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ABSTRACT

Human error in aviation can lead to catastrophic results. Since 1959, the majority of fatal airplane accidents worldwide
occurred during the takeoff and landing phases of flight and upwards of 60% are attributed to pilot error. Psychologists
Robert Yerkes and John Dodson proposed an empirical relationship (Yerkes-Dodson law) that performance increases
with physiological or mental arousal, but only up to a point, after which it decreases. Understanding a pilot’s arousal
during flight and its relationship with performance can ultimately contribute to the design of improved flight safety
and flight training systems.

The objective of this research is to provide guidelines for the multimodal assessment of pilots’ arousal level and
affective states using noninvasive biosensors to answer the following three questions: i) Which data processing
approach must be adopted to track pilots’ arousal; ii) What affective/cognitive model can be used to interpret these
measurements; and iii) How can these measurements be used as training assessment criteria?

This paper reports on an experimental study we conducted in a full-flight simulator to explore the answers to the above
questions. Pilots’ heart rate and galvanic skin response (GSR) were non-invasively and continuously recorded using
a wristwatch biosensors during a 45 min flight of varying levels of complexity. Their facial expressions were recorded
using a cockpit webcam to enable facial recognition analysis. Results revealed that physiological patterns may be
related to the complexity level of the flight phase and to the pilots’ performance and experience. Specifically, the
mean amplitude sum of the GSR phasic component revealed the pilot arousal level while the valence of the pilot’s
affective state was captured through facial emotion recognition. These results can be mapped to the Circumplex Model
of Affect as a framework to assess both individual and group performance.
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INTRODUCTION

Auviation, as an industry, requires high reliability since human error can lead to catastrophic results. Between 1959 and
2015, the majority of fatal airplane accidents worldwide occurred during critical phases of flight: takeoff/initial climb
(12%), and final approach/landing (49%) (Boeing, 2015). Upwards of 60% of preventable incidents are attributed to
the pilot. Pilot error is linked to fluctuations in mental and/or physical demands that impact cognitive resources.
Understanding a pilot’s arousal during flight and its relationship to workload and performance can ultimately
contribute to the design of improved flight safety and flight training systems.

Cognitive Load in Pilots

Cognitive load refers to the fact that there are inherent limitations of working memory while problem solving (Sweller,
1988) and that these limitations must be considered with respect to the task demands (O'Donnel & Eggemeier, 1986).
Cognitive load is due to an interaction that emerges from the circumstances under which the task is being performed,;
the skills, behaviours, and perceptions of the pilot; and the requirements of the task (Hart & Staveland, 1988) as
opposed to a property inherent in a pilot’s brain. As the demands increase, so does the cognitive load of the pilot.
While it may be obvious that a pilot is likely to experience high cognitive load in complex situations, it should not be
overlooked that monotonous situations (e.g., long, trans-Atlantic flights in Autopilot) can lead to a vigilance
decrement, as performing the task requires a high effort to remain awake and alert (Paxion, Galy, & Berthelon, 2014).

Cognitive load is more than just performance on a task, and therefore cannot be determined solely by monitoring a
pilot’s performance metrics (e.g., flight path control and navigation accuracy). Performance can remain constant even
though pilots are experiencing increased workload conditions, until a point is reached where the performance level
drops drastically (Skinner & Simpson, 2002). Task shedding of lower priority tasks may suggest that the pilot is
approaching an overloaded condition, but often times this is only clear once failure occurs. This suggests that
monitoring a pilot’s psychophysiological arousal has critical safety implications.

Today, a pilot’s role is increasingly that of monitoring, information management, and decision making (Skinner &
Simpson, 2002) while manual tasks (which may have been good indicators of workload based on primary task
performance) are now mostly automated. Monitoring cognitive load using measures beyond performance is thus
important since performance alone may not be sensitive and timely enough. For example, Pilot 1 may have plenty of
attentional resources remaining while Pilot 2 used all his/her attentional resources and has no resources available
should unexpected circumstances occur (e.g., answering a radio call) implying that the cognitive load is higher for
Pilot 2 than for Pilot 1, even though their performance is identical (Yeh & Wickens, 1988).

Suitably, psychophysiological measures are leveraged to measure cognitive load demands objectively to account for
differences that cannot otherwise be observed. This approach is based on the evidence that varying task difficulty
influences psychophysiological signals (Haapalainen, Kim, Forlizzi, & Dey, 2010). Psychophysiological workload
measurement techniques are based on the fact that the autonomic nervous system unconsciously regulates the bodily
functions as workload changes (Mandrick, Peysakhovich, Rémy, & Lepron, 2016). Previous studies examining
psychophysiological signals (e.g., heart rate (HR), galvanic skin response (GSR), etc.) used invasive equipment that
either required the proper placement of electrodes with gel, or a chest strap that pilots found obtrusive and
uncomfortable (Roscoe, 1992). Although these methods captured the required data, they can be problematic in
operational settings due to the time-intensive preparatory work involved, the unnatural-like feeling experienced by
pilots wearing these devices, and the technical expertise required for set-up. As such, the study of automatic arousal
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detection of pilots by minimally invasive computerized systems is a promising avenue of research in human-computer
interaction and is a focus of this study. As such, we will consider the combination of heart rate, galvanic skin response,
and affective state recognition from facial expression analysis in this study.

