
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 1 of 12

3D Visualization for Point of Need and Cloud Based Training

Greg Dukstein Keith Nielsen

Paul Dumanior

Dignitas Technologies, LLC PEO STRI, PM ITE

PEO STRI, PM ITE

Orlando, Florida Orlando, Florida

Orlando, FL

gdukstein@dignitastech.com
Keith.b.nielsen.civ@mail.mil

paul.h.dumanoir.civ@mail.mil

ABSTRACT

US Army Modeling, Simulation, and Training (MS&T) is moving toward cloud based solutions to meet the future

training needs of the Warfighter. Cloud based solutions will need to provide easily accessible synthetic training tools

that will enable soldiers all over the world to train together. The Army is investing in cloud technologies and leveraging

research to provide Point of Need (PoN) training services and reduce the cost of deployment and sustainment. This

paper captures the lessons learned from a government funded effort to develop an open source light weight cloud

based 3D visualization tool for MS&T applications. In addition to looking at broader applications, our effort is

specifically targeting needs of the Army’s Live Virtual Constructive – Integration and Architecture (LVC-IA) program

as a transition target. Our work has resulted in a thin client 3D viewer that runs in a browser and leverages common

US Army standards and components for exercise data, terrain, and model data. We will discuss how open solutions

and leveraging new government developed technologies can provide a cost-effective solution while still achieving

commonality and interoperability. We will discuss the approaches used, such as streaming terrain elevation data,

ground surface imagery, and 3D models from cloud based servers to thin client 3D viewers and examine different

technologies for rendering a 3D scene in a web browser. We discuss the practical challenges of transitioning this

technology to meet cloud requirements of LVC-IA and other Programs of Record. Lessons learned will be presented

regarding implementation and fielding of a web based solution into a large, complex training environment.

ABOUT THE AUTHORS

Mr. Gregory Dukstein has over 20 years of experience in modeling and simulation applications, with a focus on

terrain services, terrain databases, and modeling behaviors. Mr. Dukstein has worked CGF applications, SAF database

formats, and terrain services for CCTT, UKCATT, Warfighters Simulation (WARSIM), and Synthetic Environment

Core (SE Core). Mr. Dukstein has been involved in large programs and smaller efforts filling roles such as software

developer, systems engineer, team lead, and Chief Engineer. Mr. Dukstein is currently the Director of Engineering at

Dignitas Technologies where he manages research and development projects for PEO STRI and RDECOM.

Mr. Keith Nielsen is the Lead Development Engineer for the Synthetic Environment Core (SE Core) program at the

U.S. Army Program Executive Office for Simulation, Training, and Instrumentation (PEO STRI). Mr. Nielsen

received his undergraduate degree in computer engineering from the University of Central Florida. Mr. Nielsen has

more than 15 years of system engineering experience in modeling and simulation applications, with a specific focus

on simulation protocols, synthetic natural environment, and semi-automated forces.

Mr. Paul Dumanoir is the Chief Engineer for the Product Manager for Warrior Training Integration (PdM WTI)

under the Project Manager for Integrated Training Environment (PM ITE) at PEO STRI. He leads several ITE

modernization risk reduction activities and has over 30 years of experience in simulation and training programs as

Product Manager, Project Director, and Systems/Software Engineer. His interests include enterprise architectures,

model-based and product-line engineering, and system of systems integration and interoperability. He holds a B.S. in

Electrical Engineering from the University of South Alabama and M.S. in Computer Systems from the University of

Central Florida.

mailto:paul.h.dumanoir.civ@mail.mil

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 2 of 12

3D Visualization for Point of Need and Cloud Based Training

Greg Dukstein Keith Nielsen

Paul Dumanior

Dignitas Technologies, LLC PEO STRI, PM ITE

PEO STRI, PM ITE

Orlando, Florida Orlando, Florida

Orlando, FL

gdukstein@dignitastech.com
Keith.b.nielsen.civ@mail.mil

paul.h.dumanoir.civ@mail.mil

INTRODUCTION/BACKGROUND

US Army Modeling, Simulation, and Training (MS&T) is moving toward cloud-based solutions to meet future training

needs of the Warfighter. Cloud-based solutions need to provide easily accessible synthetic training tools to enable

soldiers all over the world to train together [1][2]. PM Integrated Training Environment (ITE) is investing in cloud

technologies and leveraging research to provide Point-of-Need (PoN) training services and reduce the cost of

deployment and sustainment of their training systems and services.

