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ABSTRACT 

 
The Operational Environment (OE) has become increasingly complex, with challenging human factors, exponential 
proliferation of technology, and an increasingly determined, adaptive threat. Training Army Soldiers, leaders and units 
in a complex world requires modernized, integrated, realistic, and adaptive training capabilities.  The Army must 
leverage emerging technologies to transform the way it develops and delivers training to enable agile and adaptive 
Soldiers, leaders and versatile units.  It must provide a consistent, persistent ability to train at the point of need (PON) 
for both current and future operations as part of a Joint, Inter-organizational, and Multinational (JIM) force.  The 
training venues must allow the Army to train as it fights, using its wartime systems on its operational networks and 
all training environments must replicate the OE to the greatest extent possible. 
 
To address this reality, the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO 
STRI) and the University of Central Florida (UCF), Institute for Simulation and Training (IST) are conducting research 
to create new capabilities that support both operations and training while enabling software application migration to 
Army enterprise data centers and cloud environments.  This research pivots on Army directives that focus on 
modernizing information technology systems and applications.  To achieve the distributed nature of this vision, 
technical enhancements to the underlying Army Enterprise Network (AEN) must be made in the next few years. 
 
This paper investigates potential gaps in simulation enterprise network architectures and describes research results in 
three major technical areas that address these gaps and will benefit future simulation and network architectures.  The 
research topics include technologies that: (1) efficiently delivers simulations from cloud-like environments using 
Software Defined Networks (SDNs); (2) facilitates individual and collective home station or field-based training 
through the use of thin clients; and (3) optimizes computational resources through load-balancing techniques and 
processes. 
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BACKGROUND 

The Operational Environment (OE) has become increasingly complex, with challenging human factors, exponential 
proliferation of technology, and an increasingly determined, adaptive threat. Training Army Soldiers, leaders and units 
in a complex world requires modernized, integrated, realistic, and adaptive training capabilities.  The Army must 
leverage emerging technologies to transform the way it develops and delivers training to enable agile and adaptive 
Soldiers, leaders and versatile units.  It must provide a consistent, persistent ability to train at the point of need (PON) 
for both current and future operations as part of a Joint, Inter-organizational, and Multinational (JIM) force.  The 
training venues must allow the Army to train as it fights, using its wartime systems on its operational networks and 
all training environments must replicate the OE to the greatest extent possible. 
 
To address this reality, the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO 
STRI) and the University of Central Florida (UCF), Institute for Simulation and Training (IST) are conducting research 
to create new capabilities that support both operations and training while enabling software application migration to 
Army enterprise data centers and cloud environments.  This research pivots on Army directives that focus on 
rationalizing and modernizing information technology systems and applications.   
 
To achieve the distributed nature of this vision, technical enhancements to the underlying Army Enterprise Network 
(AEN) must be made in the next few years. In particular, this research focuses on technical enhancements to improve 
the Army’s Integrated Training Environment (ITE) system of systems which uses the AEN to bring together a 
persistent set of Live, Virtual, Constructive, and Gaming (LVC-G) training capabilities and provide realistic training 
at Mission Training Centers (MTCs). 
 
This paper investigates three current gaps in simulation enterprise network architectures and describes research results 
in three major technical areas that will benefit future simulation and network architectures.  The gaps being addressed 
span the server, client, and network connectivity research areas.  The specific research topics include technologies that 
will: (1) efficiently deliver simulations from cloud-like environments using Software Defined Networking (SDN); (2) 
facilitate individual and collective home station or field-based training through the use of thin clients; and (3) optimize 
computational resources through load-balancing techniques and processes. The paper describes how specific new 
technologies and tools, in these three areas, can be leveraged to improve the ability to deploy more configurable, 
optimizable, and flexible training simulations which will allow the ITE more versatility in terms of networking and 
content delivery.   
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THE THREE GAPS AND RELATED RESEARCH ACTIVITY 
 