Measuring Pilot’s Heart Rate to Infer Cognitive Load

Heart rate has been the most widely studied measure of cognitive load in flight research, dating back to 1917, when
Gemelli measured blood pressure, breathing rate, and pulse rate in experienced pilots during flight using an
electrocardiogram (ECG) recording method (Roscoe, 1992). He found an association between increased stress and
increased HR. This research has steadily continued in the flight environment (e.g., White, 1940; Lewis, 1967; Howitt,
1969; Sekiguchi, et al., 1977) and while they all found various HR changes depending on flight phases, little or no
effort was put into explaining the results. The studies typically agreed that the landing phase caused the largest increase
in HR for the pilot, followed by the takeoff phase of flight. As this research used real flight (as opposed to simulators),
the transition phase between takeoff and landing was typically stable without any unforeseen events that could
otherwise increase the complexity of the flight (e.g., mechanical failures, adverse weather conditions, etc.).

In the 1970s, researchers began to measure pilots’ HR in flight simulators, which permitted increased task difficulty
scenarios (e.g., low visibility, mechanical failures, adverse weather, etc.) that were previously not possible in real
aircraft due to safety concerns (e.g., Roscoe & Goodman, 1973; Lindholm & Cheatham, 1983). Experienced pilots’
HRs are typically lower during a simulated flight than during the same task in a real flight (Roscoe, 1992). Pilots
without much experience in a particular flight simulator however, respond with HR increases with changing task
demands. The popularity of this technique is unsurprising as it does not compromise flight safety and is readily
accepted by pilots. ECG remained the most common method to measure HR in the flight simulator, however interest
in less obtrusive, less expensive, and less complex HR monitors is on the rise (Wang & Fu, 2016).

The most common devices used to accurately measure heart rate beyond ECG recordings are chest straps which closely
emulate a real ECG machine by measuring electrical pulse and sending that information to a wrist watch (Terbizan,
Dolezal, & Albano, 2002). While these devices have been shown to be valid, they are obtrusive, uncomfortable, take
considerable time to set up, and therefore are not ideal for a flight training environment. The recent ubiquity of
wearable biosensors, such as smart watches and wristbands, enables the collection of HR data in a socially acceptable
and non-invasive manner, ensuring it does not detract from the pilots’ performance (Wang & Fu, 2016). These devices
use a photoplethysmography (PPG) sensor which consists of LEDs (located at the back of the watch) that shine light
onto the skin to detect changes in blood volume. The light that is scattered is sensed with a photodetector that is run
through an algorithm to calculate HR.

Wang and Fu (2016) evaluated the accuracy of a strapless heart rate watch, the Mio Alpha (Mio Alpha; Physical
Enterprises Inc., Vancouver, B.C.) against ECG-derived HR. Ten pilots performed three flight tasks (i.e., wind shear
go-around, takeoff and climb, and hydraulic failure) in a full flight simulator with both the strapless and more invasive
HR measurement devices. They found a high correlation between the HR watch measurements and the ECG-derived
HR for all tasks, suggesting that the strapless HR watch provides valid measurements of HR during simulated flight
tasks, and may be a useful tool for pilot workload evaluation. The Mio Alpha, however, transmits HR data over
Bluetooth, and therefore would be prohibited in a military environment where wireless transmission is strictly banned.
The use of a non-transmitting HR smart watch in a flight environment has not been explored, to our knowledge, and
will therefore be explored in this study.

Measuring Pilot’s Galvanic Skin Response to Infer Cognitive Load

GSR, also referred to as electrodermal activity (EDA), is a sensitive measure of changes in sympathetic arousal, which
can be measured to assess cognitive load (Critchley, 2002). A person’s GSR is directly related to their stress level so
as stress increases, so does their GSR (Shi, Ruiz, Taib, Choi, & Chen, 2007; Brunken, Plass, & Leutner, 2003). Testing
GSR to determine cognitive load in a flight environment began only in 2002, when Wilson tested ten pilots in a 90-
minute visual flight rules (VFR) and instrument flight rules (IFR) real-flying scenario (2002). Each pilot repeated the
same flight twice (up to several weeks apart) to test the reliability of the psychophysiological measures. GSR was
collected from electrodes placed on the arch of the right foot. No statistically significant differences were found in
GSR response between the two flights indicating reliability of the method. Within each flight, GSR activity was
greatest during takeoff and landing, indicating the high cognitive load involved in these flight segments, however
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subjective workload ratings did not indicate the same results. Subjective workload ratings suggested that pilots found
the two IFR tracking segments as the most difficult. This may be due to the unfamiliarity of those segments, versus
takeoff and landing which are familiar, even though cognitive load may be high. This same study found a high
correlation between GSR and HR, with HR more sensitive to varying flight demands, indicating that perhaps it is
sufficient to measure only HR. However, it is possible that GSR data might reveal unique information through a
different sort of analysis. Overall, this study (Wilson, 2002) suggests that the combination of various workload
measures provides a more accurate picture of the effect of piloting. However, both HR and GSR data do not reveal
whether the arousal was a result of positive or negative stimuli, thereby indicating the case for measuring emotional
valence, or the quality of the emotions.