The objective of this Program Executive Office for Simulation, Training & Instrumentation (PEO STRI) sponsored

project was to research and develop a lightweight 3-Dimensional (3D) visualization tool that runs as a thin client in a

browser to support PoN and Cloud-Based training. The intent was to leverage an existing software application which

currently provides 3D visualization capabilities to Synthetic Environment Core (SE Core) and the Live, Virtual,

Construction Integrating Architecture (LVC-IA) Program of Records (PORs) in a desktop based configuration. The

desktop application is called Veritas, and is currently fielded and widely accepted by the LVC-IA community, however

it does not have cloud-based support. The focus of the effort was to develop the thin client 3D viewer to support

current LVC-IA V3 requirements for exercise monitor and After Action Review (AAR) activities, yet be based on a

flexible architecture which enabled accommodating additional ITE 3D visualization requirements as they become

better defined. The web-based 3D viewer architecture includes: a web server to receive and process exercise events

and stream these events to the thin client; a web server to provide terrain and 3D model data to the thin client; and the

thin client 3D viewer that runs in a browser.

In this paper, we discuss our research, development, experimentation, challenges, and lessons learned to prototype an

open source, lightweight, and web-based 3D visualization tool for MS&T applications, which we named webVeritas.

We discuss our analysis of current 3D viewer requirements for ITE simulation systems to identify the common set of

3D viewer requirements to define the requirements for web-based 3D viewer prototype. We discuss how open

solutions and leveraging government-developed technologies provide a cost-effective solution while still achieving

commonality and interoperability. Finally, we discuss the approaches used, such as streaming terrain elevation data,

ground surface imagery, and 3D models from cloud-based servers to thin client 3D viewers, and examine different

technologies for rendering a 3D scene in a web browser.

This paper also captures transition targets for webVeritas. We discuss our collaboration with ITE programs to leverage

technologies and ensure our approach supports their current and future cloud requirements. In addition, we document

remaining tasks and recommendations for future extensions to move the web-based viewer from a Technology

Readiness Level (TRL) 6 prototype to a production ready TRL 9 product.

RESEARCH AND ANALYSIS

Requirements and Use Cases

Our research and development began by identifying PoN use cases and current PM ITE 3D viewer requirements.

Point of Need use cases include: 3D viewer is accessible from a browser; web applications are lightweight and easily

deployable; web services support multiple thin clients; exercise and AAR events are processed by web service; terrain

and 3D models are stored and streamed from a web server; and the thin client renders geospecific terrain and 3D

models. We analyzed 3D viewer requirements from four PM ITE PORs, One Semi-Automated Forces (OneSAF),

Joint Land Component Constructive Training Capability (JLCCTC), LVC-IA, and Synthetic Environment Core (SE

Core) to identify common viewer requirements across the ITE portfolio. Our requirements effort leveraged previous

mailto:paul.h.dumanoir.civ@mail.mil

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 3 of 12

work on a desktop viewer developed for research use cases [3] which is now the LVC-IA 3D Viewer. The resulting

set of requirements and use cases drove our research and development of webVeritas.

Thin Client Framework Analysis

In the initial phase of our research we investigated existing technologies that could provide a thin client framework to

render 3D terrains, 3D models, and exercise/simulation events (e.g. entities, fire, detonations, battlefield effects, etc.).

The thin client framework provides the foundation of webVeritas. Key requirements for the framework include: utilize

modern web technologies such as HTML5; run in a browser without the need for a plugin; and display correlated

terrain data and 3D models. Other requirements include low cost, high performance, networking support, ease of

development, and community support. We looked at several technologies including Unity, Unreal 4, and Cesium as

possible frameworks to leverage for the thin client 3D viewer. We developed prototypes using all three frameworks

and ran a series of experiments to determine which one best supported our thin client framework requirements. Based

on the results of our analysis and experimentation, we selected Cesium [5] to provide the foundation for webVeritas.

It is open source with an active developer community, performs well, uses a straight forward approach for rendering

terrain and 3D models, and it utilizes HTML5. Below we discuss each of the thin client frameworks we investigated

and the results of our experiments.

Cesium

Cesium is a JavaScript Application Programming Interface (API) for geospatial visualization in a WebGL enabled

web browser. It streams global terrain height data and imagery, and renders on a virtual globe. The API allows

connections with different terrain and imagery providers, including locally hosted servers. 3D models of buildings

and vehicles can be streamed, given that the models are available.

