

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 1 of 12

The DARPA CODE White Force Network

David Scheidt Robert Lutz James Sturim

 Weather Gage Technology, LLC JHU/APL CENTRA Technology, Inc

 Edgewater, MD Laurel, MD Arlington, VA

 dscheidt@weathergagetech.com robert.lutz@jhuapl.edu james.sturim.ctr@darpa.mil

ABSTRACT

The DARPA Collaborative Operations in Denied Environments (CODE) program is developing highly advanced

collaborative autonomy capabilities that will allow unmanned aircraft systems (UAS) to successfully engage mobile

targets in denied or contested electromagnetic environments. The core goal is for CODE enabled Air Vehicles (AVs)

to autonomously sense and evaluate the state of its operational environment, form teams, and carry out defined mission

objectives with limited human supervision.

The testing of CODE capabilities on live ranges requires an interacting set of live, virtual, and constructive (LVC)

assets to provide the necessary stimulus to the system under test (SUT). The CODE White Force Network (WFN) is

designed to dynamically interject operationally-relevant effects, such as denial of communications or GPS, into the

CODE software during flight as a means of stimulating and then verifying the performance of CODE autonomy

algorithms. The WFN also allows large numbers of high fidelity virtual assets running the actual CODE software to

be part of the test scenarios. In addition, the WFN ground station provides synthetic forces generation services and

various control, visualization, and logging functions that interact in real-time with the on-board WFN flight software

to create the desired effects.

This paper provides an overview of the WFN design and describes how the WFN was integrated into recent CODE

test campaigns at NAWC-WD in China Lake, CA. The paper also discusses the increase in complexity planned for

the next CODE phase test environment and how the WFN will address the associated technical challenges.

ABOUT THE AUTHORS

David Scheidt is the founder and CEO of Weather Gage Technology, LLC where he conducts research on autonomous

test systems and intelligent fault management. Mr. Scheidt has 30 years of experience in the research and development

of distributed information management systems, robotics, artificial intelligence and process control systems.

Throughout his career Mr. Scheidt has conducted research in concert with his development efforts, publishing over

50 peer reviewed publications for research funded by the National Computer Security Center (NCSC), DARPA, ONR,

NASA, DISA, OSD NII and the US Army. Mr. Scheidt currently conducts autonomous systems and intelligent

controls research and is the principal investigator on research initiatives that focus on the intelligent diagnosis,

reconfiguration and planning of ship auxiliary systems, spacecraft and unmanned vehicles.

Robert Lutz is a principal staff scientist at The Johns Hopkins University Applied Physics Laboratory in Laurel, MD.

His background includes 37 years of practical experience in the development, use, and management of models and

simulations across all phases of the DoD systems acquisition process. He currently serves as the Navy's MQ-4C

(Triton) Program M&S lead in the Airspace Integration (AI) area. He also supports LVC testing for several autonomy

science and technology (S&T) programs, such as the Safe Testing of Autonomy in Complex Interactive Environments

(TACE) Project and the Collaborative Operation in Denied Environments (CODE) Program. In addition, Mr. Lutz

serves as the Chair of the Simulation Interoperability Standards Organization (SISO) Board of Directors and Vice

Chair of the SISO Executive Committee; serves on the Tutorial Board and Fellows Committee at the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC); and he is a guest lecturer on various

M&S-related topics in The Johns Hopkins University Whiting School of Engineering.

James Sturim is a Senior Flight Test Engineer at CENTRA Technologies, Inc. in Arlington, VA. He is a retired Air

Force Colonel with 25 years of Active Duty. He has been involved in flight test and acquisition for numerous programs

including fighters, ISR, and unmanned platforms and their associated subsystems. He is the Flight Test Lead for

several DARPA programs including the Collaborative Operations in Denied Environment (CODE).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 2 of 12

The DARPA CODE White Force Network

David Scheidt Robert Lutz James Sturim

 Weather Gage Technologies, LLC JHU/APL CENTRA Technology, Inc

 Edgewater, MD Laurel, MD Arlington, VA

 dscheidt@weathergagetech.com robert.lutz@jhuapl.edu james.sturim.ctr@darpa.mil

MOTIVATION

Within the scope of this paper, an autonomous system is defined as a physical system that can devise an appropriate

course of action in response to unanticipated circumstances encountered in an intractably complex world. In contrast,

systems that can operate without human intervention when responding to simple problems that can be solved in the

design phase and systems that require human operators to be effective are not considered to be autonomous. This is

not to say that autonomous systems do not interact with humans; they do. At all times, it is expected that autonomous

systems are subordinate to a human commander that is responsible for system deployment, establishes the goals and

objectives that motivate the autonomous system and when feasible, monitors autonomous system performance. None-

the-less, for a system to be considered autonomous, at some time during deployment the system must be required to

independently devise and act on a course of action that satisfies commander’s intent without support from a human.