Affective State Recognition from Facial Expression Analysis

Facial expression analysis software can computationally measure emotional valence by extracting and classifying, in
real-time, specific key points in facial muscles of the target face (Ekman, 1992). In particular, the automatic detection
and analysis of spontaneous micro-expressions could be used to discriminate between positively and negatively
valenced affective states. For example, tension in the forehead muscles, elevated eyebrows or tightened lips are
generally associated with a negative affective experience while raised cheeks, pulled lip corner, or slight (subtle)
smiles signal a positive one (Leppanen & Hietanen, 2005; Pantic & Bartlett, 2007). These features are used to infer
the affective state, where negative affective states such as fear, confusion or stress could be associated with cognitive
overload, while positive or neutral affective states could signal suitable cognitive load (Gluck & Gunzelmann, 2013).

Previous research on affective states and their impact on performance in a flight simulator has been mostly constrained
to self-report measures, both verbal and paper-based, which both require psychological disengagement from the
simulation (Tichon, Mavin, Wallis, Visser, & Riek, 2014). Pupillometry and electromyography (EMG) was recently
explored in this environment and Tichon et al. (2014) found a high correlation between saccade rate, muscle activation,
and self-report measures of anxiety. While these results were promising, the obtrusiveness and high setup time of the
equipment (i.e., large goggles/headset for pupillometry, and several electrodes for EMG) makes it impractical for a
flight training environment, where both flight instructors and student pilots do not have the time nor expertise required
for the set-up. Facial expression recognition, conversely, is noninvasive and minimally obtrusive and does not require
any timely setup for each pilot (i.e., a camera is installed in the cockpit once).

While affect recognition using facial expression recognition analysis has not been studied in the cockpit of an airplane,
Bullington (2005) identified it as the most likely environment to employ this technology. He identified benefits such
as detecting an overloaded pilot thereby allowing automated systems to engage to improve flight safety. As such, the
present research employs this technology in a full flight simulator for the first time. Additionally, this dataset (i.e.,
valence) is combined with psychophysiological data (e.g., GSR, HR) representing arousal, and mapped onto the
Circumplex Model of Affect with the student’s performance to assess the training experience (Chaouachi & Frasson,
2012; Chaouachi, Chalfoun, Jraidi, & Frasson, 2010).

Circumplex Model of Affect

The Circumplex Model of Affect (Russell, 1980) holds that all affective states can be described as linear combinations
of two underlying, independent neurophysiological systems, valence on x-axis and arousal on y-axis (Posner, Russell,
& Peterson, 2005). HR and GSR are widely used to assess the level of arousal (Lang, Greenwald, Bradley, & Hamm,
1993) while facial recognition analysis provides the valence score (Leppanen & Hietanen, 2005). The combination of
facial expressions, HR and GSR could be used to situate pilots in one of the four quadrants (areas) of the Circumplex
Model as a way to classify the student’s workload (arousal) and the impact that workload is having on their
performance (valence).

Classifying workload in real time in this manner can improve flight safety and pilot training systems. In a real flight
environment, automated systems can engage to decrease pilot workload if necessary, or vice-versa (i.e., disengage to
prevent errors due to boredom). During pilot training, the flight instructor can be aware of the student’s cognitive state
and can adjust the level of difficulty of the training to reap maximal training benefit by keeping the student engaged.
Moreover, a flight instructor can assess the level of difficulty of the whole training program by mapping the
participants’ states in the Circumplex Model to assess the average induced effect.
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This paper will argue that a multimodal approach to measuring cognitive load in pilots, in a non-obtrusive and
minimally invasive manner is a worthwhile avenue of research. The objectives of this work are to provide guidelines
for the multimodal assessment of pilots’ arousal level using noninvasive biosensors to answer the following three
questions: i) Which data processing approach must be adopted to track pilots” arousal; ii) Can the Circumplex Model
of Affect be used to interpret these measurements; and iii) How can these measurements be used as training assessment
criteria? The hypothesis of this work is that a combination of HR, GSR, and facial recognition data can be mapped
onto the Circumplex Model of Affect to predict the pilot’s affective state, indicating whether or not he/she is at an
optimal training level, overloaded, or under-stimulated.