Software Defined Networking (SDN) 
 
For the future ITE to function efficiently, the Army will need to be capable of adaptive provisioning and optimization 
of the network mechanisms that support those activities.  Such a capability will need to address some fundamental 
issues, such as bandwidth and latency limitations both within and between facilities, competition for bandwidth 
between both ITE and non-ITE network activities, and the high variance in bandwidth utilization among simulation 
tools.  Ideally, a network solution capable of addressing these concerns will be configurable and adaptable to a variety 
of different contexts, depending on the tools used by and the needs of a given set of training exercises.  In particular, 
what is needed is an agile network that uses existing Army infrastructure and can be reconfigured rapidly and centrally 
in a cost-effective way. 
 
PEO STRI & IST examined the use of SDN to meet these needs. SDN provides programmable and adaptive 
mechanisms to support network virtualization and functional separation, giving both network administrators, as well 
as software-based provisioning tools the ability to provide services where they are desired in a network, without regard 
to specific connected or connecting devices (Hu 2014, Ichelson 2016).  As depicted in Figure 1, SDN technologies 
can be separated into three layers:  the SDN communication protocol that resides at the switch level, the SDN controller 
software that runs server(s) within the network, and SDN application software that can run from various computers 
within the network.  This layering provides a means to reconfigure the network at the control plane level through 
software. 
 

 
Figure 1.  General Architecture Diagram for SDN 

 
For our research, we used a widely adopted open communication standard for SDN, which is OpenFlow (v1.3).  We 
used another commonly adopted tool, FloodLight to serve as our SDN controller.  FloodLight supports multiple 
versions of OpenFlow concurrently, has a web-based GUI, is known to perform and scale well, contains network 
topology discovery mechanisms, exposes a convenient Python-based API, and has strong community and 
documentation support. 
 
To address bandwidth and latency issues, we explored mechanisms to implement adaptive control plane flow 
management within the switches to produce separate logical network slices within existing hardware.  This means that 
network flows between machines in one logical space do not compete with network flows within another, even if 
those flows make use of the same physical infrastructure.  This provides a means of assigning machines and portions 
of switches to multiple networks on the fly, via software or from archived configurations without having to reconfigure 
multiple scripts and Network Interface Cards (NICs) within the network.  In this way, ITE traffic and non-ITE traffic 
can be isolated from one another and will not compete. 
 
To do this, we made use of the off-the-shelf open tool, FlowVisor as shown in Figure 2.  FlowVisor provides switch 
virtualization such that the same hardware forwarding plane is used concurrently by different logical networks, each 
with its own forwarding logic.  Authenticated users or applications can slice physical infrastructure into different 
logical networks such that data is isolated and protected and guarantees quality of service.  For example, machine A 
on one switch can be placed in the same logical network as machines C and B on another switch, while machine D on 
that same switch is in a completely different logical network—and these assignments can be reconfigured 
programmatically. 
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Figure 2.  Sketch of One Example for Configuring Two Logical Networks  
Across Multiple Switches via FlowVisor 

 
We produced the configuration scripting needed to provision such network slices on demand.   
 
To test an SDN slicing approach, we performed the following experiments.  Four nodes (A, B, C, and D) were attached 
to a single switch, and the bandwidth performance between two pairs of these nodes were measured (AB and DC) 
over a two-minute window.  At the start of the second minute, node D began broadcasting traffic analogously to DIS 
interoperability layers in federated simulations and continued to do so for the remainder of the test.  There were two 
experimental groups.  In the first group, the switch was configured with legacy control-plane logic.  In the second 
group, two logically separate slices were created via SDN, one slice contained nodes A and B, while the second slice 
contained nodes C and D.  In both cases, the experiment was repeated for 10 independent trials.   
 
