their influential weight 

on the final model, those changes are small and none of them are rejected. On the other hand, several MI equations 

#4, #9, and #11 are rejected while MI equations #5 and #6 are dominant. So there seem to be behaviors that repeat in 

most simulations. Note that all simulations so far were based on the same generated populations, this may be the 

reason for the similarities. The next set of simulations attempts to address this issue.    

 

Simulation 4: Full Cooperation with Population Generation Repetition 

 

In this simulation set simulations started with different initial conditions. The same populations generated in 

previous simulations used. However, populations were regenerated using the same definitions and the optimization 

algorithm was executed for 10 iterations where each iteration averages the results from simulations based on the 

both generated populations. This should also theoretically affect the mathematical solution that the algorithm is 

drawn towards if there are significant changes in the populations generated. Note that this should theoretically also 

reduce the Monte-Carlo noise by roughly 30% since the same simulation is executed twice. Otherwise the 

simulation is similar to the previous simulation and should be compared to it. Since more repetitions occurred in the 

last simulation, this simulation should be trusted more. Yet, there is room for technical error. This simulation was 

large enough to see some artifacts of dropped jobs that are typically seen in HPC environments when 

software/hardware fails. In all previous simulations such artifacts were removed by forcing recalculation of dropped 

jobs. In this simulation those dropped jobs were ignored since there was a backup calculation using another 

population set. The effect of a missing calculation from so many simulations is insignificant and is very rare. Since 

those artifacts occurred in early iterations, the optimization algorithm corrected for it in later iterations. 

Results are shown in Table 4 on the right side. The results reject MI equations #1,#2, and #11 while MI equations 

#5, #6, #8 are dominant. This verifies results previously obtained and increases confidence in the trends observed. 
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Table 2.  Simulation Results  

 

Simulation Simulation 1: 

Partial 

Cooperation 

Simulation 2: 

Partial 

Cooperation II 

Simulation 3: Full 

Cooperation 

Simulation 4: Full 

Cooperation with 

Pop. Regeneration   

End Fitness Score 35 44 40 47 37 39 38 49 41 46 40 47 55 58 55 66 

Initial Fitness Score  51 60 52 64 48 60 56 65 53 58 56 61 41 47 40 44 

Population Corr.  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Biomarker Change  1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

Model Temporal 

Correction 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

MI Eq. 1 0.000 0.000 0.000 0.000 0.000 0.034 0.000 0.000 

MI Eq. 2 0.024 0.019 0.000 0.010 0.096 0.024 0.000 0.000 

MI Eq. 3 0.014 0.017 0.005 0.000 0.070 0.011 0.128 0.000 

MI Eq. 4 0.000 0.000 0.000 0.037 0.000 0.000 0.033 0.000 

MI Eq. 5 0.318 0.249 0.391 0.351 0.281 0.263 0.203 0.249 

MI Eq. 6 0.103 0.262 0.265 0.086 0.267 0.251 0.198 0.355 

MI Eq. 7 0.000 0.105 0.000 0.000 0.048 0.071 0.011 0.030 

MI Eq. 8 0.371 0.307 0.298 0.344 0.236 0.267 0.202 0.300 

MI Eq. 9 0.051 0.000 0.000 0.000 0.000 0.000 0.025 0.000 

MI Eq. 10 0.119 0.040 0.041 0.171 0.003 0.080 0.199 0.065 

MI Eq. 11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Stroke Eq. 1 0.031 0.237 0.097 0.128 0.100 0.135 0.082 0.124 

