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ABSTRACT

Simulations based on disease models can be used as a training tool for patient education or caregiver support to
improve effectiveness of practice. Disease models provide predictions of patient outcomes, costs, and quality of life
information over time. They are typically constructed by various teams around the world based on local data, and
currently those do not validate well against multiple external populations. Therefore, universal understanding of
disease progression is still unsolved.

The Reference Model for Disease Progression addresses this problem by implementing a league of disease models
that compete for fitness towards publicly available clinical data. Currently, diabetic populations are of interest and
data for the model is drawn from published clinical trials, while model building blocks are based on published risk
equations and modeling hypotheses. The Reference Model creates model combinations from those building blocks,
then simulates and validates them against multiple populations. High Performance Computing (HPC) techniques are
used to cope with the combinatorial number of models that, until recently, took roughly a year of computation time
on a single processor.

Recently new building blocks have been added to the model, and the number of combinations became too large to
compute in reasonable time without access to a large cluster. To cope with this, the structure of the model was
changed from a competitive discrete ensemble model, where building blocks are selected from a discrete pool of
options to construct the best model, to a cooperative continuous ensemble model, where all building blocks are
merged using linear combination. Moving the model toward continuous combination space allowed creation of an
assumption engine that employs optimization algorithms to better deduce the most fitting model. This significantly
reduces simulation time and produces a better fitting model. This paper will focus on recent modifications, and
results obtained from the latest simulations.
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INTRODUCTION

Disease models typically describe the progression of disease and its impact on a population. Disease models were
typically used for economic evaluation (Lasry & Zaric, 2007), (Harvey, 2016) or for evaluation of impact of a
disease (Salem & Smith?, 2016), (Asche & Kim, 2016). Much work has been done to study the outcomes of a
disease to better understand factors driving the disease (Hayes & Leal 2013), (Clarke & Gray 2004). Those models
typically have long term predictions counted in years ahead. Yet recent advances started the process of incorporating
simple decision support models into Electronic Medical Record (EMR) systems (Sperl-Hillen & Averbeck, 2010), to
make them more accessible to practitioners.

Practitioners will therefore be increasingly exposed to computational medical models in the foreseeable future.
Furthermore, new virtual simulators that help medical training are becoming much more realistic (Body Interact,
n.d.). Such simulations track many biomarkers and conditions that change during simulations. Although such
simulations are often driven by preset scenarios, there is a recognized need for high fidelity models that properly
predict changes in patient condition in shorter time spans. Yet a helpful training tool will allow long term scenarios
where a doctor sees the progression of a disease in a patient in the very long term and can study the effect of their
treatment in virtual environment. Such a training tool requires good longer term models to break away from preset
scenarios.

The appearance of wearable medical devices, that will monitor our biomarkers such as heart rate monitors,
thermometers, cholesterol meters, blood glucose meters, and blood pressure monitors, will increase the potential of
predictive medical models. Medical models have the potential of being incorporated for analysis of abundant
information that will be generated during constant monitoring of wearer condition. These are still in their infancy,
yet technologies are being developed for monitoring (Santamaria & Serianni, 2016) and analysis towards use in
clinical trials (Gore & Chandra, 2016). These simulation technologies are already slowly becoming available, yet do
not broadly integrate predictive disease models, partially since those are being developed slowly. In summary,
predictive disease models are already being used to study long term impact on a population, are starting to be used
by practitioners, have future potential in medical training, and they will increase their potential in the near future in
conjunction with medical devices.

However, there is still a large gap between desired modeling capabilities needed to support predictive medical
modeling and our understanding of diseases. This gap is evident when disease modelers compare their models as
done in the Mount Hood challenge (The Mount Hood Modeling Group, 2007), (Palmer, 2013) where diabetes
models are compared and contrasted, typically every other year. A typical challenge provides a base population as
input for modeling teams that then have to predict disease outcomes after several years of disease progression. The
predicated outcomes are then compared to observed outcomes that actually took place for the modeled population.
The challenge consists of comparing outcomes amongst modeling teams. Previous challenges showed than different
modeling teams provide different models that led to different predictions, sometimes with considerable gaps. Since
modeling teams are well trained and work hard for the challenges, then overlooking human error, it is fair to assume
that different structures, data sources, and assumptions result in different predictions for similar base populations.