METHODOLOGY

We conducted this study at the CAE flight training facility in Montreal, Canada. We recorded HR, GSR, and facial
expressions while participants completed a 45-minute flight scenario with tasks of varying difficulty levels. Each
participant filled out a demographics questionnaire before the flight, and a cognitive load questionnaire where they
rated their perceived cognitive load after each of the flight tasks.

Pilot Study

We first ran a pilot study with four male pilots, to test the methodology and compare several psychophysiological
sensors. We used the same flight path (described below) but a different flight simulator due to availability (a C295
twin-turboprop tactical military transport full flight aircraft simulator). Based on the pilot study, we eliminated voice
recognition from the biometrics as the student pilots do not speak often enough during the training flight to allow for
a substantial analysis. We also determined to use the Empatica E4 sensor instead of the Scosche Rhythm+ (Scosche
Industries, Oxnard, CA) for HR collection. The Scosche Rhythm+ used Bluetooth to stream data, which resulted in a
lot of noise in the data, likely due to the interference within the aircraft. The Empatica E4 can store data locally on the
device, and has been shown to be reliable in previous research (e.g., Gjoreski, Gjoreski, Lustrek, & Gams, 2016;
Hoover, MacAllister, Holub, Gilbert, & Winer, 2016).

Participants

We recruited twelve participants (eleven males) from within CAE in Montreal, Canada who had a pilot’s license and
prior flying experience. Participants’ previous flight hours ranged from 70 to 225 hours with a mean of 145.83 (SD =
48.94) hours, while simulator flying experience ranged from 0 to 15 hours, with a mean of 3.92 (SD = 7.04) hours.
None of the pilots were experienced in the simulator platform used for the experiment. Pilots ranged in age from 20
to 54 years of age with a mean age of 33.42 (SD = 12.50) years. All participants gave their informed consent to
participate in the study.

Simulator Apparatus

Participants conducted the flight using a CAE Airbus A310-221 full flight simulator that has been in operation since
1987. It has a six-degrees-of-freedom motion base platform, and belongs to the CAE 600 Series. This simulator has

e

Figure 1. Airbus A310-221 full flight simulator (CAE, 2017)
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the highest Federal Aviation Administration (FAA) rating of Level D, indicating that the arrangement of the cockpit
and aerodynamic models are identical to the actual aircraft. The cockpit contains realistic sounds, and special motion
and visual effects. The visual system is a 5-channel CAE Tropos IG, using Canon projectors with a Windows 6 system
display. There are two adjustable seats in the cockpit, where the participant occupied the left, pilot side, and the flight
instructor/co-pilot occupied the right side. Figure 1 shows both the exterior and the cockpit.

Psychophysiological Data Collection

Participants wore the Empatica E4 sensor (Figure 2) that collected their
real-time HR and GSR at 1 and 4 Hz respectively. This medical grade
device is portable, wearable on the wrist, and does not require a chest
strap or electrodes. It uses a PPG sensor to measure HR using two green
LEDs located on the back of the watch, and a GSR sensor to measure the
electrical conductance of the skin. The data was recorded locally on the
device then transferred to a computer where the rest of the processing
was performed.

Empatica E4

Figure 2. Empatica E4 sensor

A pilot-facing, cockpit mounted GoPro HERO4 Black camera recorded the participant’s facial expressions during the
flight task. The camera recorded at a resolution of 1080p. The videos were processed using Noldus FaceReader
software. Noldus FaceReader analyzes the pilot’s facial expressions and provides the probabilities of their emotional
states, with six values every second. The algorithm automatically extracts the emotional reactions from each frame
and recognizes Ekman's six basic emotions, namely, happy, sad, angry, surprised, scared and disgusted 2 (Ekman,
1992), in addition to the neutral state. The detection process is performed using an Active Appearance Model which
models participants’ facial expressions and a Neural Network, which classifies in real-time 500 key points in facial
muscles of the target face. In addition to the probability of the presence of these six emotions, the software output also
contains the probability of the valence of the emotional state. Information about the emotional valance defines the
nature of the emotion and ranges from —1 to +1. A positive valence value refers to pleasant emotions, whereas a
negative valence value characterizes unpleasant emotions. The accuracy of Noldus FaceReader has been validated
through studies comparing its results with human coders and self-reports of emotional states (erburg, Wiering, & Uyl,
2005; Terzis, Moridis, & Economides, 2010).