Stroke Eq. 2 0.124 0.137 0.331 0.096 0.165 0.039 0.162 0.049 

Stroke Eq. 3 0.382 0.090 0.010 0.151 0.196 0.094 0.167 0.183 

Stroke Eq. 4 0.231 0.144 0.238 0.075 0.102 0.144 0.128 0.000 

Stroke Eq. 5 0.011 0.009 0.000 0.003 0.131 0.055 0.026 0.000 

Stroke Eq. 6 0.034 0.010 0.000 0.084 0.009 0.060 0.049 0.080 

Stroke Eq. 7 0.038 0.068 0.000 0.212 0.024 0.158 0.062 0.172 

Stroke Eq. 8 0.000 0.055 0.046 0.000 0.000 0.068 0.042 0.000 

Stroke Eq. 9 0.059 0.053 0.000 0.100 0.156 0.055 0.106 0.121 

Stroke Eq. 10 0.000 0.013 0.047 0.000 0.032 0.000 0.000 0.000 

Stroke Eq. 11 0.000 0.045 0.000 0.007 0.038 0.023 0.002 0.000 

Stroke Eq. 12 0.091 0.140 0.231 0.145 0.047 0.168 0.174 0.271 

Death MI Eq. 1 0.333 0.333 0.333 0.333 0.299 0.302 0.276 0.308 

Death MI Eq. 2 0.333 0.333 0.333 0.333 0.349 0.412 0.371 0.422 

Death MI Eq. 3 0.333 0.333 0.333 0.333 0.351 0.286 0.353 0.269 

Death Stroke Eq. 1 0.500 0.500 0.500 0.500 0.566 0.530 0.452 0.588 

Death Stroke Eq. 2 0.500 0.500 0.500 0.500 0.434 0.470 0.548 0.412 

Death Eq. 1 0.500 0.500 0.500 0.500 0.525 0.475 0.534 0.525 

Death Eq. 2 0.500 0.500 0.500 0.500 0.475 0.525 0.466 0.475 
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CONCLUSIONS AND DISCUSSION 

 

Based on results obtained, it is clear that the assumption engine is capable of selecting a set of equations that 

improves fitness. The assumption engine can also be used as a mechanism to reject equations. For example MI 

equation #11 is a new addition to the model, yet it was rejected in all simulations. This may indicate an error, either 

in implementation or in design. Or it may signify that this equation is incompatible with other equations and 

elements of data. It is also possible that it behaves better if another query is presented to the assumption engine that 

emphasizes importance of certain populations.  

 

Future simulations will address these issues by exploring more components. One simulation of interest will attempt 

to include the temporal correction assumption to the simulations to correct for outdating of data. Such corrections 

proved useful in the past when using competing components. With cooperating components it may be possible to 

better explore model outdating and with temporal correction older models may be better fitting newer data sets or 

newer models may be able to better explain progression in older populations. Yet this is only one assumption that is 

planned for simulation, many other models/assumptions may follow with the existence of an assumption engine to 

analyze them. Recall that a model is just an assumption of how reality behaves. 

 

The assumption engine provides us important insight on our modeling assumptions and tools that were not available 

before. Such information can be given as feedback to modelers in order to improve their models, since comparison 

to other models is now being made per component. Yet, the importance of an assumption engine is as a dynamic 

aggregator of knowledge. Knowledge gets accumulated in two forms: 1) Models and assumptions which are active 

computational building blocks, 2) Input data and validation data – in this specific case clinical trial summary data for 

populations and outcomes. On the long run, the aggregation capability of assumption engines and the availability of 

computing power to handle the increasing amount of information will improve predictive models.  

 

REPRODUCIBILITY INFORMATION 

 

The results for this paper were calculated on a 16 core cluster with 5 nodes running Ubuntu 12.04 Linux using Sun 

Grid Engine and Python 2.7.8 deployed by Anaconda 2.0.1 (64-bit). The Reference Model results were generated 

using MIST version (0,94,1,0) with Inspyred version 1.0 and model version 34. Results are archived in: 

MIST_RefModel_2016_02_26_OPTIMIZE.zip, MIST_RefModel_2016_03_14_OPTIMIZE.zip, 

MIST_RefModel_2016_04_05_OPTIMIZE.zip, MIST_RefModel_2016_05_20_OPTIMIZE.zip. Numbers 

appearing in paper were rounded for display purposes.   
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