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ABSTRACT 

 

The rise of cloud computing, the wide deployment of mobile device platforms, and the convergence of live, virtual, 

constructive, and gaming domains require a major shift in synthetic environment exchange and delivery. 

Traditionally, synthetic environment exchange involves ad-hoc database files in specialized application-targeted 

formats. That approach does not scale to the whole-earth management necessary to deploy environment content to 

users across all domains at the point of need. Current web technologies standardized by the Open Geospatial 

Consortium (OGC) move us closer to the goal of streaming environment delivery. However, these XML-based 

protocols present bandwidth and latency challenges, particularly for mobile devices, and they lack a caching 

mechanism for limited or unreliable networks. Furthermore, the current standards lack a unified view of the full 

environment—five disjoint protocols are required to deliver content to a game engine renderer.  

 

Several ongoing development and standardization efforts aim toward comprehensive synthetic environments 

designed for simulation and runtime performance requirements. For example, the OGC CDB draft standard defines a 

binary file-based repository for a multi-resolution runtime environment. The Khronos Group GL Transmission 

Format (glTF) optimizes binary transmission of streamlined visual content. The Army Research Lab’s Layered 

Terrain Format (LTF) provides extensible compressed streaming of a comprehensive environment protocol backed 

by a file cache. To determine the performance gains of these newer approaches over conventional web standards, we 

need a common methodology for analyzing streaming repository performance. In this paper, we document a 

methodology to quantify bandwidth, storage, and latency metrics in a consistent manner using open source tools. We 

prove out this methodology to measure the baseline performance of existing OGC and de facto industry standards 

with real-world geospatial data. Using this methodology and control group, in future experiments we can properly 

determine the gains offered by new developments in the synthetic environment domain. 
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BACKGROUND AND MOTIVATION 

 

Synthetic environments provide critical data for a wide range of models, simulations, and operational applications. 

They are the active backdrop upon which simulation and game platforms rely for modeling physics effects and 

influencing autonomous behaviors at varying levels of resolution. In addition, they can serve as navigational and 

planning aides for manned (e.g., operational tactical maps), semi-autonomous, and autonomous activities (Menozzi 

et al, 2015). A synthetic environment must provide a way to represent the shape and characteristics of its 

components at the fidelity required by the runtime software it supports. 

 

The on-disk and in-memory representation of military synthetic environments have traditionally been tied to 

implementation-specific formats. Each of these implementations was narrowly tailored to meet the simulation’s 

requirements, taking into account not only the limited set of geometry types and attribution sets needed to fulfill the 

immediate needs of the system, but also the hardware constraints (e.g., available RAM, CPU architecture, etc.) 

imposed by the simulation platform. These design choices complicate adapting these synthetic environments to 

support new content and new platforms.  

 

The rise in high-resolution data availability and its relevance for use in simulated training and operational 

environments have highlighted the need for new approaches for synthetic environment storage and distribution 

(Peele, Adkison, de la Cruz, & Borkman, 2011). Currently, the Open Geospatial Consortium (OGC) provides web 

standards for distributing vector and raster data. The reference implementation for these standards is the open-source 

GeoServer spatial data server software. GeoServer’s genesis is heavily centered on serving the needs of the 

cartographic community. However, these needs are evolving with the ubiquity of mobile and cloud-based computing 

technologies. 

 

Much research is being done on the use of mobile and cloud computing technologies as complimentary simulation 

platforms (e.g., Wen et al., 2013; Sarmiento, Amor, Padron, & Regueiro, 2011; Sarmiento et al., 2012, Santoso, 

2014). Significant issues remain to be solved: Synthetic environments are big data sources, a fact underscored in 

Table 3 of the RESULTS section of this paper. Date (2016) mentions that it is often more practical to ship big data 

sources than send them over the network. Fernando et al. (2013) highlights low bandwidth, mobility, and limited 

storage as challenges in mobile computing, especially regarding the I/O cost of retrieving and storing data from the 

cloud.  