Those different results are reasonable considering that there are many differences between models and that new risk
equations are being added constantly to the pool of available equations. For example, the United Kingdom
Prospective Diabetes Study (UKPDS) (Stevens & Kothari, 2001) and QRisk (Hippisley-Cox & Coupland, 2008)
modeling teams provided different models throughout the years. Considering that those equations faithfully
represent phenomena observed in different populations, it is reasonable to assume those are good models.
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Nevertheless, due to different structure, those will produce different results. Moreover, those will behave differently
for different base populations, i.e., different initial conditions.

The Reference Model for Disease Progression (Barhak, 2014), (Barhak, 2015a), (Barhak, 2015b), (Barhak &
Garrett, 2016) was built to try and explain those differences. It is composed of multiple competing risk equations
and assumptions and populations. It is an ensemble model meaning that it is composed from multiple models. Other
ensemble models examples include (Bell & Bennett, 2009) where viewer movie preference was predicted, and
(KLusek & Dzwinel, 2016) where multiple models were merged to create a better cancer model. The Reference
Model basic function was to test which equations work better for what populations, and what model constructs
better explain observed data from multiple clinical studies for a given query. The Micro Simulation Tool (MIST)
(Barhak, 2013) is the simulation framework upon which the model is executed. It is free software that provides
object oriented population generation, Monte-Carlo micro-simulation, and reporting tools. Moreover it provides
High Performance Computing (HPC) capabilities that allow coping with the large number of
model/assumption/population combinations (Barhak, 2015b).

The Reference Model grew since 2012 adding more models and populations each year. In 2016 the number of
combinations became unreasonable to compute all combinations, and a computational wall was reached. Therefore
the model structure was changed. Instead of using model-combination competition, it was decided to allow model
cooperation. So instead of calculating all combination of models/assumptions in discrete combination space, models
would be allowed to cooperate by linearly combining them and creating continuous model space. This change
allowed for the breaking of the computational wall and adding more equation/assumptions to the models. This paper
will describe the implementation of the new technique and will explore the new results and benefits associated with
this change. Let us start with discussing model structure.

THE REFERENCE MODEL STRUCTURE CHANGE
Original Structure Supporting Competing Model Combinations

The Reference Model is currently focused on diabetic populations and is composed of three main disease processes,
heart disease, stroke, and competing mortality as shown in Figure 1. The Reference Model currently models and
validates against 9 diabetic populations ASPEN (Atorvastatin Study for Prevention of Coronary Heart Disease
Endpoints in Non-Insulin-Dependent Diabetes Mellitus), ADVANCE (Action in Diabetes and Vascular Disease:
Preterax and Diamicron Modified Release Controlled Evaluation), ACCORD (Action to Control Cardiovascular
Risk in Diabetes), UKPDS (United Kingdom Prospective Diabetes Study), KP (Kaiser Permanente), NDR (Swedish
National Diabetes Register), Look AHEAD (Action for Health in Diabetes), ADDITION (Anglo-Danish-Dutch
Study of Intensive Treatment In PeOple With screeN Detected Diabetes in Primary Care), and CARDS
(Collaborative Atorvastatin Diabetes Study). Most of these populations describe published clinical trials, while NDR
and KP summary data was provided by owners of data for the Mount Hood diabetes challenge participants in 2012.
The Reference Model was compared and contrasted against multiple other models in two challenges in 2012 and
2014. The Reference Model uses publicly available summary data for those populations as a source of inputs and
published outcomes as validation information. During each simulation year each virtual individual generated from
those populations goes through a set of rules that can change their biomarkers and other parameters, then transition
probabilities are set for all transitions and Monte-Carlo simulation determines for each individual if they progress to
the different stages in each process. Finally outcomes and costs are determined for each person during simulation-
year post processing. The process is repeated for a cohort of individuals for several years and may be repeated more
times to reduce Monte-Carlo error. At the end of the process simulation results are compared to known outcomes of
that cohort and a fitness function is employed to determine the fitness score. This fitness score is essentially the
distance/error of simulated results from observed results in real life.

