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ABSTRACT 

 

Through the use of virtual simulation, trainees can practice procedures and make mental connections necessary for 
improved task performance on the real task.  However, they do have limitations.  One is the size of the environment 
(measured by number of entities).  The Military OpenSimulator Enterprise Strategy (MOSES) project from the U.S. 
Army Research Laboratory is working to improve the next generation of simulation’s training effectiveness and is 
exploring methods to increase the number of simultaneous soldiers within a 3-D virtual world. 

The presented work investigates expanding capacity of a simulator by off-loading work onto a remote server (with 
potentially powerful and/or special hardware).  This may increase entity count supported and support the use of less-
powerful clients (conversely, boost performance when using that hardware).  Initial focus is on off-loading physics 
calculations.  A remote server was built upon the Nvidia PhysX engine, which is optimized for multi-threaded and 
GPU-enabled calculations, and a plug-in within OpenSimulator developed to communicate with that server.  In 
addition to the architecture, results of an analysis comparing this remote physics capability to three integrated physics 
capabilities (Open Dynamics Engine, Bullet, and PhysX) is presented. 
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INTRODUCTION 

Persistent virtual worlds can provide an excellent environment for simulation-based training (SBT). They provide ease 
of access to trainees, as well as robust environments for many different types of training. The effectiveness of virtual 
worlds in training has been exhibited in exercises such as room clearing (Lackey, Salcedo and Maxwell, 2014). 
However, these environments do not scale well with the number of dynamic entities (i.e.: avatars and objects that are 
non-stationary). One of the significant components of a virtual world is the physics engine, which is responsible for 
resolving the effects of various forces, such as gravitational force, on the rigid and soft bodies in the simulator. It is 
also responsible for resolving collisions and simulating particle effects. The simulator updates the state of the 
environment at rates upwards of ten times a second in order to maintain the users’ interactivity with the environment. 
During each of these updates the physics engine must simulate all physical interactions between entities and the 
environment. The computational cost involved with the physics engine’s responsibilities can be excessive, thus it can 
serve as a significant factor in its inability to scale (Mondesire, Stevens and Maxwell, 2016). 

Since the physics engine can have a significant impact on the performance of a persistent virtual world simulator, the 
Army Research Laboratory’s (ARL) Military OpenSimulator Enterprise Strategy (MOSES) project has been 
evaluating the effectiveness of several approaches to improve this behavior. MOSES uses a derivative of 
OpenSimulator (OpenSim), which is an open source server used to host three-dimensional virtual worlds. The project 
aims to be able to field at least a company of training soldiers along with a robust environment inside OpenSim. It is 
also important to increase scalability of the simulation while still maintaining real-time framerates so as not to degrade 
the users’ experience. In order to achieve these goals, alternatives to OpenSim’s current physics engine options were 
implemented. The presented work explores one of these alternatives, a distributed approach to physical simulation. 
An analysis of this approach is presented in this work, which compares the distributed approach to a more traditional 
integrated one. 

BACKGROUND 

Before working on physics engine alternative, OpenSim’s current physics simulation infrastructure was first analyzed. 
OpenSim uses a plug-in architecture for its physics simulation component. Thus, if a contributor wanted to introduce 
a new physics engine to OpenSim, he/she simply has to fulfill the requirements of the physics interface defined by 
OpenSim. By default, OpenSim has two physics engines at its disposal: the Open Dynamics Engine™ (ODE) and the 
Bullet Physics Library (Bullet). Several tests were performed in order to evaluate each engine’s performance. These 
tests revealed that Bullet outperformed ODE in high dynamic entity situations (Mondesire, Maxwell, Stevens, 
Zielinski & Martin, 2016). 