A system’s ability to autonomously devise a course of action under complex, uncertain engagements can provide a

decisive military advantage under several widespread use cases. The most widely discussed autonomy use case is the

potential for cost savings associated with removing decision-making tasking from humans. The second use case arises

from the potential for artificial intelligence (AI) to produce higher quality decisions than humans. The third use case

arises when the time required for a human to make the necessary decisions, when compared to an autonomous system

response time, damages mission-effectiveness by prohibiting timely decision-making. A common example of the third

use case occurs when communications between unmanned vehicles and unmanned vehicle operator(s) are denied or

delayed. The DARPA Collaborative Operations in Denied Environments (CODE) program is developing the software

for autonomous unmanned air vehicles to specifically address this third use case both because of the likely loss of

communication during mission execution, and because of the complexity of the mission would exceed a human's

ability to respond fast enough. For a discussion and mathematical basis that defines the importance of autonomy in

denied environments see (Scheidt, 2014a). Regardless of use-case, all autonomous systems include a reasoning system

that is responsible for assessing the complex world and devising a course of action.

Figure 1 - The reasoning engine within an autonomous system is composed of multiple reasoning components that work

together to devise and execute autonomous responses.

Just like human cognition, an autonomous system’s reasoning system is composed of a diverse collection of cognitive

subsystems. The National Institute of Standard’s Alfus framework (Huang, 2004) recognized that autonomous systems

are decomposable along multiple dimensions. Figure 1 identifies six major cognitive subcomponents common to

autonomous systems divided by two axes: cognitive domain and perception-action. Cognitive domain defines the

scope of the reasoning, which includes: (a) exteroceptive reasoning, which is reasoning about the world in which the

system operates; (b) proprioceptive reasoning, which is reasoning about the systems place within the external world

and (c) interoceptive reasoning, which involves reasoning about the system’s internal components. The horizontal axis

of Figure 1 denotes the two primary reasoning tasks within the domains: perception and action. Autonomous systems

require that reasoning components that address all six modules defines in Figure 1 work together to satisfy mission

objectives. While the aggregate reasoning system addresses complex, unsolvable problems, some reasoning

components may be tasked to address simple sub-problems that can be solved during design. For example, a rotorcraft

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 3 of 12

designed to fly through unknown canyons may produce autonomy by combining an artificial intelligence (AI) path

planning algorithm with LIDAR-based map-building algorithms that are not, by themselves, autonomous.

Some autonomous systems are designed to operate in worlds that are composed of complex, unpredictable

locations/movements of artifacts with known characteristics. For example, a chess playing robot must be capable of

devising a move for any one of 2155 possible scenarios (Allis, 1994), yet the chess playing robot is allowed to know, a

priori, how each chess piece can move. In contrast, military systems developed by a clever adversary will include

systems, tactics and behaviors that are unknown to the autonomous systems at the start of an engagement. Autonomous

systems designed to operate in worlds containing these “clever adversaries” require reasoning system components that

utilize machine learning. While all autonomous systems present test and evaluation challenges, autonomous systems

that utilize machine learning present additional challenges as the system response to specific stimuli is subject to

change over time.

Testing Autonomous Systems

The complexity of the decision-making process prohibits exhaustive autonomous system testing. Design of

experiments (DoE) and statistical analysis, methods normally used to support the testing of complex systems, struggle

to produce the evidence required to make a sound assurance argument for the safe, productive, fielding of autonomous

systems. These difficulties stem from several sources. First, inter-dependencies between cognitive subsystems with

the reasoning engine make it difficult, if not impossible, to isolate independent variables required to manage

complexity using DoE methods. Second, system complexity is driven not only by system under test’s (SUT) decision

process but the complex, iterative, cognitive interactions between the SUT and other decision-makers found in the

world. The interplay between SUT and other actors requires the test system to consider not only the SUT response to

all possible circumstances but the responses to SUT actions that could potentially be made by other decision-making

actors in the world. Third, recognizing that not all external decision-makers will be friendly, SUT testing cannot rely

solely on statistical methods as adversaries are likely to observe SUT functionality and design unpredictable response

sequences that are cannot to be uncovered using statistical test methods.