The Reference Model structure is shown in Figure 1 with some simplification for illustration purposes. Generally,
each transition in the model holds at least one possible equation for the yearly transition probability. However,
some transitions have more than one equation, e.g., the probability of Myocardial Infarction (MI) can be computed
by equations denoted A, B, C,D and the probability of stroke can be computed using equations E, F, G, H. Therefore,
there are 4x4=16 competing models combinations in this simple example to choose from when executing
simulations: AE, AF, AG, AH, BE, BF, BG, BH, CE, CF, CG, CH, DE, DF, DG, DH. Each one of these model combinations
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is different and while looking for the best model that fits multiple populations, every model should be executed for
each of the populations. Availability of computing power and parallelization of execution using HPC techniques
makes this possible in reasonable time. Running all models would generate a fitness matrix that is similar to a score
board that shows how models behave for all populations. This can be color coded and analyzed to deduce the best
model for certain populations, or the best model on average.

Since the number of combinations is a multiplication of the number of options for each component, the number of
model combinations increases combinatorially, which is close to exponential growth. Notice that the example in
Figure 1 can easily grow out of reasonable proportions very quickly if more equations or assumptions are added
without excluding any combinations from consideration. Consider that multiple equations are used to determine
multiple transitions, and that more simulations are required for additional assumptions that increase the number of
simulations.

Table 1 shows both the equation options available in 2015 and those that were planned for 2016. The table lists all
options that can be taken per category. The row titled: “Possible Model/Assumption Combinations” multiplies all
above rows to calculate the number of model combinations, the number is multiplied by number of population
cohorts to figure out the number of simulations needed to build the full fitness matrix. This number of simulations,
after some model exclusions, required roughly 10-11 days in 2015 to calculate using a 16 core cluster — the
equivalent of roughly half a year of computing time. Therefore the 8 fold increase in number of simulations
projected for 2016 would require roughly 3 months of computation on the same cluster, equivalent to about 4 years
of computing time. This increase seemed unreasonable. Moreover, future model additions would increase simulation
time even further. Therefore, it was decided to change the structure of the model from competitive model
combinations in discrete model space to cooperating models in continuous model space.

Table 1. Model components in 2015 and 2016. *=strictly competing components

Number of Options for: Year

2015 2016
Population Correlation Assumption * 2 2
Biomarker Change Assumption* 2 2
Model Temporal Correction* 2 2
Ml 10 11
MI Death 2 3
Stroke 10 12
Stroke Death 1 2
Competing Mortality 1 2
Possible Model/Assumption Combinations 1,600 12,672
Population Cohorts 47 47
Possible distinct Simulations 75,200 | 595,584

New Structure Supporting Cooperating Model Combinations

Figure 1 illustrates this change in modeling paradigm where the bottom describes the cooperative model
combination. Instead of 4 equations for MI and stroke probabilities, there is a single equation that combines those
probabilities using a linear combination with four coefficients, a, b, c,d for Ml and e, f, g, h for stroke. Note that
now each time a model is executed, all equations potentially contribute to the simulation results with different
weights whereas with competitive combinations, only one equation for each category would contribute for each
scenario. For example, it is possible to have the average of equations A&B and the average of equations E&F
contribute to the model equally by setting a = 0.5,b = 0.5,c =0,d =0and e =0.5,f = 0.5,9g = 0,h = 0. This
combination of models can be represented as a vector in 8D space so z= [a, b, c,d, e, f, g, h] describes the model
combination. Note that the discrete competition space is fully contained within the continuous cooperative model
space, i.e., the competitive discrete model combination AE can be written in cooperative model space as z =
[1,0,0,0,1,0,0,0].
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Figure 1. The Reference Model transformed from model competition (Top) to model cooperation (Bottom).