Once Bullet was established as the more optimal engine, further analysis of its performance was conducted. 
OpenSim’s Bullet plug-in, which serves as an interface between OpenSim and Bullet, has a setting which determines 
whether the plug-in runs on its own thread or runs on its owner’s thread. These two settings were compared to each 
other. The results showed that the metrics for measuring the frame time of the separate thread Bullet plug-in were 
ineffective and misleading. Furthermore, running Bullet in a separate thread created more overhead, which caused a 
decrease in that configuration’s performance (Mondesire, Maxwell, Stevens, Zielinski & Martin, 2016). This led us 
to seek out a more robust multi-threaded implementation for OpenSim’s physics. 
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Since Bullet does not have built-in multi-threading support (other than forking onto a single, separate thread), other 
engines were explored. As a result of this search, we chose to focus on NVIDIA®’s PhysX® engine. Among the 
reasons for choosing this engine was that PhysX has built-in multithreading. The developer needs to only specify the 
number of threads, and PhysX’s CPU dispatcher will distribute tasks among the worker threads automatically. Another 
reason for using PhysX is that it has been highly optimized for real-time physics simulation and has had many 
applications in simulation and entertainment (Micikevicius, 2009). Also we hope to add GPU accelerated rigid body 
physics simulation and PhysX’s built-in GPU acceleration in the future. Currently, rigid body simulation is not 
performed on the GPU because traditional rigid body simulation is not very parallelizable, and so does not perform 
well on the GPU (Micikevicius, 2009). We built a new plug-in for OpenSim using PhysX that has similar functionality 
to the existing Bullet plug-in. Several tests were performed that compared the new plug-in to its counterparts, and the 
results showed that the PhysX plug-in was a marked improvement over the Bullet and ODE plug-ins in high load 
situations (Mondesire, Maxwell, Stevens, Zielinski & Martin, 2016). 

In addition to creating the PhysX plug-in, we also started working on a distributed OpenSim physics plug-in (remote 
physics plug-in). Instead of performing the physics computations on the local machine, this plug-in would 
communicate with a remote server, which would act as a physics simulation service. Multiple OpenSim plug-ins can 
connect to and run many simulations on a single remote server. This remote manager is called MOSES Remote 
Manager (MRM). In order to relay the state of the simulation between the remote physics plug-in and MRM, we 
created a simple protocol used to describe object state, object geometry, joints, and general simulation state. These 
messages are in binary form so as to cut down on packet size and serialization costs. Communications between the 
remote physics plug-in and MRM are facilitated through two different transport protocols: Transmission Control 
Protocol (TCP) and User Datagram Protocol (UDP). TCP is a reliable protocol that is used to relay important control 
messages, such as creating objects and advancing the simulation time, since losing these messages would result in 
major loss of fidelity in the virtual world. High frequency messages are sent through UDP, because a loss of one of 
these messages would only affect a single frame of simulation. UDP provides lower latency than TCP for these 
messages. Mainly object state updates are sent through UDP since these are sent out during each simulation frame in 
which they are active. The remote physics plug-in contains multiple threads in which data can be processed 
concurrently. This is so that network data transmission can occur uninterrupted while data is being serialized or 
deserialized (See Figure 1).  MRM uses a plug-in architecture, which also allows it to perform simulation tasks 
concurrently with network data processing. This approach could offload a significant amount of computation to a 
remote machine, but would also add networking latency. The rest of this work explores the benefits and costs of a 
distributed approach to physics simulation and compares that approach to a more traditional integrated one.  
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Figure 1. Sequence Diagram of AdvanceTime 

 

METHODOLOGY 

This paper compared the performance of distributed physics processing against a traditional, integrated physics engine. 
In this experiment, distributed physics processing was realized through the execution of two separate program 
instances: one module that processed all of the simulation’s physics calculations, and one for all of the remaining 
simulator’s functionality. Distributed physics was compared with an integrated mode; the default physics architecture 
and mode of execution where all of the simulator’s components (including the physics engine) are tightly coupled into 
a single program instance. The presented experiment quantifiably compared how both physics engine modes affected 
simulator performance and physics engine load scalability. 

For performance comparison, each configuration was examined on how well both the simulator and physics engine 
reacted to increased physical object load. To generate load, a testing scenario was designed to repeatedly stress test 
each engine configuration. The ball pit scenario in (Mondesire, Stevens & Maxwell, 2016; Mondesire, Maxwell, 
Stevens, Zielinski & Martin, 2016; Mondesire & Maxwell, 2016) was employed in this experiment. In the scenario, 
the simulated environment contains a series of 10 concentric-circled, 5-meter tall walls. Each circled-wall resided 10-
meters from its two nearest neighbor. Each wall was non-penetrable, static, and fixed in place.  