Simulator Procedure

Participants flew an approximately 45 min simulated flight in the full flight simulator with a flight instructor who also
acted as the co-pilot. All participants received the same instructions from the flight instructor, which consisted of
conducting the following seven critical events:

Maximum effort takeoff

Right 360 degree turn followed by a left 360 degree turn at 45-degree angle of bank (AOB)

Left 360 degree turn followed by a right 360 degree turn at 60-degree AOB

Maximum effort landing attempt

Unplanned go-around due to an obstacle on the runway, and co-pilot incapacitated on go-around

Circuit back to landing attempt

. Second maximum effort landing

After events 1, 2, and 3, participants were instructed to maintain 2000 feet straight and level, for 2 minutes. The flight
instructor rated their performance on a scale of 1 to 5 (1 = needs improvement, 5 = excellent) based on deviations of
the flight status (e.g., airspeed, heading, AOB, altitude, etc.) for all seven flight tasks. During the flight, the
participants’ HR and GSR were recorded using the Empatica E4 biosensor wristwatch, and facial expressions were
recorded using a cockpit mounted GoPro camera. Participants completed a subjective workload questionnaire post-
flight where they rated their perceived cognitive load on each of the seven critical events.

NouaprwdE

RESULTS
Post Processing of raw GSR Signals

GSR data, which is used to infer the skin conductance (SC), consists of a superposition of a tonic and a phasic
component, called respectively skin conductance level (SCL) and skin conductance response (SCR). The SCL varies
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slowly and changes slightly within an individual participant, depending on their skin dryness, autonomic regulation,
and hydration levels, and can also vary markedly across individuals (iMotions, 2017). As such, it is often not
informative on its own. The SCR consists of peaks on top of the tonic response, called GSR peaks. The SCR is
sensitive to emotional stimuli, and occur between 1-5 seconds after the onset of a stimulus. SCL is generally associated
with general states of arousal and alertness while SCR is related with attention processes (i.e. how the person perceives
the relevance, novelty and intensity of the stimulus) (Henriques, Paiva, & Antunes, 2013). However before extracting
both components, noise in GSR signal caused by sudden movements must be filtered out because it might be mistaken
for spontancous shifts in the stress level. To this end, we used a median filter technique, which removes the local
disturbances while maintaining the shape of the signal and the typical peaks. Then we split the GSR signal into its
tonic and phasic components using a deconvolution method (Benedek & Kaernbach, 2010a; Benedek & Kaernbach,
2010b). In this study we focus on the analysis of the phasic GSR component. Thus, we extracted the z-scores sum of
the amplitude (i.e. peak height) of the detected SCRs (i.e., SCR Amplitude-Sum) for all the participants during each
flight event. We performed z-score normalization to allow comparison of these components between all pilots.

GSR and Performance Results

Group Performance. Our first objective was to assess whether there
was a difference between the pilots’ cognitive load and their e  p<s
performance. More precisely we aimed to investigate if for example, a p=ns

pilot who had difficulty following the instructor’s directives or 06

maintaining control of the aircraft trajectory during the 45 degree AOB
turn would experience more intense reactions and thus have a higher
SCR amplitude. Three types (groups) of performance were considered
for each flight event: high performance (pilots who perfectly executed
the manoeuver and had a grade of 4 or higher), medium performance
(pilots who had an average to good performance and obtained a grade
between 3 and 4 in the flight event) and low performance (pilots who
missed their manoeuver and had a rating lower than 3). A one-way 06
between subjects ANOVA was conducted to compare the level of
SCRs Amplitude-Sum for the three performance levels across all the
flight events. Results showed an overall significant impact of the pilots’ ! High Medium Low
performance on their GSR (F(2, 65) = 4, p<0.05). Figure 3 depicts the Performance

mean normalized SCRs Amplitude-Sum for all three performance Figure 3. Mean SCR amplitudes
groups. Post hoc comparisons using Tukey HSD tests showed that low

performance in a flight event had significantly higher SCRs Amplitude-Sum (M=0.18, SD=0.52) than medium
performance (M=0.47, SD=0.28) and almost significantly SCRs Amplitude-Sum than high performance (M=0.22,
SD=0.52, p=0.06). However, no significant difference was obtained between high performance and medium
performance. This result suggests an interplay between cognitive load and performance which is not necessarily linear
as lowest and highest performers showed high levels of SCR amplitude.

0.2

Mean Normalized SCRs Amplitude Sum
o

-0.8

Individual performance. The correlational analysis of the SCRs Amplitude-Sum with respect to each pilot’s individual
performance showed a positive correlation for six pilots (with » ranging from 0.25 to (.77 with a mean correlation
r=0.49). A negative correlation between performance measures and SCRs Amplitude-Sum was obtained for two pilots
(r=-0.35 and r=-0.67) and no correlation was found for the remaining pilots (» around zero). These findings suggest
that the cognitive load and performance relationship is not linear, and pilots may employ adaptive strategies which
may be related to their experience.