Due to containment this reconfiguration of model space is superior. However, the number of models is now infinite,
since our space is now continuous in 8D. So computing the fitness matrix is no longer practical, since traversing the
entire continuous model space, as previously done in the discrete competitive model space, will require infinite time.
Since parameter space is now continuous it is possible to: 1) Locate better models since continuous space is higher
resolution than discrete model space —higher resolution allows locating better models in between discrete model
combinations. 2) Employ optimization algorithms to find best fitness — the model function is continuous considering
the coefficients constructing the linear combination.

The idea now is that instead of traversing the discrete models space to build the fitness matrix to locate the best
model, the system is asked to find the best fitting model. The system employs an iterative Gradient Descent (GD)
algorithm to locate the best fitting model. The GD algorithm starts with a guess, then each GD iteration calculates
the direction to step towards that will best improve the fitness score, then GD takes a small step in that direction and
repeats until convergence. This process can take much less time than computing all model combinations to converge
and can produce better models. The reason is that the complexity is no longer determined by number of
combinations, instead it is determined by the number of coefficients and the step size of the GD algorithm and its
convergence. Considering each step will require calculating the fitness function 8+1 times in order to calculate the
gradient, 9 simulations will be conducted for each GD iteration. This is not significant when 4x4 combinations will
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map the entire space. Yet looking at the amount of combinations in Table 1 considering non-strictly competing
component, there are roughly 30 possible dimensions for cooperating model combination 2016. It is clear that 30+1
calculations per iteration are fewer than the thousands of calculations needed to calculate the fitness matrix in
discrete space, even when repeating iterations for the GD algorithm to converge. In other words complexity of one
iteration with the GD algorithm grows linearly with the addition of each equation to the model, while calculating the
entire discrete space can grow combinatorially with each new equation.

HPC is still heavily employed during computation because all gradient components are calculated in parallel. Also,
strictly competitive model options that have not yet converted to cooperation mode still required consideration. All
those options are executed in parallel in order to figure out the best fitness there. Moreover, the parallelism can be
employed to get several good model combinations in an attempt to find a global minimum rather than a local
minimum. This can be accomplished by starting the GD algorithm with different initial guesses. Therefore, both
model cooperation and model competition are employed by merging equations and by using multiple initial guesses
and using strictly competing model components that cannot be merged. The number of parallel processes of each
GD is the multiplication of 1) The number of initial guesses to starting with, 2) The of number of options for each
competing component, typically the a Cartesian product that can be manipulated by the user to exclude unwanted
combinations, and 3) Number of cooperating components + 1 for calculating the derivation in each dimension.

The latter set of parallel computations is required to calculate the gradient using a forward finite difference scheme.
In each such parallel simulation the fitness score s(z;) is computed, where z, = z + q, 6, and &, is Kronecker
delta in dimension k and q; is a small number used to calculate the derivative using forward difference
approximation for cooperating equation k. So the gradient vector Vs(z) components are approximated by (s(z;) —
s(z))/qx and s(z) and s(z,) can be all computed in parallel. Each such computation requires full Monte-Carlo
simulation of the model for a population, comparison of simulation for observed outcomes for that population, and
applying the fitness function. Note that this simulation contains Monte-Carlo error, therefore the derivative is not
accurate. Longer simulations and fine tuned step size q, may improve the accuracy. Also note that multiple
iterations of the GD algorithm will improve the results on average, so more computing power will eventually
improve results, even with the presence of noise as demonstrated in (Barhak and Garrett, 2016 ) so HPC is an
essential component.