The DoD Autonomy Community of Interest Test, Evaluation Verification and Validation working group (OSD ACOI

TEVV-WG) has identified a process for testing autonomous system that mirrors the systems engineering “V” process

(Schaefer, 2015). As shown in Figure 2, this process provides for incremental testing of the SUT throughout the

development cycle to support five test, evaluation, verification and validation (TEVV) goals which are:

1. Assure the correctness and completeness of autonomous system requirements through “precise, structured

standards to automate requirements evaluation for testability, traceability and de-confliction”;

Figure 2 - The OSD Autonomy COI TEVV Process provides a framework for testing of autonomous systems that

establishes the need for live-virtual constructive testing.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 4 of 12

2. Reduce T&E burden by using evidence-based design to assure that the SUT makes appropriate decisions based

upon traceable evidence at every level of design;

3. Provide cumulative evidence through research and developmental test and evaluation, developmental test,

operational test and post deployment testing (which is required for learning systems) by using progressive

sequential modeling, simulation, test and evaluation;

4. Utilize real-time monitoring, just in-time-prediction and mitigation of unsafe decisions to migrate algorithm

testing into a “lifetime sport” that is used during DT&E, OT&E and post deployment and finally

5. Produce “an assurance argument based upon previous element building blocks” generated by tools used to satisfy

goals 1..4.

The OSD TEVV process is mirrored by Torens’ 6-step autonomy TEVV process (Torens, 2014) that starts with (a)

formal analysis, (b) static testing, (c) unit testing, (d) software in-the-loop testing, (e) hardware in-the-loop testing and

finally (f) flight testing.

OSD TEVV WG’s goals 3 and 4 and Toren’s steps e and f involve the test of a functioning autonomous hardware

prototype and/or the final autonomous SUT. As previously discussed, autonomous system performance is dependent

upon complex, iterative interactions between the autonomous systems and other decision-makers in the environment,

which may or may not be friendly and may or may not be human. Keeping in mind that fully testing the autonomy

requires understanding the decisions made in the presence of numerous (hundreds or even thousands) independent

actors, conducting autonomous system tests entirely with live assets is likely to be cost-prohibitive and unsafe. By

example, if you were testing to see whether an autonomous unmanned air vehicle could see and avoid a college student

in a hang glider, should you use an actual college student and hang glider?

Because autonomy TEVV is dependent upon examining the interaction between the cognitive processes within the

SUT and between the SUT and other decision-makers in the engagement, live-virtual-constructive (LVC)

environments leveraged to test autonomous systems must explicitly model the impact of decisions made by virtual

and constructive entities and inject synthetic observations of those effects into the decision-making process of nearby

entities with near-zero latency.

WHITE FORCE NETWORK

The use of LVC environments is pervasive across DoD test ranges today as a means of verifying the ability of systems

that enable warfighting capabilities to meet a given set of requirements. In such environments, a series of test scripts

are executed which replicate the conditions in which a live SUT must operate so that accurate system behaviors and

performance can be evaluated. Virtual and constructive (synthetic) actors are used to stimulate the SUT in ways in

which adherence to system requirements can be effectively measured. However, since the subsystems on-board the

SUT cannot actually detect or engage synthetic actors, workarounds are frequently required to create the desired

effects. For instance, a surrogate sensor simulation(s) capable of detecting synthetic entities can be used instead of

the real sensor(s), but then the detection of live entities becomes problematic. Another approach is to simulate the

entire SUT and employ live entities as a potential augmentation to the test environment. This approach works well

during early developmental testing, but final verification of system requirements generally requires a live SUT. The

inherent limitations of these workarounds suggest the need for a more innovative approach to live-synthetic

interactions on DoD test ranges.

Since the main purpose of CODE is to demonstrate the ability of collaborative autonomous unmanned air vehicles

(UAVs) to operate effectively in denied environments, the CODE LVC environment provided by the White Force

Network (WFN) must be able to deny both communications and Global Positioning System (GPS) information to

CODE-enabled virtual or live UAVs dynamically during the execution of a test event. Figure 3 illustrates a typical

communications denied use case. The CODE Control Center is the main ground station used to monitor and control

all test activities. The SUT can be either a live or virtual UAV with the CODE autonomy software. The Synthetic

Ground Actor is a constructive entity (such as a truck or a tank) that is instantiated and controlled via the CODE

synthetic forces generator (SFG). Finally, the Synthetic Communications Jammer is also an SFG-generated

constructive entity, but with an ability to jam communications to a range determined by transmitter power and the

jammer-receiver geometry. During the execution of a test, as blue forces attempt to communicate, the WFN will block

the reception of any message by any entity that is too close to the jamming source. The airborne component of the

WFN accomplishes this by intercepting the received message before it can be processed by the autonomy software in

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 5 of 12

the CODE mission computer. As the test script advances in time, blue entities may move into and out of jamming

range depending on their movement path, affecting the ability of the CODE autonomy to cooperate with other CODE

entities and thus creating the desired test conditions.