The scenario also contained a ball spawner that was suspended 15 meters off of the ground, centered to the inner-most 
wall. When invoked, the ball spawner generated 500 balls, where each ball was 1-meter in diameter and was comprised 
of 1 active primitive (AtvPrm), physical object. Primitive objects, also known as prims, are basic shapes inside 
OpenSim that can have physical, scripted, and persistent properties. With the active primitive set to physical, the 
object could collide with other objects and was subject to gravitational forces; both properties forced physics engine 
stimulation. Each generated ball applied additional computational load onto the physics engine. Therefore, when the 
number of physical object reached certain thresholds, the simulator and physics engine began to degrade in 
performance. The presented experiment identified when these thresholds were reached with each physics engine 
configuration and measured performance at certain load intervals.  
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To identify the load threshold of distributed physics, the ball spawner generated and dropped 500 physical balls 
repeatedly at 30 second intervals until 10,000 were present in the virtual world. At each interval, performance data 
was collected. Once all of the balls were generated, the simulator was reset and the scenario was repeated 29 more 
times for a total of 30 independent trials. The same conditions and process were followed for integrated physics that 
were captured in previous experimentation (Mondesire & Maxwell, 2016). This work compared the newly collected 
distributed physics data with the previously captured integrated physics results under the same exact testing conditions. 

To facilitate each experiment trial, a modified version of OpenSimulator 0.8.2 was used to generate the simulated 
world. The modification added NVIDIA’s PhysX 3.33 to the simulator as the physics engine. The new engine 
supported two modes: integrated and distributed physics, the two independent variables of the experiment. Based on 
the identified optimal thread-allocation from previous experimentation (Mondesire, Stevens & Maxwell, 2016), PhysX 
was allocated four CPU threads for both integrated and distributed modes. All experiments were executed on the same 
hardware, supporting an Intel i7 6-core processor with 12 concurrent threads and 32 GB of RAM. The Ubuntu Desktop 
14.04 64-bit operating system was used to host the software components of the simulator. 

DATA ANALYSIS 

The experiment used the physics engine configurations (integrated and distributed) and the number of generated 
physical, active primitive (AtvPrm) objects as independent variables. The dependent, response variables were the 
simulation frames per second (SimFPS) and physics frame time (PhysFT). SimFPS is measured by the number of 
simulation frames the simulator was able to completely process in a second. A complete frame included one round of 
updates for every simulation engine component, including the scripting, persistence, and physics engines. OpenSim 
restricted the frame rate to execute no faster than 11.33 frames per second. SimFPS provided a quantifiable measure 
of how the overall simulator was performing at any point of the simulation. The second dependent variable was the 
physics frame time. PhysFT isolated the performance analysis to just the physics engine. PhysFT measured the time 
required to completely process a physics simulation, which evaluated all physical objects in the world for collisions 
and updated object positions. PhysFT had no maximum upper-bound and was measured in milliseconds (ms). 

The first evaluation analyzed the minimum degradation load of each configuration. The minimum degradation load 
(MDL) was the least amount of physical objects the simulation was given that produced an average SimFPS below 9 
frames per second. Traditionally, 9 SimFPS was the threshold at which the simulator began to perform poorly with 
delayed interactions between the user and the simulator. Integrated physics produced an MDL of 4,500 physical object, 
which yielded a 7.79 SimFPS (SD = 0.44). Distribute physics produced an MDL of 500 objects with of 6.7 SimFPS 
(SD = 2.71). Therefore, integrated physics was able to handle significantly more load than the distributed 
configuration. 

Next, the SimFPS of each configuration was analyzed at different load levels. This analysis determined how the two 
configurations affected overall simulation performance. With 1,000 physical objects, integrated physics averaged 
11.33 (SD = 0.12) SimFPS while distributed physics averaged 3.19 (SD = 0.68). Two-tailed Z-test with an α = 0.05, 
determined that integrated significantly outperformed distributed at this load level (p < 0.0001). Integrated also 
significantly outperformed distributed mode at 5,000 objects with an average of 6.53 SimFPS (SD = 0.49) against 
distributed’s 0.3 SimFPS (SD = 0.16), p < 0.0001. At the highest amount of physical object load (10,000 AtvPrm), 
integrated mode averaged 1.72 SimFPS (SD = 0.3) while distributed averaged 0.3 SimFPS (SD = 0.31), p < 0.0001. 
Again, integrated significantly outperformed distributed physics at every load level. Table 1 displays all of the SimFPS 
averages and standard deviations. Figure 2 graphs the changes in SimFPS across all of the tested physics load intervals. 
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Table 1. SimFPS Results for All Load Levels 