To properly use HPC, the modeler has do determine what components cooperate and what components compete.
This is done by separating components into groups upon definition. For example considering Figure 1 the modeler
will separate the vector z into groups {a, b, c,d} and {e, f, g, h} for such group of equations, the modeler can also
define additional behavior methods. Notable behavior methods are: 1) Static, 2) Scaled components. Static
components do not participate in the GD optimization. Instead they can be initialized as competing components to
provide multiple initial conditions for all of the cooperating components in order to improve fitness during each GD
iteration. Scaled components are given a certain scaling value that their sum is scaled to match after each iteration.
This is an important element in simulation since the assumption is that each equation faithfully represents the
phenomenon that it observed, so their combination should not change the probability by using a linear combination
that will cause scaling. For example, under the assumption that each equation A, B, C, D represents the probability of
heart disease as calculated in a clinical study, then if a = 0.5,b = 0,c = 0,d = 0 is chosen, the MI probability will
be reduced by half and therefore will no longer be representing the same phenomenon. To honor our assumption that
all those equations represent the same phenomenon, a constrain such as a + b + ¢ + d = 1 should be added to the
parameters. The Reference Model optimization algorithm accomplishes this by defining a scaling value to which
each group of cooperating scaled components is scaled to. To supplement this, the optimization algorithm also
allows defining bounds for parameter values, so the modeler can define a,b,c,d € [0,1] thus not allowing
probability subtraction and magnification beyond original purpose. This narrows down the search space during
optimization to find reasonable values that honor the equation used. The belief is that all risk equations used are
reasonable and describe the phenomenon. The goal is to identify the best combination of these equations that will
provide better fitness towards a certain fitness function defined by the modeler. This keeps continuous model
parameter space within a convex hull where the extreme vertices define the discrete values previously used in the
fitness matrix for model combination competition.

The new structure that combines 1) model competition 2) model cooperation through optimization towards a fitness

function 3) parallel computing and use of HPC is called an “assumption engine”. An assumption engine allows the
modeler to “throw” many assumptions at it and the engine will try to figure out the best model that fits a validation
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data set. In this case, the assumption engine will find the model/assumption combination that validates best against
clinical study outcomes as reported in the literature. Bad assumptions such as a bad cooperating equation will be
rejected by the engine by zeroing the coefficient associated with that equation. This indicates to the modeler that this
equation does not work well with other equations. Note that a different combination of equations or different initial
conditions may cause the equation to be more useful. This allows the modeler to explore model and assumption
space while validating against known phenomena. Recall that a model is an assumption of the modeler on how
phenomena observed in reality behave. Now computing power can replace some of the effort that was previously
placed on the modeler for constructing a good model. The modeler’s role is now converted to figuring out building
blocks to place in the model and assumptions to combine them with. The assumption engine is used as a powerful
tool to complete the job for the modeler. The next section will demonstrate results of employing this newly
developed assumption engine.

RESULTS

The reason for the transformation to cooperative model combination was due to addition of new equations as
reported in Table 1 at the 2016 column. Since calculating the best competitive model required an unreasonable
amount of computing resources, the initial guess chosen was that all cooperating equations had equal contributions.
Such an initial guess located in the center of the convex hull of the continuous model space allows the optimization
algorithm to head in the direction of the most beneficial equation locally and to continue on this path. The idea is
that equations with more beneficial effects will eventually remain while equations that perform poorly with regards
to improving fitness will be eliminated. Multiple competing components can be explored and optimized in parallel.
With those ideas in mind a set of new simulations followed and analyzed. Those simulations used the same model,
fitness function, base populations definitions and query. The differences between simulation sets are explained
hereafter per simulation set.