Figure 4 illustrates the GPS denied use case. Whether a CODE-enabled virtual or live UAV is in a GPS-denied state

currently depends on a simple slant range calculation from the jamming source, although more sophisticated physics-

based calculations may be implemented in later developmental phases. When the UAV is GPS-denied, the UAV is

forced into an inertial navigation only mode with drift errors calculated by the WFN ground component according to

an exponential distribution. The drift delta is then sent up to the WFN air component to apply to the navigation state

messages being sent to CODE mission computer. This causes the CODE autonomy to perceive an increasingly false

own-ship location, which adversely affects its ability to coordinate operations with other CODE-enabled vehicles.

Thus, in both the communications and GPS denied cases, the WFN creates the conditions to study the associated

effects on the ability of CODE-enabled vehicles to autonomously conduct defined missions in denied environments.

Another important innovation provided by the WFN (to be implemented in the next iteration of CODE) addresses the

problem stated earlier regarding live interactions with synthetic entities. Specifically, for a live player with an actual

sensor, how can synthetic entities be made to appear within the signal processing stream of the sensor? WFN solves

this problem by integrating a simulation of the live UAV sensor with the ground-based CODE SFG. The CODE SFG

receives periodic UAV state updates via a wireless (Wave Relay Radio) link to the CODE ground station and

determines detectability based on sensor orientation, sensor performance characteristics, and position/signatures of

synthetic entities in the local operational area. For those synthetic entities that are detectable, the target IDs and

locations are sent via the same wireless link to the airborne WFN component. The WFN then inserts the synthetic

target information into the same signal processing stream used for the detection of live entities. This insertion is

performed after the UAV’s automatic target recognition (ATR) system has processed the raw sensor data into

individual target tracks to avoid the inherent complexity of real-time scene generation with synthetic actor insertions.

In addition to the insertion of synthetic entities into the UAV’s sensor stream, it is equally important to address the

need to exclude live targets from potential detection in some circumstances. For instance, if the CODE SFG

determines that a live target has been destroyed by a synthetic weapon at some point during test execution, the

continued execution of the test script requires that this target cannot be detected by any other entity for the duration

of the test. However, since the live target was not actually destroyed, the live UAV’s sensor(s) will continue to observe

its presence. To avoid this situation, the WFN has the ability to remove targets (post-ATR) as well as add them. In

this case, a unique identifier for live targets considered destroyed by the CODE SFG is uplinked to the CODE airborne

WFN component, and any subsequent target detection that possesses the same identifier will be deleted before it can

be processed by the CODE autonomy. This has the effect of dynamically eliminating live targets from the test

execution although they still have a physical presence.

Figure 4 - GPS Denied Figure 3 - Communications Denied

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 6 of 12

WFN SOFTWARE ARCHITECTURE

The WFN is an enhanced version of the Testing of Autonomy in Complex Environments (TACE) infrastructure

(Scheidt, 2014b) that was developed to support the safe testing of autonomous unmanned vehicles in complex,

interactive engagements. WFN improvements allow for the system to be used to support teams of autonomous

unmanned vehicles operating in contested RF environments. The TACE-WFN software architecture is a distributed

architecture that contains ground-based software and software located on-board the SUT as shown in Figure 5. The

WFN architecture is designed to leverage high-powered ground-based computers to model and simulate the complex

interactions between hundreds of autonomous actors while using lower-powered on-board processors to inject

synthetic data modeling RF events directly into the SUT’s on-board autonomous control system.

WFN ground software uses a service-oriented architecture that is based on the Test and Training Enabling Architecture

(Hudgins, 2005). Developed for the Test Resource Management Center, TENA is an emerging standard for test

support systems at DoD Major Range and Test Facility Bases, including NAVAIR’s range in China Lake, CA. Key

ground software services are: the Test Executive, Synthetic Forces Generator (SFG), communications server and

operator graphical user interface. In addition to the four primary modules, the ground system is capable of supporting

multiple ground-based virtual and/or constructive actors to include human-piloted synthetic vehicles (flight

simulators).

Figure 5 - WFN software is a distributed two-part system that includes ground-based modules communicating over a TENA

bus that communicate to software modules embedded in the SUT over a real-time network link.

Automated test management and synchronization is provided by the Test Executive. The Test Executive interprets

operator-defined test parameters to establish the test’s initial conditions, start, stop and synchronize WFN services and

to send messages to other software modules initiating test events. The Test Executive also logs test events and SUT

responses, working with the WFN operator graphical user interface to display real-time test status and test playback.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 7 of 12

As previously discussed, the SFG is an agent-based simulator that models both live and synthetic actors and the

interactions between them. The SFG uses status updates from live and virtual actors to maneuver constructive proxies

within the SFG engagement simulation. Simulation-based events are reported by the SFG via interaction messages

that report live-virtual, live-constructive, virtual-constructive and virtual-virtual actor relationships. Interaction reports

are sent from the ground system to live actors over a real-time, mobile ad hoc network link. Interaction reports are

sent to virtual actors over TENA.