 

Current OGC standards, which are XML-based, are verbose and thus perform poorly when used on mobile and 

cloud-based platforms. This makes them unsuitable for synthetic environment applications that require frequent 

updates. Deploying synthetic environment data on mobile and cloud-based platforms necessitates reducing the 

encoding, transmission, decoding, and storage cost of synthetic environments in alternate formats with respect to 

conventional web standards.  Needed are standardized and network-streamable ways to retrieve and update synthetic 

environment content filtered by context and location. Transmission and storage formats should be compact and 

easily interpreted to reduce the overhead of network transmission, data conversion, and data storage on resource-

constrained environments, whether such limitations arise from lack of storage space, network accessibility, 

computational capabilities, or a combination of these factors. 
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EXPERIMENT DESIGN 

 

Metrics and Rationale 

 

This paper establishes a constrained and easily reproducible testing methodology to measure bandwidth, storage, 

and latency of synthetic environment content, specifically assessing systems for use cases involving mobile devices 

and cloud computing. We apply our methodology to several OGC XML streaming standards to serve as the baseline 

for future evaluations to accurately quantify the benefit of newer approaches. The current version of OGC’s official 

test suite (OGC Testbed 11) was tailored for interoperability and standards-compliance testing (Open Geospatial 

Consortium, 2014), whereas the proposed methodology focuses on performance metrics. The upcoming OGC 

Testbed 12 plans to include a Compression and Generalization area (Open Geospatial Consortium, 2015) that may 

be more compatible with the metrics we propose in this paper. 

 

The below paragraphs discuss details about each test use case, as well as metrics suited for these use cases.  

 

1) Mobile devices in network-denied or network-constrained environments 

Mobile devices offer the portability and convenience of accessing environment data in the field. However, in 

field environments, network streaming may be unavailable, slow, or unreliable. Therefore, in network-

constrained or network-denied environments, data should be stored on the mobile device. Since mobile devices 

are often limited in hard disk capacity, database files should be small. When network speed is slow, requests 

must be efficient in order to scale with the reduced throughput and capacity of the network. Because mobile 

devices are often limited in power and memory, decoding of the data retrieved from the server must be efficient. 

 

2) Cloud-computing environments 

In cloud computing environments, servers may handle many streaming requests at once, and data may be 

distributed across many nodes. Therefore, requests must be processed quickly and efficiently. Beyond file 

transfer speed, encoding and decoding times of transfer formats must be considered. 

 

From these considerations, we identify several metrics that determine how well the system will perform in each use 

case:  

 

1) On-disk file size 

When network access is limited, data cannot be streamed in piecemeal by pages. Rather, during infrequent 

windows of network access, data must be downloaded in full to disk. Because mobile devices have limited disk 

space, it is vital to limit the file size of data retrieved from the server. Detailed feature and elevation data require 

a lot of storage, especially if they cover a large area. A central server that handles various requests from many 

clients could potentially have much data. Therefore, it is always beneficial to limit the size of the data stored on 

the server. 

 

2) Transfer file size 

In a constrained network, only small amounts of data may be forced through over a reasonable duration, so it 

will be advantageous if transfer files are smaller. A high-capacity network enjoys similar benefits if there is 

high traffic. When there are many clients trying to access a server on the same network, throughput may be 

limited, and reductions in the transfer file size would enable proportionately more clients to access the server at 

the same time. Small transfer file sizes result in a naturally faster file transfer speed. 

 

3) Latency of requests 

Low latency reduces overall file transfer speed. In network-constrained situations, it may not be clear whether 

or not the request was successfully received by the server. Low latency allows faster verification of a successful 

connection, which is valuable in time-sensitive scenarios. For a server handling a large volume of requests, low 

latency is vital for avoiding collisions and bottlenecks of simultaneous or near-simultaneous requests. 

 

4) File transfer speed 

High file transfer speed is beneficial for the same reasons that small transfer file sizes are beneficial to network-

constrained or high-volume request use cases. High file transfer speed reduces the length of the connection 

necessary between the server and the client. In a constrained network, connection may be intermittent and 
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unpredictable, so a faster data transfer increases the likelihood of a successful transfer. For high-volume servers, 

high file transfer speed improves throughput. 

 

5) File transfer peak bandwidth use 

File transfer peak bandwidth use indicates how efficiently the process can make use of the physical throughput. 

The service’s efficiency should scale directly with improvements to the architecture. 

 

6) Memory use 

Memory use should remain low for decoding and encoding on both clients and servers. Mobile devices have 

limited memory, and a server runs the risk of running out of memory if it handles many requests. 

 

7) Decoding algorithm speed 

The software algorithm for encoding and decoding data from the network transfer protocol can take up a 

significant amount of the total time spent from when the request is initiated until usable data is received. 

Transfer protocols are typically optimized for readability or minimum size and must be decoded into a form 

usable by the final software application.  Fast and efficient decoding is especially important on mobile devices 

and servers handling many simultaneous requests, because computing power is limited. 