Simulation 1: Partial Cooperation

In this simulation set there was one active competing component from Table 1: biomarker change during simulation.
Populations were generated using two population correlation assumptions and the fitness score was averaged. In this
simulation the assumption is that the risk equations provided by modelers properly describe the phenomenon
observed and do not need temporal correction for time passing between model inception timestamp and data
timestamp. All other modeling components in Table 1 were considered cooperative, while all death probabilities
were set to static, i.e., they were not changed during optimization, e.g., the probability for stroke death was the
average of two equations and the weight of those equations did not change during optimization. So in this simulation
the optimization algorithm was only changing the weights amongst the 11 MI probability equations and the 12
stroke probability equations, i.e., there were 23 dimensions during optimization. So during each iteration of the
optimization algorithm there were 96=(23+1)x2x2 parallel simulations accounting for gradient calculation and the 4
competing initial guesses. Optimization was executed for 10 iterations. Those simulations took 18 days on a 16 core
cluster which is corresponds roughly to a month of computing time per iteration.

Results from the four competing model components are shown in the left most result columns of Table 2. The first
two rows in the table show the fitness after the optimization process compared to the initial guess fitness score. This
clearly shows improvement since a lower fitness score = better fitting model after optimization. The four columns
represent the four competing model components simulated in parallel. Double border lines separate the risk
equations to contain cooperating model components in Table 2. Recall that those coefficients should sum to 1 for
each such cooperating model component.

There is certainly variability in results between the two biomarker scenarios, which makes sense because some
equations will behave differently and there are some equations in the mix that are very similar to each other.
However, it is clear that some equations are more useful than others. For example MI equation #5 and #8 seem to be
dominant in both scenarios while MI equations #1, #4, and #11 seem to be rejected by the assumption engine. This
does not mean that those equations are useless; instead this suggests that those equations do not cooperate well with
other model components considering the data within the system. In fact, some of the equations that did not work
used to be in good positions in past simulations in 2015, when solely competing models were used. Yet recall that
new death equations were added in 2016, and in this simulation those equations were static and were averaged so
other equations now operate in different environment and therefore may be less efficient than in the past. Also, one
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must consider that the simulation was stopped after 10 iterations and started from a certain initial guess in the center
of the convex hull of model space. The fitness function is very complicated and may have been attracted to a local
minimum away from other possible local minima. Finally, one should also consider the Monte-Carlo noise that may
redirect solution and this is the main purpose of the next simulation set.

Simulation 2: Partial Cooperation Repeated

This simulation was totally equivalent to the previous simulation in all parameters. Furthermore the same exact
populations were reused and not regenerated. So all disease simulations started from the same initial conditions. The
only thing that changed during this simulation was the random numbers generated through simulation. So this
simulation set serves as sensitivity analysis to Monte-Carlo noise. The results can be seen in Table 2 on the column
dedicated to the second simulation. Those results should be compared to the previous results on the left side. There
are some variations, yet once can clearly see dominance of Ml equations #5 and #8 whereas MI equation #1,#7,#9,
and #11 are rejected. So there is a nice overlap in some phenomenon yet it is evident that the gaps are wide and
more computing power is required to reduce the Monte-Carlo noise. Recall that theoretically, the noise should drop
by the square root of the amount of computing power invested. So to gain one digit of accuracy there is a need to
spend 100 times more computing power, i.e., each iteration of the algorithm should take 100 months to calculate
instead of a month. Although such computing power is available these days and not expensive, and there may be
other ways to reduce computation burden, it was decided to continue simulations with current amount of computing
power and explore full cooperation amongst modeling components.

Simulation 3: Full Cooperation

This simulation releases the static constrained over the death equations that were new to the system. This is a larger
model space that translated to 124 parallel simulations = 30 [perturbed parameters] + 1 [unperturbed simulation] * 2
[population correction assumptions] * 2 [biomarker change assumptions]. Executing 10 optimization iterations took
roughly 3 weeks on the 16 core cluster which is close to a year of computation time on one core. Again, in this
simulation populations were not regenerated so initial conditions are exactly the same as previous simulations.