The ground communications server works in tandem with its airborne counterpart, the SUT communications server,

to pass messages between ground system components and WFN software components embedded within the SUTs.

The ground and SUT communications servers use 0MQ, which provides a real-time link. Real-time network protocols,

unlike TCP/IP, are designed to guarantee timely delivery of all delivered packets, but do not guarantee that all packets

will be delivered. By using a real-time network protocol the WFN can prevent delays, or “lagginess” in injected

synthetic data.

Accurate assessments of an SUT’s autonomous response to a synthetic stimulus requires that the WFN inject stimuli

into an SUT signal processing chain within one decision cycle. Failure to inject synthetic data at this rate can invalidate

the test as old data can cause an SUT to base a decision on engagement data that is inappropriately inconsistent with

another actor’s world views. When supporting CODE, the WFN is required to inject synthetic EO signatures and

synthetic RF events, including communications and communications jamming at a > 50 Hz rate. Injected synthetic

data is dependent upon both the overall engagement status, which is modeled in the ground-based SFG, and the current

location and orientation of the SUT, which is observed by SUT on-board sensors. Note that SUT sensors may have

varying orientations due to the use of a gimbal to position the sensor field of view. The separation of knowledge

between the ground and air presents the WFN’s core architectural challenge, how to simulate a highly complex,

interactive tactical engagement, which, due to the tight timing requirements, cannot be accomplished using distributed

SUT-hosted processors communicating over an RF network, while simultaneously providing near instantaneous on-

board data injections that are dependent upon the current field of view of the SUT sensors. The WFN software

architecture addresses this challenge by using a segregated simulation architecture. The ground-based SFG simulation

is capable of modeling large numbers of actors and actor relationships because it uses lower-fidelity, kinematical

models of actors. High-speed, high fidelity simulation of proximate actors and events is supported on-board the SUT,

which has access to real-time data feeds from on-board guidance and control sensors. The two-part system is

coordinated by communicating actor positions over the 0MQ link. This is accomplished with minimal latency and

over low-bandwidth by only transmitting those reports that have the potential to interact with a specific SUT. For

example, if a SUT’s sensor has an effective range of one kilometer, the communications server will filter out all reports

on actors outside of one kilometer. Messages sent from the SFG are, depending upon content, used on-board the SUT

by the Sensor Stimulator, Communications Filter and Command Filter.

The Sensor Stimulator serves two functions. First, the Sensor Stimulator modifies readings from on-board ELINT,

SIGINT and GPS payloads in accordance with jamming events precipitated by virtual and constructive actors. Second,

the Sensor Simulator injects artificial readings that represent detections of synthetic and virtual actors by EO/IR

sensors.

The Communications Filter also serves two functions. First, the Communications Filter uses virtual and constructive

jamming event messages by appropriately removing and/or delaying packets deemed to be “jammed”. Second, the

Communications Filter injects additional communications packets that are produced by virtual peers of the SUT.

One of the key capabilities being pursued by CODE is an ability for autonomous air vehicles to recognize and manage

GPS-denied events. In order to test capability without enduring the flight safety risks associated with jamming the

GPS signal, the Sensor Stimulator modifies GPS-packets being provided by the on-board GPS receiver to the SUT’s

autonomy system, presenting the SUT autonomy package with GPS data that is equivalent to data that would be

produced during a jamming event. However, for flight safety preservation the WFN does not modify the GPS data

used by the autopilot. Not modifying the autopilot’s GPS data produces an inconsistency between the autopilot and

GPS data used by the SUT autonomy. Inconsistency between GPS and autonomy GPS data produces the problem that,

when the SUT autonomy correctly detects the GPS denial and produces a set of autopilot commands that correctly

achieves mission objectives in spite of the GPS denial, the autopilot will not fly to the waypoint intended by the

autonomy software because the GPS data used by the autopilot has not been modified. To correct this problem, the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 8 of 12

Command Filter modifies commands sent from the SUT autonomy system to the autopilot, subtracting out all biases

injected by the Sensor Stimulator and flying the SUT to the waypoint(s) intended by the autonomy software.