 

For our data sets, we obtained raw Virtual Globe terrain data for the entire continental US from the Defense Threat 

Reduction Agency. We hosted this data on a GeoServer
1
 instance.  

 

The data contains shapefiles and GeoTIFF files representing elevation. The data is organized in a geotile-aligned 

structure similar to a CDB, but it only has a single level of detail. Figure 1 outlines the geographic regions. Table 1 

outlines each data set’s longitudinal and latitudinal extents; each data set covers a 2 x 2 geotile grid. All data is 

accessible via the Web Feature Service or WFS (Vretanos, 2010) and the Web Coverage Service or WCS 

(Baumann, 2012): GeoServer uses WFS as a protocol for sharing and manipulating spatial vector data over the web, 

using the XML-based Geographic Markup Language (GML) as the interchange format. WCS enables GeoServer to 

provide a way to retrieve and manipulate raster data, using GeoTIFF as the default file format. Finally, GeoServer 

uses the Web Mapping Service (WMS) to create and retrieve map images.  

 

Figure 1. A globe view of the geotiles represented by the data sets. 

                                                           
1
 http://geoserver.org/ 

http://geoserver.org/
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Table 1. The longitudinal and latitudinal extents of each data set in degrees. 

Point of Interest West East South North 

Albuquerque, NM 107° W 105° W 34° N 36° N 

New York City, NY 75° W 73° W 40° N 42° N 

Yellowstone Park, WY 112° W 110° W 44° N 46° N 

Raleigh, NC 80° W 78° W 35° N 37° N 

New Orleans, LA 91° W 89° W 29° N 31° N 

 

Methodology 

 

We tested the performance of the OGC WFS and WCS XML-based approaches on different data types in multiple 

geographic regions. Our methodology enables us to later make direct comparisons to various other repository and 

transmission protocol approaches, targeting specific aspects of the data retrieval process in order to make accurate 

comparisons based on the specified criteria. 

 

To retrieve terrain data, we set up our own lightweight HTTP client in C++. The client used the open-source library 

libcurl 
2
 to send and receive hard-coded HTTP requests. Using POST and GET requests, we retrieved data using 

WFS and WCS standards. This allowed us to easily test specific aspects of performance and separate different steps 

of the retrieval process. 

 

We measured the response time of WFS and WCS queries using the Wireshark
3
 tool. Using our HTTP client, we ran 

queries to obtain the data of each layer in standard GML format. The queries included requesting each data layer 

separately, as well as requesting all layers in a region at once. We measured the total time needed to receive the full 

data, along with the latency of the response and the peak bandwidth of the transfer (latency, for our purposes, is the 

time between sending the first query and receiving the first response. This includes both network latency and time 

for encoding the data into the GML format). We accounted for network handshaking protocols, in that we removed 

handshaking times from the overall time. We also used Wireshark to measure the total amount of data transferred in 

each query (we removed the handshaking protocols from the overall data transfer size). We also tracked the server-

side raw data file sizes and the client-side GML file sizes. 

 

The JProfiler
4
 tool allowed us to track memory usage of GeoServer during retrieval requests. We tracked both the 

highest and lowest memory usage. We used the Intel Inspector
5
 tool to profile client-side memory usage, similarly 

tracking the highest and lowest memory usage. 

 

Finally, we tested the time needed for a minimum processing of GML-formatted data, with a simple libxml2
6
-based 

parser. The parser iterated through XML elements determining the minimum time needed to process the XML-based 

data. We tested data retrieved via both WFS and WCS; to do so, we used both SAX and DOM-based approaches, in 

order to make a full comparison. 

 

This methodology lays the groundwork for future analysis and comparisons of upcoming repository and protocol 

standards and approaches. Several ongoing development and standardization efforts aim toward comprehensive 

synthetic environments designed for simulation and runtime performance requirements. For example, the OGC CDB 

draft standard (Reed, 2016) defines a binary file-based repository for a multi-resolution runtime environment. The 

Khronos Group GL Transmission Format  or glTF (Khronos Group, 2016) optimizes binary transmission of 

streamlined visual content. The Army Research Lab’s Layered Terrain Format or LTF (Peele, Adkison, de la Cruz, 

& Borkman, 2011; Borkman, Peele, & Campbell, 2007) provides extensible compressed streaming of a 

comprehensive environment protocol backed by a file cache. Researchers can easily target different phases of the 

                                                           
2
 https://curl.haxx.se/libcurl/ 

3
 https://www.wireshark.org/ 

4
 https://www.ej-technologies.com/products/jprofiler/overview.html 

5
 https://software.intel.com/en-us/intel-inspector-xe  

6
 http://xmlsoft.org/ 

https://curl.haxx.se/libcurl/
https://www.wireshark.org/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://software.intel.com/en-us/intel-inspector-xe
http://xmlsoft.org/
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data request process in order to compare the efficiency of current XML-based approaches current XML-based 

approaches to the aforementioned upcoming approaches. 