The results are organized in Table 2 in the column dedicated to the third simulation. The results show interesting
behavior where not correcting for biomarkers provided slightly better results in one simulation. Considering Monte-
Carlo noise effects this result might not be significant. Although death equations do change their influential weight
on the final model, those changes are small and none of them are rejected. On the other hand, several MI equations
#4, #9, and #11 are rejected while MI equations #5 and #6 are dominant. So there seem to be behaviors that repeat in
most simulations. Note that all simulations so far were based on the same generated populations, this may be the
reason for the similarities. The next set of simulations attempts to address this issue.

Simulation 4: Full Cooperation with Population Generation Repetition

In this simulation set simulations started with different initial conditions. The same populations generated in
previous simulations used. However, populations were regenerated using the same definitions and the optimization
algorithm was executed for 10 iterations where each iteration averages the results from simulations based on the
both generated populations. This should also theoretically affect the mathematical solution that the algorithm is
drawn towards if there are significant changes in the populations generated. Note that this should theoretically also
reduce the Monte-Carlo noise by roughly 30% since the same simulation is executed twice. Otherwise the
simulation is similar to the previous simulation and should be compared to it. Since more repetitions occurred in the
last simulation, this simulation should be trusted more. Yet, there is room for technical error. This simulation was
large enough to see some artifacts of dropped jobs that are typically seen in HPC environments when
software/hardware fails. In all previous simulations such artifacts were removed by forcing recalculation of dropped
jobs. In this simulation those dropped jobs were ignored since there was a backup calculation using another
population set. The effect of a missing calculation from so many simulations is insignificant and is very rare. Since
those artifacts occurred in early iterations, the optimization algorithm corrected for it in later iterations.

Results are shown in Table 4 on the right side. The results reject MI equations #1,#2, and #11 while MI equations
#5, #6, #8 are dominant. This verifies results previously obtained and increases confidence in the trends observed.
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Table 2. Simulation Results

Simulation Simulation 1: Simulation 2: Simulation 3: Full || Simulation 4: Full
Partial Partial Cooperation Cooperation with
Cooperation Cooperation 11 Pop. Regeneration
End Fitness Score 35 | 44 | 40 | 47 || 37 | 39 | 38 | 49 || 41 | 46 | 40 | 47 || 55 | 58 | 55 | 66
Initial Fitness Score || 51 | 60 | 52 | 64 || 48 | 60 | 56 | 65| 53 | 58 | 56 | 61 || 41 | 47 | 40 | 44
Population Corr. 0 1]0 1 0 1 0 1 0 1
Biomarker Change 111]07]0 010 010 010
Model Temporal S I R N S O | A A | N T R T N A I A | A R A R A R §
Correction
MI Eg. 1 0.000 0.000 0.000 0.000 0.000 0.034 0.000 0.000
MI Eg. 2 0.024 0.019 0.000 0.010 0.096 0.024 0.000 0.000
MI Eg. 3 0.014 0.017 0.005 0.000 0.070 0.011 0.128 0.000
MI Eg. 4 0.000 0.000 0.000 0.037 0.000 0.000 0.033 0.000
MI Eg. 5 0.318 0.249 0.391 0.351 0.281 0.263 0.203 0.249
MI Eg. 6 0.103 0.262 0.265 0.086 0.267 0.251 0.198 0.355
MI Eq. 7 0.000 0.105 0.000 0.000 0.048 0.071 0.011 0.030
Ml Eq. 8 0.371 0.307 0.298 0.344 0.236 0.267 0.202 0.300
MI Eg. 9 0.051 0.000 0.000 0.000 0.000 0.000 0.025 0.000
Ml Eg. 10 0.119 0.040 0.041 0.171 0.003 0.080 0.199 0.065
MI Eg. 11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Stroke Eq. 1 0.031 0.237 0.097 0.128 0.100 0.135 0.082 0.124
Stroke Eq. 2 0.124 0.137 0.331 0.096 0.165 0.039 0.162 0.049
Stroke Eq. 3 0.382 0.090 0.010 0.151 0.196 0.094 0.167 0.183
Stroke Eq. 4 0.231 0.144 0.238 0.075 0.102 0.144 0.128 0.000
Stroke Eq. 5 0.011 0.009 0.000 0.003 0.131 0.055 0.026 0.000
Stroke Eq. 6 0.034 0.010 0.000 0.084 0.009 0.060 0.049 0.080
Stroke Eq. 7 0.038 0.068 0.000 0.212 0.024 0.158 0.062 0.172
Stroke Eq. 8 0.000 0.055 0.046 0.000 0.000 0.068 0.042 0.000
Stroke Eq. 9 0.059 0.053 0.000 0.100 0.156 0.055 0.106 0.121
Stroke Eq. 10 0.000 0.013 0.047 0.000 0.032 0.000 0.000 0.000
Stroke Eqg. 11 0.000 0.045 0.000 0.007 0.038 0.023 0.002 0.000
Stroke Eq. 12 0.091 0.140 0.231 0.145 0.047 0.168 0.174 0.271
Death MI Eq. 1 0.333 0.333 0.333 0.333 0.299 0.302 0.276 0.308
Death MI Eq. 2 0.333 0.333 0.333 0.333 0.349 0.412 0.371 0.422
Death MI Eq. 3 0.333 0.333 0.333 0.333 0.351 0.286 0.353 0.269
Death Stroke Eg. 1 0.500 0.500 0.500 0.500 0.566 0.530 0.452 0.588
Death Stroke Eg. 2 0.500 0.500 0.500 0.500 0.434 0.470 0.548 0.412
Death Eq. 1 0.500 0.500 0.500 0.500 0.525 0.475 0.534 0.525
Death Eq. 2 0.500 0.500 0.500 0.500 0.475 0.525 0.466 0.475
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CONCLUSIONS AND DISCUSSION