CODE Testing

The RQ-23 TigerShark (Figure 6) is a lightweight, long

endurance, multi-mission capable, low cost, and

recoverable UAS. The TigerShark has a high wing design

with a single pusher engine and is flown by a computer

assisted autopilot or pilot in a Ground Control Station

(GCS). The CODE software was loaded into a specially

modified RQ-23 to support the live test. This software was

designed to conduct collaborative and autonomous

functions and interface with the RQ-23 to command the

physical actions to implement these functions. As test

safety is always a priority, sufficient safety measures were

put into place to allow the SUT to operate without

unnecessary limitations, but to minimize the chance of loss of the UAS, injury to people, or damage to property. The

CODE team developed an architecture of subsystems that they added to the RQ-23s and on the ground to create a safe

environment for the SUT software to operate without putting the RQ-23s at undue risk.

RQ-23 aircraft are controlled from the ground via the TigerShark GCS which is located in the mission shelter (see

Figure 7). The mission shelter has stations for the Air Vehicle Pilot (AVP), Mission Commander (MC), Payload

Operator, and two auxiliary stations for additional personnel. The ground station computer communicates with the

aircraft using a data link.

The added hardware components were a Wave Relay Radio

with antennas, an F-Box Smart Switch, a Watchdog

Computer, a video encoder, and a CODE Mission

Computer. Custom software was developed for the F-box

and Watchdog. The WFN software was hosted on the

CODE Mission Computer along with the performer’s

CODE software. Each one of these components had

specific capabilities that were critical for the conduct of the

test.

The CODE Program is predicated on unmanned systems

being able to communicate within their teams. This

requires the use of radio frequency communications. In

order to not interfere with the normal RQ-23 operations, the

decision to add a Wave Relay Radio onto the RQ-23 was

made. The Wave Relay Radio was chosen due to its

advantageous Size, Weight, and Power (SWAP) and

organic Mobile Ad Hoc Networking (MANET) feature that

increased the probability of communications between the

UASs and the test systems on the ground. The CODE

Software communicated with the other UAS, the Mission

Commander Station, and the WFN via this radio. The Wave Relay Radios were used in their commercial off-the-

shelf configuration.

The F-box Smart Switch was the single point where the CODE Mission Equipment and the organic RQ-23 network

interfaced. The F-box had a few safety functions. First, it monitored the network traffic and metered the CODE

network traffic so as to not overwhelm the organic network that was needed for safety of flight functions. Second,

the F-Box monitored the primary Command and Control link between the RQ-23 and the GCS. If that link was lost

for more than a set time, it logically disconnected the CODE Mission Equipment from the RQ-23 Network to allow

Figure 6 - RQ-23 TigerShark

Figure 7 - RQ-23 Tigershark Ground Control Station

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 9 of 12

the approved/proven procedures to re-establish primary communications. The hardware and software for the F-box

were designed and developed specifically for the CODE program.

Figure 8 - CODE Mission Equipment Diagram with Command Message Flow

The Watchdog is a small computer on-board the RQ-23 that has both flight safety and test conduct capabilities.

Commands to the RQ-23 from the CODE Software are routed to the Watchdog. The Watchdog then filters those

commands on a subset of allowable commands. For example, the command to terminate the UAS is strictly prohibited

and is caught by the Watchdog software. Additionally, the CODE Software commands are in STANAG 4586

compliant format. The Watchdog converts these messages into a Piccolo1native format to be sent to the RQ-23

autopilot. The conversion requirement provides two benefits. First, the conversion makes the CODE software comply

with a known portable standard, the STANAG 4586 was chosen. Second, conversion adds one more layer of safety

as there is no possible way for a rogue command from the CODE software to get to the RQ-23 autopilot without this

translation. The Watchdog also takes systems state inputs from the RQ-23, converts them into STANAG 4586

compliant messages, and passes them to the CODE Mission Computer. The Watchdog software was designed and

developed specifically for the CODE program.

A video encoder was integrated to allow EO/IR sensor imagery and Key-Length-Value (KLV)2 data to be paired in a

way that the WFN could manipulate the data and the CODE software could consume it. This encoder was used in its

commercial off-the-shelf configuration.

1 Piccolo Autopilot is a Cloud Cap Technology Product. More information can be found at

http://www.cloudcaptech.com/products/auto-pilots
2 KLV is defined in SMPTE 336M-2007 (Data Encoding Protocol Using Key-Length Value), approved by the

Society of Motion Picture and Television Engineers.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 10 of 12

The CODE Mission Computer was a high-end, single board, Mini-ITX Computer that had the necessary processor,

memory, solid-state drive, power supply, ports, and connectors to support the CODE software and integration. The

processor was chosen so that almost any selected operating system and CODE software could run on it. The CODE

software was loaded onto this computer before flight and then commanded to run during the test. The CODE Mission

Computer consisted of Commercial-off-the-shelf (COTS) parts that were specifically packaged for the CODE

program.

All of these components were integrated together onto a single avionics tray in the RQ-23 main equipment bay. The

logical flow of these components is shown in Figure 8.