 

Hardware 

 

We tested the OGC GeoServer services using two Alienware Aurora R4 desktop machines. The systems’ 

specifications are shown in Table 2. 

Table 2. Client and server hardware information. 

 Server Client 

OS: Windows 7 Professional 64-bit Windows 7 Professional 64-bit 

Processor: Intel Core i7-3930K – 3.8GHz –  6 Core Intel Core i7-4820K – 3.70GHz – 4 Core 

Storage: Western Digital Black 1TB 7200RPM Dell LiteOn 256GB SSD 

Memory: 1600MHz 16GB DDR3 1600MHz 16GB DDR3 

Graphics: NVIDIA GeForce GTX 555 NVIDIA GeForce GTX 760 

Software: GeoServer 2.9 

JProfiler 

 

Wireshark 

Intel Inspector 

C++ HTTP Client (cURL) 

 

RESULTS 

 

We compared the original source data with the OGC protocol counterparts. In all cases, the equivalent OGC data 

required more bytes than its source format. The feature- and attribution-intensive GML files were more than twice 

the size of the original ESRI shape file data sets [the geometry (shp), the index (shx), and the attribution table (dbf)] 

due to the verbose nature of XML encoding. This brings into question the practicality of subjecting large data sets to 

this kind of XML encoding. The WCS data was not significantly larger than the original Digital Elevation Model 

(DEM) files, because both formats consist of raster binary data. During the transfers for data retrieval, the peak 

memory of the GeoServer was determined to be 1,912 MB using the JProfiler application. 

Table 3. GeoServer data set original and transfer file sizes 

Data Set Service Server File Size 

(megabytes) 

Transfer Size (megabytes) 

Albuquerque WFS 872.50 2,214.43 

WCS 2,018,92 2,110.10 

New Orleans WFS 2,853.70 3,277.95 

WCS 2,018.92 2,057.27 

New York WFS 5,171.82 13,876.38 

WCS 2,018.92 2,055.28 

Raleigh WFS 2,128.57 4,471.60 

WCS 2,018.92 2,084.78 

Yellowstone Park WFS 256.74 669.84 

WCS 2,018.92 2,089.61 

 

A key metric we tracked is the transfer rate for data retrieval. The WFS data was able to hit a peak transfer rate close 

to 100 megabits per second; however, the average rate was significantly lower. This suggests the server had to spend 

a significant amount of time retrieving the data from disk and encoding it into XML. Future work to instrument 

GeoServer to break down this metric into individual components may identify specific bottlenecks. The initial 

latency from request to response was consistently small (consistently less than one second) as the server always 

responded immediately with header data before streaming the full data set results. 
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Table 4. GeoServer data set transfer metrics. 

Data Set Service Latency 

(milliseconds) 

Duration 

(seconds) 

Bandwidth (megabits per second) 

Average Peak 

Albuquerque WFS 84.51 190.16 61.29 96.66 

WCS 207.07 307.95 55.18 75.97 

New Orleans WFS 207.28 421.87 60.14 96.38 

WCS 209.95 266.33 61.80 77.39 

New York WFS 99.46 1283.67 74.00 96.83 

WCS 22.10 264.77 62.10 77.98 

Raleigh WFS 212.87 396.71 62.71 96.48 

WCS 218.61 263.50 63.30 77.00 

Yellowstone 

Park 

WFS 96.88 58.55 55.63 96.44 

WCS 221.70 265.85 62.92 77.62 

 

The final major metric we tracked is the time it takes to process received GeoServer layers. For the GML case, we 

were able to set up a streaming parser and DOM parser using the libxml2 open-source library. We only 

benchmarked the time it took to iterate through all of the element nodes without further processing. Streaming was 

the more time-efficient technique, because it made no impact on the memory consumption of the application. The 

DOM parsing was magnitudes slower, because the XML had to be allocated in memory. More memory consumption 

can be expected in typical usage where the data is actually manipulated. When parsing New York and Raleigh data, 

the client machine ran out of memory and began paging to the disk. Since the client had a solid-state drive, the 

impact of paging was not as drastic as it would be for a conventional hard drive. WCS data was parsed using GDAL 

1.11
7
, an industry-wide used library for handling raster format files. 