Training assessment. The second objective of this experiment was to evaluate the evolution of the GSR data —
particularly the SCRs Amplitude-Sum- across the different flight events. We aimed to investigate whether the different
events of the flight training induced different levels of cognitive load on the pilots and which training episode was the
most demanding. A one-way repeated measure ANOVA showed a significant effect of the flight task performed by
the pilot on their SCRs Amplitude-Sum (F(6, 60) = 4.142, p < .001). A series of 45 paired samples t-tests were
undertaken to make post hoc comparisons between the different flight events, 15 among them were statistically
significant. More precisely, there are significant differences in the normalized SCRs Amplitude-Sum of the
participants starting from the second baseline of the experiment to the first right turn. Normalized SCRs Amplitude-
Sums were significantly higher in the second baseline of the session (M=-0.16, SD=0.45) when compared to the 45
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degree AOB turn (M=-0.77, SD=0.32) and the first baseline (M=-0.75, SD=0.57) with t(10)=-6.9, p<0.05 and ¢(10)=-
6.9, p<0.05 respectively. The 60 degree AOB turn (M=0.36, SD=0.86); second baseline (M=0.33, SD=0.81); the
first landing attempt (M=0.34, SD=0.87) and the go around (M=0.73, SD=1.51) events were also significantly higher
than the 45 degree AOB turn (¢#(10)=-4.63, p<0.01; t(10)=-3.94, p=0.02; t(10)=-3.44, p<0.01; t(10)= -3.94, p<0.01)
and the first baseline (#(10)= -3.89, p<0.01; t(10)=-3.22, p<0.01; t(10)=-2.79, p<0.01; t(10)= -3.33, p<0.01). The
t-test also showed that the normalized SCRs Amplitude-Sum during the approach (M=0.43, SD=0.9) and the landing
(M=-0.34, SD=0.76) were significantly lower compared to the go around with ¢(10)=-2.61, p<0.05 and t(10)= -3.64,
p<0.05) respectively. The approach was also significantly higher than the first baseline and the 45 degree AOB turn
with #(10)= -3.47, p<0.01 and ¢(10)= -2.87, p<0.01) respectively. To sum up, as depicted in Figure 4, three main
phases can be identified in the flight training path with respect to the variation of SCRs Amplitude-Sum. The first
(first green zone of Figure 4) starts from the takeoff and ends after the 45 degree AOB turn. During this phase, pilots
expressed a low to moderate level of SCR. Then, starting from the second straight line (i.e., baseline), the participants’
SCRs Amplitude-Sum physiological signal started to significantly increase compared to the first phase across all the
participants (red zone in Figure 4). Finally, a third phase (second green zone in Figure 4) starting from the approach
to the end of the landing showed lower SCRs Amplitude-Sum compared to the previous phase but still significantly
higher than the first phase.
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Figure 4. Average SCR for all participants with the three identified zones

HR Results

We normalized the HR data for all the participants in order to allow between-subject comparison for all the flight
events. The normalization was performed by computing a z-score of the signal (i.e., subtracting the mean HR and
dividing by the standard deviation). The analysis of HR showed a positive correlation with GSR across all the events
(r=0.43), however no significant results were found relating HR to the pilots’ performance nor to the impact of the
different flight events.

Figure 5 presents the mean normalized SCRs Amplitude Sum for each event, normalized HR, and normalized
subjective workload ratings across all participants, for each of the flight events. There is no subjective workload rating
for the 3 baseline measures, as participants were not asked to rate those events, however GSR and HR data are collected
continuously. Subjective workload ratings do not show a significant correlation with the GSR or HR data. Figure 5
suggests that the Go-Around event invoked the highest mean HR and SCRs Amplitude Sum, however this result was
not significant for the HR.

15 15
1 - 1

05 . 05

0

Z-Score

Takeoff Baseline 1 Right Turn Baseline 2 Left Tun Baseline 3 Landing 1 Go-Around Circuit ‘I:ta“nding 2

-1.5 -1.5
Events

Subjective Workload —— GSR ——HR

Figure 5. Average normalized Subjective Workload score, amplitude sum of SCR's, and HR for all participants
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Facial Recognition

We segmented the recorded video for each participant into seven sequences corresponding to the main flight events.
As FaceReader provides a score between 0 and 1 for

each frame of each participant’s video for the six basic Table 1. Mode Emotional Response
emotions and the neutral state, we first computed a list | Takeoff | Right Left | Landing | Go- Circuit | Landing
Turn Turn #1 Around #2

of emotions, whose scores exceeded a minimal Toy | Surprise | Fewr | Tear = Fer | Surprise
threshold value of 0.1 for more than 2 seconds while Fear Fear | Surprise - - - -
not completely vanishing for more than 1 second. Table Joy Fear . . . = .
1 shows the most dominant emotion in terms of - - - - - - -

. . Fear Fear Surprise Fear Contempt Sadness | Contempt
frequency, for each of the twelve participants for each | ———F———-— Sad Contemnt | Sad Sad
flight task. Any missing data (denoted by a dash) is due Feow || Gt | G E E - =
to either camera issues while recording (e.g., | Surprise | Surprise | Surprise | Surprise | Surprise | Surprise | Fear
insufficient battery) or processing issues due to | Sadness | Sadness | Surprise | Sad Sad fad
. .. . . D T Ji Joy i F J
insufficient/abundant light in the frames. The mode el s o s i ¥

. . . ., Sadness Sadness Disgust Joy Disgust Disgust Disgust
emotion f(_)r each tasl_i is bolded, where Surprl_se_ iSth€ [ urprise | Disgust | Sadness | Surprise | Surprise | Surprise | Surprise
most dominant emotion between all tasks/participants.