Figure 3 shows the average performance results over time for these experiments.  From this, we can see that slicing 
isolates the effects of the broadcast messages.  Results at times 55s and 70s for the AB measure were compared.  There 
is a statistically significant performance drop in the legacy network design yet no statistical evidence of a loss in 
performance in the SDN sliced design.  Additionally, even the performance on the CD measure at time 70s (where the 
broadcast is originating) is statistically better under the SDN-sliced design than the legacy design.  We also confirmed 
with the WireShark tool that no Ethernet or ARP traffic passes between nodes on different SDN slices. 
 
 

 
Figure 3.  Effects of Broadcast Messages on Network Design 
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Future Work 
 
Future work will begin using heuristic optimization methods to alter the Quality of Service (QoS) of the data flows 
within a given slice to optimize for nodes with different needs.  For example, after action review nodes may require 
more ingress data flow, while constructive simulation engines may require more egress data flow.  Flow management 
of this type is possible via these SDN interfaces.  Also, as SDN is a new technology, continual performance 
enhancements have been and are expected to continue along with more rigorous standardization efforts driven by 
commercial enterprises. 
 
 
Thin Clients 
 
Thin clients are widely used today in many applications and domains.  Many office settings use them as a cost saving 
measure.  However, their use in virtual and constructive training has been limited despite their potential to not only 
reduce costs, but also to deliver training at the PON, to ease maintenance, and to provide greater opportunities for 
training.  To drive such a system, three major components are required: a server to run the actual training application 
(i.e., a server to accomplish that within a virtual machine), clients that would connect to the appropriate server instance, 
and some kind of remote display protocol to connect the two. 
 
The first step in our research was to identify existing gaps and requirements to be able to provide such training 
capabilities by thin clients.  Four major gaps were identified: client hardware, network capability, server capability, 
and training opportunities. 
 

(1) Reduce the Inflated Client Hardware Footprint.  Existing training systems use either a server-client 
arrangement (e.g. most game-based systems) or a fully-distributed approach (e.g. DIS/HLA-based systems).  
Regardless of which fundamental approach is used, the client stations run relatively intensive applications in 
terms of computational and graphical load.  This necessitates that computers (PCs) be used (purchased and 
maintained) that can support such applications.  For example, a gaming application used for Army training, 
Virtual Battlespace 3 (VBS3), recommends a system with an Intel Core i5-2300 or AMD Phenom II 940 
CPU, 8 GB RAM, and an Nvidia GeForce GTX 560 or AMD Radeon HD 7750 (with 1024 MB VRAM) 
(VBS 3, 2017).  “Optimal” recommendations supporting “resource intensive scenarios” are even higher.  
Replicating this configuration for each trainee station at each fielded site can be costly.  In addition, security 
and maintenance of a set of clients geographically distributed can be a challenge. 

 
(2) Adequate Networking Capability Required to Support Thin Clients.  To transmit the display of simulated 

systems to the thin client, some quantity of network bandwidth is, of course, used.  For interactive virtual 
training, latency is also an important issue.  Depending on the source, game-based training latency must be 
somewhere less than 60 ms (GameStream, 2017) to less than 150 ms (Tolia et al, 2006).  As far as bandwidth, 
the requirements depend on screen resolution.  Network capability will clearly be an important issue as the 
U.S. Army moves training to cloud-based approaches.  For example, at Joint Base Lewis-McChord (JBLM), 
a 1 Gbps network is used, and a typical VBS3 server supports up to 52 users, and an exercise can use up to 
9 servers.  At Fort Bragg, a 1 Gbps network is also used internally but only a 100 Mbps network is available 
to the Army Network.  Careful consideration of network capability will be important as it will drive potential 
location of cloud servers. 