  
  

SimFPS 

Integrated Distributed 
AtvPrm AVG STD AVG STD 
1,000 11.33 0.12 3.19 0.68 
2,000 11.30 0.10 1.32 0.22 
3,000 10.97 0.13 0.69 0.12 
4,000 9.65 0.33 0.45 0.16 
5,000 6.53 0.49 0.30 0.16 
6,000 4.18 0.41 0.44 0.20 
7,000 1.54 0.38 0.33 0.19 
8,000 0.73 0.12 0.36 0.29 
9,000 0.68 0.10 0.38 0.40 

10,000 1.72 0.30 0.30 0.31 

 

Figure 2. SimFPS for Each Physics Object Load Interval 

Finally, the physics frame times for both configurations were analyzed. The analysis identified how much time each 
physics configuration required to perform a full physics frame’s worth of processing. At 1,000 physical objects, 
integrated averaged a PhysFT of 0.81 ms (SD = 0.05) and distributed averaged 654.51 ms (SD = 265.6). At 5,000 
physical objects, integrated physics averaged a frame time of 289.44 ms (SD = 24.59) and distributed averaged 
6,141.13 ms (SD = 235.04). Lastly, at the highest load level of 10,000 physical objects, integrated averaged 1,081.37 
ms (SD = 84.5) and distributed averaged 6,269.5 ms (SD = 1,011.04). Z-tests confirmed that the frame time differences 
at 1,000, 5,000, and 10,000 AtvPrms were all significant (p < 0.0001); therefore, distributed physics produced 
significantly larger frame times than integrated at the tested load intervals. Table 2 displays the physics frame times 
of each configuration while Figure 3 graphs the changes in frame time as physical object load increases. 

 

Table 2. PhysFT Results for All Load Levels 
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 PhysFT 

 Integrated Distributed 

AtvPrm AVG STD AVG STD 

1,000 11.33 0.12 3.19 0.68 
2,000 11.30 0.10 1.32 0.22 
3,000 10.97 0.13 0.69 0.12 
4,000 9.65 0.33 0.45 0.16 
5,000 6.53 0.49 0.30 0.16 
6,000 4.18 0.41 0.44 0.20 
7,000 1.54 0.38 0.33 0.19 
8,000 0.73 0.12 0.36 0.29 
9,000 0.68 0.10 0.38 0.40 

10,000 1.72 0.30 0.30 0.31 
 

 

Figure 3. PhysFT for Each Physical Object Load Interval 

 

CONCLUSION 

The results presented here show that the integrated physics approach outperformed the remote physics server 
approach.  This is perhaps not surprising at a low number of objects.   However, it does raise three questions to be 
pursued in future work. 

Can we improve the distributed physics server as is?  Given the current design, there is room to improve the server 
protocol itself.  Additional messages can be added that avoid potential wasted sends.  In addition, some updates could 
potentially be ignored.  The PhysX library itself takes object state as input, adjusts the object parameters (e.g. position) 
accordingly, and returns that state.  These updates into, and out of, PhysX could be improved through better dead 
reckoning and other methods. 
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At what level will a distributed physics server help?  Integrated physics clearly has a limit to its performance.  After 
this number of objects, one could expect to see a remote physics server approach perhaps perform better than an 
integrated approach.  The experiment in this paper tested up to 10,000 objects.  Would a higher quantity show any 
differences (particularly if other improvements to the distributed physics server are made)? 

How does additional hardware capability to a remote physics server affect the results?  The notion of a distributed 
physics server is based upon a single server having the necessary hardware to simulate the necessary environment as 
opposed to each and every client doing so.  The server could contain multiple processors and/or Graphics Processing 
Units (GPUs) to drive performance. 

This initial investigation into a remote physics server showed a wider performance gap than anticipated.  However, 
further investigation is warranted.  Indeed, such cloud-based environments have many appealing factors and could 
address many computing needs for virtual environments in the future. 
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