Sadne

Circumplex Model of Affect — Framework for Pilot Performance

The first landing attempt and the ensuing go-around were the two tasks that elicited the most significant arousal
response from the participants (see Figure 4 and Figure 5), thus we selected them for a case study to map onto the
Circumplex Model of Affect. Figure 6 maps the normalized GSR Amplitude-Sum along the y-axis (i.e., arousal), the
valence value from facial recognition analysis along the x-axis, and the dominant emotion for each of those data points.
Each data points represents one participant, where red data points indicate a low performance score (i.e., 1-2), orange
a moderate performance score (i.e., 3), and green a high performance score (i.e., 4-5). Only data from seven
participants was used due to incomplete emotion recognition data from four participants, and noisy GSR data from

one participant. If we consider the Circumplex Model of Affect as a coordinate plane, quadrants three (i.e., lower left)
15 | § 2

'Y < Surprise Disgust 2 @ Surprise
‘ .
Surprise
Surprise
(o Joy
@
Fear
Valence Valence
0 0
15 0 15 2 Contempt @ 2
Sadness Contempt &
@ Joy
¢ Joy
@ Fear ®
15 -2
Landing # 1 Go-Around

Figure 6. Performance mapped with Valence, Arousal (from GSR), and Dominant Emotion

and four (lower right) in Figure 6 contain only high performing individuals. Meanwhile, low performance is
constrained to the second quadrant (top left), along with one high performer, who is exhibiting ‘disgust’ as his
dominant emotion. The first quadrant (top right) contains all the average performance score, as well as a lot of
‘surprise’ as the dominant emation. While there are clear trends in this framework, more participants are required to
validate the model.
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DISCUSSION

We conducted a full flight simulator task with varying levels of flight difficulty where we measured student pilots’
arousal and valence using HR, GSR, and facial emotion recognition analysis. We discuss our hypothesis that we can
map this data onto the Circumplex Model of Affect to predict the pilot’s affective state, which has significant training
implications. This discussion is guided by the three objectives of this research.

Objective 1: Which data channel was the most informative to assess pilots’ arousal?

GSR provides a clearer indication of the pilot’s cognitive load/arousal during a flight task compared to HR. By filtering
(using a median filter) and processing the GSR data (using a deconvolution method), we removed the tonic component
and focused our analysis on the phasic, specifically the SCR-amplitude sum, which is not impacted by individual
differences, hydration levels, skin dryness, and autonomic regulation. We found a significant interplay between GSR
and group performance, where the low performing group (i.e., rating of 1-2) had the highest GSR, indicating that their
cognitive load was also the highest. By assessing individual performance and GSR, six pilots showed a positive
correlation between GSR amplitude-sum and individual performance (more than 50% of the pilots), two pilots showed
a negative correlation while three pilots showed no correlation. The results suggest there is a complex non-linear
relationship between the performance and GSR, and that many factors such as pilots’ experience or personality
caracteristics may play an important role to define how they modulate their response to performance/cognitive load
demands. For example, in this experiment the pilot who showed the highest negative correlation between performance
and GSR amplitude (r=-0.67) was the most highly experienced pilot (i.e. greatest number of flight hours). But at the
same time, the second highest experienced pilot showed the highest positive correlation between performance and
GSR amplitude (r=0.77). Thus, even though these two pilots had almost the same experience level and both had a
high overall performance, their coping responses to the different performance/cognitive load demands was opposite.
The first pilots tended to have low (respectively high) GSR Amplitude-sum with higher (respectively low)
performance and thus seemed to have better performance when less aroused. Conversely, the second pilot showed
better performance when he experienced less arousal and vice versa. Overall, GSR is a possible indicator of arousal,
however the relationship with performance is not linear, and other characteristics (e.g., experience, motivation,
personality, goals, etc.) of the pilots should be considered.

We found no significant differences between the HR during the different flight tasks, although the level of difficulty
varied (according to the flight instructor) and the GSR response varied according to the level of difficulty. This finding
is not consistent with several full flight simulator studies that found that the average HR was directly related to task
difficulty (Roscoe, 1992; Wang & Fu, 2016; Dussault, Jouanin, Philippe, & Guezennec, 2005), as well as studies that
found GSR and HR to have a high correlation (e.g., Wilson, 2002). It is unclear whether the previous studies also used
a simulator with a six-degrees-of-freedom motion base platform or a stationary one, which may have an impact on the
HR since it is highly related to movement. Suitably, we concluded that the GSR, specifically the SCR Amplitude Sum,
is a better indicator for arousal ratings in pilots for the purpose of the Circumplex Model of Affect.