 
(3) Servers Require Hardware Suitable for Gaming.  To drive thin clients using virtual environments for training, 

it’s desired that the actual client software is run on a server-side computer and then a remote display protocol 
would be used as discussed above.  Beyond an increased quantity needed, a server-side computer for thin 
clients must have adequate memory and graphical capability.  The latter is particularly important if 
considering rack-mountable servers (which typically may not have an accelerated graphical capability).  
Support servers that include sufficient memory (RAM) and Graphical Processing Unit (GPU) capability are 
needed to support streaming to thin clients (multiple per server).  Particularly of note, having GPU support 
will be required in this situation. 
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(4) Provide Increased Training Opportunities.  With relatively advanced PCs required for running current 
training systems, this makes it difficult to expand training opportunities to other settings besides the MTCs 
and Sim Centers.  For example, collective training or potential supplemental training within the unit (e.g. in 
barracks) may also be difficult.  Utilization of a cloud architecture that supports thin clients can support 
lower-capable client PCs available at many other locations throughout the U.S. Army.  If a thin client 
architecture is built where servers run the actual training software, which is then displayed on a thin client, 
this could potentially provide many additional training opportunities.  While supervision and planning of 
these opportunities is desirable, just the option of doing it opens up possibilities.  Old PCs, laptops or even a 
newly-purchased $50 Raspberry Pi can potentially provide the client side. 

 
Our research focused on the first, second, and fourth of these gaps.  Previous work (MITRE, 2016) explored the third 
gap thoroughly as they showed an ability to host a game in a virtual machine and stream it to a thin client.  In their 
work, a general-purpose desktop display technology (XenDesktop from Citrix) was used to stream to a series of 
laptops and the focus was on testing the capabilities of the server.  However, they did determine that six clients 
(running VBS3) consumed a total of 105.8 Mb/s on average.  A follow-on study tested two different potential servers 
to host multiple clients and a server simultaneously (MITRE, 2017).  Still using XenDesktop to stream, they found 
that the best virtual machine arrangement was one using 2 sockets, 4 cores, and the 2Q GPU profile (of the Nvidia 
Tesla M60 card used), and that this configuration provided 26.03 frames/second.  However, their goal was to find a 
configuration that provided at least 30 frames/second, so they considered that goal unmet. 
 
In our research, alternative streaming technologies were explored as we looked to answer the remaining three gaps 
identified above.  Specifically, protocols that were built with videogames in mind were explored.  While many were 
investigated (including GamingAnywhere, Nice DCV, and others), two quickly became the focus due to their maturity 
and performance characteristics.  These were Nvidia GameStream and Steam In-Home Streaming.  Both were studied 
in a formal fashion regarding network bandwidth utilization as well as in an informal fashion regarding frame rate.   
 
To test network bandwidth, four very inexpensive thin clients were used: the Nvidia Shield (~$200), the Valve 
Software SteamLink (~$50), the Dragon Touch X10 Android tablet (~$100), and the Raspberry Pi 3 (~$50).  Unreal 
Tournament 4 was used and two scenarios tested: the Weapons Training Course (a fixed path, 10-minute scenario), 
and Death Match (a random, combat scenario that was limited to 20 minutes).  The Nvidia Shield ran its proprietary 
GameStream software, the SteamLink ran its proprietary In-Home Streaming software, and the Dragon Touch X10 
and Raspberry Pi each ran Moonlight, which is an open-source client compatible with Nvidia’s GameStream protocol.  
Each client’s stream was hosted from a local, on-site PC. 
 
Results for average bandwidth were as follows: 
 

 
 

Figure 4.  Average Network Bandwidth Results 

Obviously, the bandwidth for received data was significantly larger, principally to drive the graphics displays.  Of 
note, both the SteamLink and the Raspberry Pi had significantly reduced bandwidth utilization due to the lower frame 
rate of the streamed video.  However, this works very well for virtual training and should allow upwards of 8 clients 
within a 100 Mb/s connection.  The Nvidia Shield and Dragon Touch Android tablet results show the potential cost 
of increasing to 60 frames/sec; however, both devices support lowering down to 30 fps, and will be re-tested in future 
research to examine the potential bandwidth savings. 
 