Cesium is a client framework that runs natively in a browser and therefore supports Representational State Transfer

(REST) style networking as well as WebSocket connections. Since there is no bundled server infrastructure, use of

this framework requires some initial setup of open source web servers to provide terrain data, as well as development

of a custom server to feed simulation data. Terrain heights and imagery are imported from DEM terrain and GeoTIFF

imagery. While adding new terrain and imagery is relatively simple, the main challenge is generating the static

models. The Cesium 3D model format is glTF.

Since Cesium appeared to be the most viable amongst the framework candidates, a prototype python based server was

created to facilitate further testing. The server translates Distributed Interactive Simulation (DIS) data to a format that

is sent to the 3D Viewer Application. Specifically, the server converts DIS messages to Google Protocol Buffer format

that are sent to 3D Viewer Applications via a WebSocket established between the client and server. The messages

received by the 3D Viewer Application are used to display entity representations and events on the virtual globe. The

performance, ease of development directly in JavaScript, and no cost make Cesium a viable option for the framework

of the 3D viewer. The table below lists the Cesium pros and cons identified during our analysis.

Table 1 Cesium Research Results

Pros Cons

✓ Open source with active developer community ✓ Graphics are not as impressive as with UE4 or Unity

✓ Minimal coordinate conversions needed for global

entity positions. Cesium uses Geocentric Coordinate System.

✓ Programming is not in a type safe language (easier

to introduce errors that are discovered at runtime rather than

build time)

✓ Straight forward automation to add terrain

✓ Instantaneous application startup

✓ Free to use

✓ Programming in JavaScript, access to Web Workers

API for multithreading available

Unreal 4

Unreal Engine 4 (UE4) is a popular game development framework able to support multiple platforms including

internet browsers with HTML5. UE4 application development is done in C++, but the code can be exported to HTML5

to run in a web browser. UE4 HTML5 export support “uses the emscripten tool chain from Mozilla to cross-compile

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 4 of 12

C++ into JavaScript”1 so the game engine code can run in a browser. The HTML5 export feature is considered

experimental. Terrain can be imported through the UE tools as “Landscape Actors” using heightmaps and textures.

It can also be imported on the fly by code using a procedural mesh. Both have their challenges; the first approach

requires a lot of manual labor; the second approach using the procedural mesh requires code to read a data source

during runtime and renders the 3D terrain along with textures. 3D Models must be imported into the UE4 editor for

use during runtime. FBX is the preferred import format. Despite the lure of using the advanced game engine that

UE4 provides, the lack of HTML5 maturity and multithreading support, long load times, and complex royalty costs

make UE4 framework inadequate for the web based 3D Viewer. The table below lists the Unreal 4 pros and cons

identified during our analysis.

Table 2 Unreal 4 Research Results

Pros Cons

✓ Sophisticated game engine with advanced graphics ✓ Royalties (5% of gross revenue after the first $3,000

per product per calendar quarter)

✓ Source code available ✓ Built-in multiplayer framework not compatible with

“world origin rebasing”

✓ Built in multiplayer framework ✓ HTML5 export is experimental

✓ World origin rebasing for unlimited size terrains

without the problems of floating point precision (Not

compatible with multiplayer)

✓ No documentation on how to send messages to and

from UE4 HTML5 code and “native” JavaScript in the

webpage

 ✓ Multi-threading not supported in UE4 for HTML5

export (but planned for future)

 ✓ Long load times

Unity

Unity is a game development engine supporting deployment to a wide variety of platforms, including the web. Unity

5 introduced support for WebGL, allowing content to be run in compatible browsers without the use of a plugin. Unity

converts code written in C# to Instruction Line (IL) to C++ to JavaScript (IL2CPP) to convert game engine code to

HTML5 runtime. The Unity web export functionality is more mature than UE4’s. We successfully tested the

WebSocket connection between HTML5 export and web server. Several model formats can be imported into the

Unity project assets directly without any prior conversion. These formats are FBX, dae (Collada), .3DS, .dxf, and .obj

files as well as SE Core’s Gen1 and Gen2 common moving models (CM2). Despite the positives of the Unity game

framework the lack of multithreading support, long load times, debugging difficulty, and development costs make this

framework inadequate for the web based 3D Viewer. The table below lists the Unity pros and cons identified during

our analysis.