Table 5. GeoServer data XML parsing time. 

Data Set Service Streaming Time 

(seconds) 

DOM Parse Time 

(seconds) 

Peak Memory 

(megabytes) 

Albuquerque WFS 52.95 43.45 4,704 

WCS 24.76 2,120 

New Orleans WFS 75.23 679.24 14,043 

WCS 23.35 2,068 

New York WFS 412.78 7427.34 16,384 

WCS 22.74 2,066 

Raleigh WFS 118.15 2325.50 16,384 

WCS 22.57 2,099 

Yellowstone Park WFS 13.43 27.37 2,186 

WCS 22.57 2,103 

 

 

CONCLUSIONS 

 

This experiment was extremely useful in identifying several important performance characteristics of the OGC 

XML web services. Some key takeaways observed in the metrics are as follows: 

 The network transfers were unable to fully saturate a 100 megabits per second network link 

 GML encoding is significantly less space-efficient than original shape file encoding 

 DOM parsing of large GML data sets is extremely impractical, even on high-end desktop machines 

 XML decoding time is consistently at least 25% of total transfer time, even with streaming parsing 

 

Based on the metrics, it appears that scaling down to slower networks such as 54 megabits per second (Mbps) 

802.11g or 40 Mbps 4G LTE would somewhat slow data streaming performance. Scaling down further to 11 Mbps 

                                                           
7
 http://www.gdal.org/ 

http://www.gdal.org/
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802.11b or 7.2 Mbps 3G GSM would significantly compromise performance. Conversely, increasing the speed to 1 

gigabit per second (Gbps) may not provide much benefit, as evidenced by the fact that the current experiment was 

unable to consistently saturate the 100 Mbps link. In particular, New Orleans and Raleigh data sets featured 

significant portions where bandwidth usage was unexpectedly low, as shown in Figure 2. 

 

It is noteworthy that neither the repository format nor 

WFS and WCS transmission protocols used any form 

of compression. We expect other standards and 

approaches that use compression techniques would 

show significant reductions in transfer time, at the cost 

of more CPU time spent encoding and decoding the 

data. Whether the data reduction would offset the CPU 

encode/decode time is an open question.  

 

The total size of the retrieved data sets was just above 

30 gigabytes. It is important to note that GML and 

even conventional source data file sizes are far too 

large for flash storage devices commonly used in 

mobile devices and cloud computing infrastructures. 

However, these files are still workable with 

conventional hard disk storage. Unfortunately, large file sizes create the risk of slower transfer rates due to 

bottlenecks from hard drive read and write speeds. 

 

Possible performance metrics for future testing include GML data encoding time on the GeoServer application and 

the performance difference between the Java-based GeoServer and a native C++ application that presents the same 

operations and capabilities. 

 

 

FUTURE WORK 

 

This experiment methodology lays the groundwork to conduct a series of future experiments analyzing the 

improvements of new and upcoming standards, repository types, and streaming protocols. The OGC CDB and 

GeoPackage formats are ideal candidates for the repository side of testing, to ensure they match or exceed the 

performance and disk efficiency of conventional source data. The performance comparison between these two is 

also of interest for areas in which their use cases overlap. 

 

On the streaming side, further development of LTF relies on characterizing and quantifying performance gains of its 

unified object model and Google Protocol Buffer encoding over conventional disjoint XML approaches. For 

streaming 2D and 3D visualization, measuring the latency from initial data request to first-rendered GPU frame is a 

potentially very useful metric. It would quantify the benefit of the specialized glTF protocol over more general 

protocols such as CityGML or LTF and historical model formats such as OpenFlight. This performance analysis 

would help guide service developers to determine whether there is sufficient benefit to warrant including glTF as a 

streaming option for their clients. 

 

The experiment methodology itself should be extended and refined in collaboration with OGC. The data sets used in 

our experiment unfortunately have distribution restrictions; the better solution will be to identify and provide a 

standard open reference data set for each type of environment region. In addition, our experiment solely tested the 

batch transfer use case, in which large amounts of data are transferred at once. Another important usage pattern is 

tiled access of small adjacent regions in sequence, such as would be done by a simulator or game engine. Overall, 

having a common experiment data set, methodology, and control group metrics will aid governments, standards 

organizations, and potential product buyers to objectively analyze the strengths, weaknesses, and use cases for the 

range of available synthetic environment formats and protocols. 

 

 

 

 

 
Figure 2. New Orleans data Wireshark transfer speeds. 
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