Based on results obtained, it is clear that the assumption engine is capable of selecting a set of equations that
improves fitness. The assumption engine can also be used as a mechanism to reject equations. For example Ml
equation #11 is a new addition to the model, yet it was rejected in all simulations. This may indicate an error, either
in implementation or in design. Or it may signify that this equation is incompatible with other equations and
elements of data. It is also possible that it behaves better if another query is presented to the assumption engine that
emphasizes importance of certain populations.

Future simulations will address these issues by exploring more components. One simulation of interest will attempt
to include the temporal correction assumption to the simulations to correct for outdating of data. Such corrections
proved useful in the past when using competing components. With cooperating components it may be possible to
better explore model outdating and with temporal correction older models may be better fitting newer data sets or
newer models may be able to better explain progression in older populations. Yet this is only one assumption that is
planned for simulation, many other models/assumptions may follow with the existence of an assumption engine to
analyze them. Recall that a model is just an assumption of how reality behaves.

The assumption engine provides us important insight on our modeling assumptions and tools that were not available
before. Such information can be given as feedback to modelers in order to improve their models, since comparison
to other models is now being made per component. Yet, the importance of an assumption engine is as a dynamic
aggregator of knowledge. Knowledge gets accumulated in two forms: 1) Models and assumptions which are active
computational building blocks, 2) Input data and validation data — in this specific case clinical trial summary data for
populations and outcomes. On the long run, the aggregation capability of assumption engines and the availability of
computing power to handle the increasing amount of information will improve predictive models.

REPRODUCIBILITY INFORMATION

The results for this paper were calculated on a 16 core cluster with 5 nodes running Ubuntu 12.04 Linux using Sun
Grid Engine and Python 2.7.8 deployed by Anaconda 2.0.1 (64-bit). The Reference Model results were generated
using MIST version (0,94,1,0) with Inspyred version 1.0 and model version 34. Results are archived in:
MIST_RefModel_2016_02 26_OPTIMIZE.zip, MIST_RefModel_2016_03 14 _OPTIMIZE.zip,
MIST_RefModel_2016_04_05_OPTIMIZE.zip, MIST_RefModel_2016_05_20_OPTIMIZE.zip. Numbers
appearing in paper were rounded for display purposes.
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