Network Bandwidth
Mbps

Transmit Receive Transmit Receive
Nvidia Shield (60fps) 0.145 35.313 0.152 37.200

Valve SteamLink (30fps) 0.060 13.340 0.090 15.640
Raspberry Pi (30fps) 0.056 10.988 0.065 12.096

Android Tablet (60fps) 0.081 42.968 0.053 44.048

Weapons Training Death Match
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Anecdotally, all devices performed very well when driven by a native local server, and the user could not tell that a 
thin client is in use (frame rates of 60 frames/second or higher were consistently seen).  The SteamLink was also tested 
when hosted by a virtual machine identical to the one used by MITRE in their study (2 sockets, 4 cores, 2Q GPU 
profile).  While the frame rate was reduced, it still maintained rates within the 40-50 frames/second range with 
occasional dips to 30 frames/second. 
 
The following conclusions are drawn: 
 

• Thin clients are technically capable for delivering virtual training.  These can include even very inexpensive 
clients such as consumer streaming devices, and even mobile and embedded devices (e.g. tablets and the 
Raspberry Pi). 

• Protocols designed for streaming games seem to perform better than general-purpose streaming protocols.  
While XenDesktop never reached 30 frames/second in MITRE’s studies, the GameStream and Steam In-
Home protocols performed over that level.  This should be further analyzed in a more formal study, however. 

• Inexpensive thin clients have the hardware capabilities to provide additional training opportunities.  If devices 
that cost $200 or less can support such streaming at an appropriate level, this would allow Soldiers and other 
personnel to train other than in scheduled visits to larger training facilities. 

 
Future Work 
 
Even with these encouraging results, some additional work is still appropriate.  Zero clients could be studied as well 
as old laptops.  In addition, while a single test of streaming from within a virtual machine was addressed, this should 
be expanded further.  Future tests to be pursued will include multiple virtual machines and clients in parallel.  In 
addition, moving the hosting of clients farther away geographically (e.g. not on-site) will be tested to explore the 
concept of hosting at a regional data center.  This will test the streaming protocols in a setting more similar to the 
future potential use in cloud-based training. 
 
 
Load Balancing 
 
The load balancing effort sought to reduce the military’s computer hardware footprint for simulation-based training 
by changing the one-to-one relationship of simulator to computer, while simultaneously automating simulation 
hardware provisioning and scheduling. To achieve these goals, our work is experimented with methods to optimally 
allocate computer resources to simulation applications a priori to and eventually dynamically during runtime. The 
work was developing techniques: 1) to automatically schedule and provision simulation software on remote, cloud-
based servers to centralize and efficiently distribute workload across available computing resources; 2) for deploying 
software components on virtual machines and software containers in order to host multiple simulations per individual 
physical machine; and 3) to manage these virtual machines and containers by allocating and deallocating resources 
based on simulation CPU, memory, and network bandwidth usages during runtime. 
 
Reducing the footprint 
 
One of the goals of the load balancing efforts was the reduction of computer hardware used to support military training 
exercises. For example, typically each simulator has its own, dedicated physical computer system. There are some 
benefits to this current approach in the acquisition process, but some drawbacks during operations if the simulator is 
not utilized 24/7.  Additionally, simulators may connect to other systems that are also hosted on their own physical 
computers, requiring even more physical hardware to support the simulation-based training.  
 
We aimed to reduce this hardware footprint by implementing a cloud computing approach that shares the utilization 
of hardware, storage, management, and associated costs while maintaining simulation-based training capability, 
systems availability, and allowing for upgrades. To accomplish this reduction, we prototyped the hosting game based 
training systems software and hardware resources on a cloud-based cluster. These technologies provide a collection 
of connected computer-based systems used to solve a wide range of computational tasks and calculations. Under this 
architecture, a computational job can be scheduled, assigned to a subset of the connected machines (nodes), processed, 
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and its results are returned to the user, all with the user-perception that a single system processed the job. The use of 
such a shareable, clustered system leverages the advantage of combining computational power and resources from 
multiple nodes, centralizes computer hardware, and is capable of automatically scheduling and sharing their resources 
with multiple users when needed. This methodology reduces the hardware footprints as users can share the clustered 
resources instead of duplicating the hardware purchases and presence, specifically addressing a core goal. 
 