The flow of commands, data, and radio traffic both into and out of the CODE software on the CODE Mission

Computer flow through the WFN Air software. This, in conjunction with the WFN Ground software, allows the data

and radio traffic going into the CODE software and the commands and radio traffic coming from the CODE Software

to be monitored, manipulated, or deleted. This also provides the capability to force the CODE software to deal with

specific situations that could not be replicated in the real world. For example, actual UAS loss due to missile

engagements, communication disrupted due to radio jammers, etc. could be simulated. When CODE software output

is sent to the WFN, the WFN Air software manipulates the command if necessary and sends the commands to the

Watchdog for processing. As information from the RQ-23 is passed from the Watchdog, the WFN Air software can

also manipulate or delete this information before passing it to the CODE software for processing.

CONOPS

The testing Concept of Operations (CONOPS) was implemented by a range of supporting personnel with different

responsibilities. The Test Conductor (TC) had overall responsibility for the safe, efficient, and effective conduct of

the test. The TC orchestrated the other personnel supporting the test to meet these outcomes. The TC was responsible

for understanding the SUT, the CODE software; the systems used to support the test, the RQ-23, the WFN, etc.; and

the test objectives that were to be met. The WFN Operator was responsible for operating the WFN under the TC’s

direction to establish specific environments necessary to meet the test objectives. This included settings both on-

board the aircraft and in the ground system. Additionally, the WFN Operator configured the WFN Graphic User

Interface (GUI) so that real time insight was gained on how the test events were progressing and reported that progress

to the TC as needed. The RQ-23 crew consisted of a pilot, sensor operator, and Mission Commander that were

responsible for the safe flight of the RQ-23. Additionally, they were responsible for ensuring the hardware and

software configuration of any non-SUT systems on the aircraft were set properly. The RQ-23 crew ensured that the

aircraft was in the proper position, altitude, and airspeed necessary to start each test run so that the test objectives

could be met. The crew also provided vital real-time truth data feedback to the TC and other test conduct personnel

as to how the test was progressing and what was happening to the aircraft. Finally, there were the operators for the

SUT – the CODE software itself. This differed based on the performing contractor’s implementation. The operators

ensured that the SUT was properly configured to meet the test objective. Their primary role was not to make sure that

the SUT operated perfectly, but rather that it was operating within acceptable parameters to evaluate the SUT. That

is, they were not constantly tuning the SUT to perform better in real-time, but rather to make sure that the system was

operating properly and allowed the system to be evaluated in flight. All of the test personnel had specific

responsibilities to ensure the tests were completed in a safe, efficient, and effective manner. They all had to understand

the overall test construct and where they fit into that construct in order to function properly.

RESULTS

The testing of the CODE Phase 2 system was performed at the Naval Air Warfare Center Weapons Division

(NAWCWD) in China Lake CA. In preparation for these tests, each CODE performer developed a detailed test plan

with detailed methods of test (DMOTs) for every required capability. A run matrix was also provided that mapped

the DMOTs to the flight test schedule. The flight testing program occurred over a two-month interval (April-May

2017) and included two major test events for each of the two CODE performers.

A notional DMOT is illustrated in Figure 9. The outer polygon depicts the playbox where RQ-23 flight operations

took place. The dots represent both ingress (yellow) and egress (green) waypoints preprogrammed into the CODE

mission computer. The circles represent obstacles for the CODE autonomy algorithms to recognize and avoid. The

triangles represent point of interest where the RQ-23 may loiter to gather information before continuing its flight path.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 11 of 12

Finally, the star represents a constructive communications or GPS jamming platform to initiate the appropriate WFN

stimulus to the CODE autonomy.

The ground component of the WFN was located in the base

station in the lower right corner of the playbox. Depending

on the specific test being performed, the WFN was tasked

with instantiating and modeling the virtual and constructive

simulation entities needed for the test, including virtual RQ-

23s configured with the CODE autonomy. The WFN also

modeled the jammers for the opposing forces and created

the communications or GPS lost conditions needed to verify

the ability of the CODE platform to operate effectively in

denied environments.

In addition to simulating the operational conditions needed

to test the CODE autonomy, the WFN was also tasked with

the collection of real-time test data. For example, the WFN

ground component recorded the relative geometry of all

CODE-equipped entities with respect to all active jammers

to ensure that the desired communication and GPS denied

states were implemented correctly. The air component of

the WFN recorded all incoming STANAG 4586 message

traffic as well as waypoint data and aircraft state

information. The analysis of this data was instrumental in

verifying that WFN requirements had been met as well as

providing insight on the relative performance of the two

competing CODE designs.