Objective 2: Can the Circumplex Model of Affect be used to interpret these measurements?

The Circumplex Model of Affect provides a framework where we mapped the pilot’s arousal level using GSR, and
valence using facial emotion recognition analysis for the two most difficult tasks: Landing Attempt 1 and the
subsequent Go-Around. We found a trend based on performance, where quadrants one and two (in Figure 6) contained
low (red dot) and medium (orange dot) performing individuals respectively, whereas quadrants three and four
contained only high performing individuals (green dot).

These results are consistent with the learning cycle proposed by Kort and Reilly (2001) who suggest that students
begin to learn in quadrant one or two, where they are typically curious and fascinated about a topic. The red and orange
dots indicate that these students are still learning, and are not experts at the particular task. Additionally, in quadrant
one, where there is a positive valence, they experience more positive emotions, which is consistent with our findings
during these two tasks (i.e., surprise and joy). Students in quadrant two, on the negative valence side, experience more
negative emotions, where we see fear and disgust during the two flight tasks. The performance scores (red and orange
dots) are lower in these two quadrants as the students are still in the earlier learning phases for the assigned tasks, as
described by Kort and Reilly (2001). Conversely, the performance scores are higher (represented by green dots in
Figure 6) in the lower quadrants where students are not learning new tasks, as they are already somewhat more
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experienced. On the left side of the valence scale, there are more negative emotions, such as sadness, fear, and
contempt, while on the right side, only joy.

Although this case study had limited participants, it is promising to see that phases of learning (suggested by
performance score) can be related to emotions, indicated by GSR (arousal) and facial recognition analysis (valence).
The implications for assessing performance and adapting the training program based on this framework are considered
next.

Objective 3: How could these measurements be used as training assessment criteria?

The Circumplex Model of Affect, adapted to pilot training performance using GSR (arousal) and facial emotion
recognition analysis (valence) has potential to be used to assess both individual pilot training, and full training
programs. This framework allows instructors to monitor which quadrant a student is performing in to determine, based
on learning theories (Kort & Reilly, 2001) how the training needs to be adapted (if at all). For example, a student is in
an optimal learning zone when they are on the positive valence and arousal side (i.e., quadrant one; Feidakis &
Daradoumis, 2012). However, a student should cycle through all four quadrants as they learn and acquire new skills
therefore the instructor can progress onto more difficult tasks if the performance is flawless and on the positive valence
side. This has the possibility of optimizing performance, and also ensuring the student does not get bored. While we
were not able to find statistical evidence for this model, the trend is very encouraging for future research.

On a training program level, this framework provides the instructor with a tool to map how all students are performing
to determine if the training program is at an appropriate level of difficulty. For example, if most students are scoring
in a negative valence and negative arousal, and performance is low, then it suggests that the training is too difficult
and requires adjustments (Tichon, Mavin, Wallis, Visser, & Riek, 2014). The opposite is also true if the training is too
easy, which may be seen as a poor use of resources. The analysis of each physiological sensor across all the participants
could also be informative to assess the difficulty of a training program and to identify the phases eliciting the highest
arousal level. In this research, for example, the analysis of GSR showed that three different zones could be clearly
identified in the training program (see Figure 5). The first zone elicited a decreasing level of GSR across all the
participants; the second zone a significantly increasing GSR and finally, a third zone showed a significantly decreasing
GSR. We also found that the Go-Around event was the event that evoked the highest GSR and HR for all the
participants which was not expected since in theory, the takeoff and the landing were supposedly the most difficult
events. Such a deconstruction of the different training sessions could be highly beneficial for the training program
designers as well as for the instructor to help them fine-tuning the training elements and to anticipate, grade and
understand trainees’ problems.

While full flight simulators are much less expensive to operate than an actual aircraft, their costs and availability are
still sufficiently prohibitive that the time spent using them should be optimized. As such, the use of physiological
sensors can provide the instructor with a tool to monitor student’s arousal and valence during training, indicating when
he or she should make real time adjustments to optimize the training session. The sensors required for this analysis
(i.e., awristwatch GSR sensor and a cockpit mounted camera) are non-invasive, non-obtrusive, and do not require any
specialized technical training or laborious setup time. It follows that they are ideal for this domain, where both
instructors and students do not have the time or expertise to set-up complicated biosensors.

Despite the relatively small sample size, we obtained promising results, with significant trends between GSR and
performance. We presented, for the first time, how facial emotion recognition can be employed in a full flight
simulator, and then mapped to the Circumplex Model of Affect to provide a framework for training optimization.
Future studies with larger sample sizes can build a more reliable model, perhaps in quasi or real time, to provide the
instructor with objective data to optimize the training, ultimately improving flight safety for all involved.
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