More specifically, the combination of virtualization, containerization, and clustering is being investigated to address 
the enhanced ITE’s goal of having the synthetic environment reduce the hardware footprint. Virtualization permits a 
physical machine to be logically partitioned into multiple, virtual computers executing tasks in their own contained 
space, while clustering unifies the virtualization hardware into a single, centralized system. A software container is a 
virtualization method that allows one to package and distribute multiple isolated applications that share binaries and 
run under a common host operating system. The combination of virtual machines and containers being created and 
tasked through cluster scheduling utilizes compute resources more efficiently than individual servers being dedicated 
to execute one simulator. The efficiency exists because one physical machine can serve as multiple virtualized 
computers, where each virtual machine (VM) or container can host one or more simulators. Through virtualization, 
the cluster is able to schedule software to run on any supported operating system, regardless of the natively installed 
operating system of the cluster’s nodes, including various distributions and versions of Linux, Unix, Mac OS, and 
Windows. Additionally, VMs can be allocated resources that more closely match their actual task needs, instead of 
dedicating an entire machine and having greater potential for resource under-utilization (Calheiros et al., 2011). 
Container technology can also serve as an alternative and/or supplementary solution to the use of VMs as it has been 
reported to perform nearly identical to a native performance (Felter et al., 2015). Containers are faster and smaller to 
create and migrate than VMs and provide a method of rapid simulation deployment and management. Through 
clustering, virtualization and containerization, this effort will identify methods to reduce the Army’s simulation-based 
training hardware footprint. 
 
Automated Simulation Event Scheduling   
 
A second goal of the load balancing effort was to incorporate automated software scheduling into simulation event 
planning and deployment. Scheduling a simulation event is an essential function of training simulation environments 
as it may impact the execution of the simulation exercises. Scheduling is a labor-intensive task that involves analyzing 
capacity and performance needs, setting up storage, reconfiguring or restarting applications (Egts, 2014). Most 
military training exercises are still scheduled and configured manually using paper, whiteboards, calendars, and Excel 
spreadsheets to determine the availability of resources (Vidali, 2010). However, manual scheduling is prone to errors 
and is incapable of efficiently evaluating trade-off decisions when assigning available resources. When schedules are 
maintained on whiteboards and spreadsheets, it is not possible to collect accurate utilization metrics to support optimal 
resource load balancing during the planning process. Therefore, automation in simulation event scheduling is 
necessary in order to simplify the configuration, deployment, and management of the simulation applications and 
computational resources. 
 
With the ITE being a cloud-based service that will host simulations at remote server locations, a simulation processing 
scheduler should be used to automate the simulation event scheduling process and assign a simulation to appropriate 
computational resources. The scheduler should also automate the deployment of simulation software, assign user 
priorities, and have the ability to preempt running simulation events. Fortunately, automated schedulers exist, but are 
not in use for LVC and gaming applications.  For our investigation, we used Slurm, an open-source job scheduler that 
is used to automate the scheduling process of events and assigning computational jobs to clustered resources. The 
scheduler is currently installed on some of the fastest high performance computing system around the world for 
scheduling and provisioning research, academic, and commercial computing (Yoo, 2003) (Lucero, 2011).  
 
Job schedulers, like Slurm, currently automate manually-labor intensive scheduling and hardware provisioning 
processes, facilitate planning, enforce user and job priorities, and provide visibility into resource availability. The 
software can be used to develop an intelligent system that will be in charge of scheduling jobs and provide automated 
deployment and management of the simulation applications. These resource managers can potentially assist in 
allocating computing resources needed for a specific simulation run by considering those needed by the simulation 
and those available, subject to user defined priorities. 
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Experiment Design 
 
A series of experiments have been performed that progressively evaluate load balancing approaches in the modeling 
and simulation for training domain. 
 