This testing was the first time that a LVC environment was used to test an autonomy system on a Class 3 UAS. The

system met all of the requirements derived from the SUT test scenario requirements. This success was not without

challenges and lessons learned. One of the biggest challenges that dogged the program and flight test through the end

of this phase was the rapid evolution of Operating System and CODE Mission Computer internal configurations. For

instance, ensuring that Firewalls and Ports were all configured properly and consistently was a bookkeeping challenge

throughout the development and flight tests.

CONCLUSION

The CODE Phase 2 Program has successfully demonstrated the collaborative autonomy capabilities necessary for

CODE-equipped UAVs to operate effectively in communications or GPS-denied environments. The WFN was a

critical component of the broader CODE architecture, as the WFN provided the LVC infrastructure needed to create

the desired test conditions and stimulate the CODE autonomy during a series of live technology demonstrations. This

capability directly supported the verification of key CODE operational capabilities.

The WFN will continue to evolve and mature based on new capability requirements for CODE Phase 3 as well as

providing the synthetic forces representation for what will be a much more complex operational environment in this

next phase. In addition to an increase in the number of CODE-equipped UAVs (both live and virtual) in the CODE

Phase 3 scenario, the need to accurately capture system behaviors and performance across a wider range of neutral

and opposing forces requires a more sophisticated and capable SFG than was used in CODE Phase 2. It is currently

envisioned that Real-Time Suppressor (RTS) will fill this need due to the availability of data sources/files that can be

leveraged from present users.

The WFN represents a potentially reusable capability that could be leveraged by future intelligent autonomous system

programs. Although currently configured for CODE, the WFN has been designed to interface seamlessly with future

autonomous systems employing “open architecture” standards. While not entirely “plug and play”, the WFN provides

a robust LVC foundational capability that can be readily extended to address the needs of collaborative autonomy

S&T or actual production systems in the future.

Base
Station

Obstacle

Ingress
Route

Egress
Route

Point of
Interest

Jammer

Figure 9 - Example CODE Test Scenario

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17018 Page 12 of 12

The Defense Science Board (DSB) and the OSD Autonomy Community of Interest Test, Evaluation, Verification and

Validation working group (OSD ACOI ATEVV) state that a suite of tools and methods is required to test autonomous

systems. Multi-step autonomy test processes are being developed by the OSD Autonomy Community of Interest, Test

Resource Management Center, Air Force Research Laboratory and the Naval Air Warfare Center. These test processes

include LVC testing as a necessary portion of autonomous systems testing. Once complete, it is anticipated that these

processes will be adopted by the Major Range and Test Facility bases (MRTFB) for future autonomous system and

that the WFN will become standard equipment for MRTFB hosted for autonomous system tests.

ACKNOWLEDGEMENTS

The White Force Network was developed for DARPA under contract HR0011-12-D-0001 and extends the TACE

system, which was developed for the Test Resource Management Center under contract W900KK-13-C-0036. The

U.S. Department of Defense enjoys Unlimited rights to TACE and WFN. The authors would like to thank JC Ledé

and Reed Young for their steadfast support, Dwight Cass and Bill D’Amico for their valuable technical insight and

advice and the WFN software engineering team Kristi Ramachandran, Geoff Osier, Michael Biggins, Robert

Chalmers, Lee Varanyak, Chris Dohoposki and Frank Harris.

REFERENCES

Huang, H. (2004), “Autonomy Levels for Unmanned Systems (ALFUS) – Version 1.1”, National Institute of

Standards and Technology (NIST).

Scheidt, D. (2014a), Unmanned Air Vehicle Command and Control, Handbook of Unmanned Air Vehicles,

Springer-Verlag.

Allis, V. (1994). Searching for Solutions in Games and Artificial Intelligence (PDF). Ph.D. Thesis, University of

Limburg, Maastricht, The Netherlands. ISBN 90-900748-8-0

Schaeffer, A. (2015) Autonomy Test and Evaluation, Verification and Validation Strategy 2015-2018, OASD R&E.

Torens, C., Adolf, F. (2014), “V&V of Automated mission planning for UAS”, SCI-274 Workshop Verification and

Validation of Autonomous Systems, Imperial College, London, June 24-25.

Scheidt, D., D’Amico, W., Lutz, R., (2014b). Safe Testing of Autonomy in Complex, Interactive Environments

(TACE), The International Test and Evaluation Association (ITEA) Journal, Vol. 35-4, pp. 323-331.

Hudgins, G. (2005) "The Test and Training Enabling Architecture, TENA, Offers Range Interoperability and Resource

Reuse Solutions", 2005 U.S. Air Force T&E Days, U.S. Air Force T&E Days Conferences

The NATO Standardization Office (5 April 2017) STANAG 4586, Standard Interfaces of UA Control Systems (UCS)

for NATO US Interoperability