First, the experiments identified the benefits of using various approaches for automated simulation scheduling on the 
cloud. Second, methods for distributing the computational workload between cloud-based resources were prototyped 
and analyzed. Third, the feasibility of a reduction of the computer hardware footprint through the use of virtual 
machines and software containers has been demonstrated on a limited basis.  Finally, techniques to dynamically 
manage the computational resources of those virtual machines and containers has been prototyped. The executed 
research plan first determined the feasibility of scheduling a game-based simulation on a cluster using Slurm. For this 
demonstration, we scheduled the execution of Microsoft Flight Simulator X (FSX) on a 2-computer cluster, where 
one computer served as the controller and the other as the node. With this system, we were able to schedule an FSX 
simulation event on the controller; then the node natively (directly on the node’s Linux operating system) launched 
and displayed the game-based graphical, aviation simulator.  
 
The second experiment scheduled multiple simultaneous simulations. For this study, two additional computers were 
added to the network and served as the client workstations (Figure 5). Here, two separate game-based simulation 
servers were scheduled with Slurm to run at the same time natively in a Linux environment. Once the simulations 
were running, one client workstation connected to one simulation and the other client workstation connected to the 
other simulation. The client workstations then displayed the graphics of their respective simulation and the user 
interacted with the simulated environment. This experiment demonstrated that a single physical server can host 
multiple simultaneous simulations and those simulations are accessible from separate client workstations. The next 
experiment iteration evaluated the feasibility of deploying the simulations through virtual machines and software 
containers, measured the computational overhead associated with each approach, and compared performance 
differences between scheduling the simulations natively, on a virtual machine, and in a software container. These 
experiments generated quantifiable comparisons on hosting multiple, simultaneous game-based simulations on a 
cloud-based system using the different load balancing approaches investigated in this effort. Furthermore, the 
experiments’ generated data provided evidence that the computer hardware footprint for supporting simulations can 
be reduced with the use of virtual machines and software containers.  Additionally, these and future experiments can 
demonstrate that automated software job scheduling can distribute computational workloads across available compute 
resources (load balancing), alleviate some of the challenges of manual simulation event planning, and can 
automatically enforce event, user, and group priorities. 
  

 
Figure 5. Experimental Setup for  

Scheduling Multiple Simulations Simultaneously 
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Future work 
 
Future work will focus on automating a single scheduling system that can identify and start a series of private, 
connected (federated) regional clusters to remotely schedule, execute, and support simulation-based training on the 
cloud. Solutions will be investigated to address compute resource load balancing in two forms (a) on a single cluster 
and (b) across multiple geographically dispersed clusters. At the individual cluster level, simulation components will 
be deployed in containers that are hosted on one or more VMs. This approach will load balance jobs by reallocating 
resources to the VM when necessary. The second form of load balancing that will be examined is the distribution of 
compute jobs across multiple cluster federates (geographically dispersed clusters). A federated cluster will allow 
software jobs to be assigned to other clusters to evenly distribute workloads. 
 
 
CONCLUSION 
 
Our research produced valuable results by directly addressing the gaps related to the enhancements needed for a more 
robust ITE.  We addressed the bandwidth and latency issues through the use of SDN-enabled architectures, allowing 
the Army to quickly provision and fully optimize their network connectivity.  Further, we used thin clients as a 
complementary effort to our SDN work to reduce the hardware footprint while concurrently seeking innovative ways 
to train Soldiers using inexpensive thin client devices like Raspberry Pi through a cloud-based infrastructure.  Finally, 
our load balancing efforts also focused on cloud technologies to reduce our hardware footprint and to further create a 
more efficient scheduling environment by using automated simulation event scheduling tools like Slurm. These three 
tasks will improve the ability to have a more efficient, optimizable, and flexible training simulation which will allow 
an enhanced versatility in terms of networking and content delivery. 
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