Table 3 Unity Research Results

Pros Cons

✓ Sophisticated game engine with advanced graphics ✓ Multi-threading not supported for HTML5 export

✓ Built in multiplayer framework ✓ No built-in mechanism for loading extremely large

terrains

✓ No royalties ✓ Long load times

✓ Ability to send and receive messages to and from

Unity export code and “native” JavaScript code in web page

✓ Hard to debug WebGL runtime issues due to language

conversion to JavaScript

✓ Doesn’t require a web browser plugin ✓ Build sizes are very large

 ✓ $125 per seat/month to develop with framework

1 https://docs.unrealengine.com/latest/INT/Platforms/HTML5/GettingStarted/

http://blogs.unity3d.com/es/2015/05/06/an-introduction-to-ilcpp-internals/
https://docs.unrealengine.com/latest/INT/Platforms/HTML5/GettingStarted/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 5 of 12

DEVELOPMENT OF WEB-BASED 3D PRODUCTS AND TOOLS

Three main design goals guided the development

of webVeritas. First, webVeritas should be

developed with minimal licensing costs using

open source technologies, and be provided with

government purpose rights. Second, the user

interface (UI) should be simple, intuitive, and

similar to the current desktop version of Veritas.

And third, the web-based 3D viewer prototype

should be delivered at TRL 6 to support exercise

monitor and AAR operations.

See Figure 1 for a high-level system

architecture description of the web-based 3D

viewer which consists of three main

components: Terrain/Model Server, Exercise

Service, and Thin Client 3D Viewer.

Thin Client 3D Viewer Component

The thin client 3D viewer component provides an interface for the end user. The 3D Viewer runs in any

HTML5/WebGL enabled browser. It is simulation protocol agnostic, using a shared communication data model

between the client and server applications. It runs in an internet browser on one or multiple workstations. The thin

client retrieves terrain, elevation, and 3D model data from the Terrain/Model Server component, and exercise data,

such as entities, objects, and battlefield events are received from the Exercise Service component. Rendering of terrain

data and exercise events is handled in the thin client by the Cesium framework. Elevation data is rendered by Cesium

runtime as a triangle mesh. Cesium requests appropriate zoom level and upsamples, if necessary, to smaller area tiles

by splitting an elevation mesh into 4 smaller area elevation meshes. The imagery is texture mapped on the elevation

mesh by Cesium. Cesium requests appropriate zoom levels and uses appropriate imagery providers. Multiple imagery

providers can be registered so different Tile Map Service (TMS) imagery can be used simultaneously. When entities

or objects are received from the Exercise Service the thin client requests their corresponding 3D model from the

Terrain/Model Server to then render in the viewer.

The Cesium framework supports 3D models,

including key-frame animation, skinning, and

individual node picking, using glTF. gITF is an

emerging industry-standard format for 3D models on

the web by the Khronos Group, the consortium

behind WebGL and COLLADA2. Simulation

effects such as fire, detonations, dust clouds, smoke,

and muzzle flash are rendered in the thin client

viewer. However, Cesium does not have any direct

support for particle systems to render simulation

effects such as smoke or detonations. We developed

a custom implementation on top of Cesium's

BillboardCollection class. The developed particle

system can be composed with multiple parameters

such as particle texture, particle lifetime, emitter

lifetime, emitter rate, etc.

2 https://cesiumjs.org/

Figure 1 web-based 3D Viewer Architecture

Figure 2 webVeritas Displaying Virtual Globe

http://www.khronos.org/gltf
http://www.khronos.org/collada/
https://cesiumjs.org/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 6 of 12

We identified a number of use cases for the thin client. These include: view terrain locations; connect to a running

exercise of an AAR playback session; observe a real-time exercise or AAR playback data such as entity events,

weapon events, object events, and tether to entity; and disconnect from an exercise or AAR playback session. Figure

2 shows how the thin client first looks when brought up in a browser, displaying Blue Marble imagery.

Thin Client User Interface

The 3D viewer UI must be simple to use, intuitive, and easy to navigate, like the desktop version of Veritas. A user-

friendly interface is one of the main reasons the desktop Veritas application is chosen as an exercise monitor and AAR

3D stealth tool. In addition, a similar UI will feel familiar to current Veritas users, and will ease the transition from a

desktop tool to web-based one. Therefore, we modeled the web-based 3D viewer UI after the desktop UI. One

webVeritas UI requirement was for an architecture that enables easy extension of tools and plugins that interface with

the 3D view. Another requirement is a single view user experience, which is similar to desktop Veritas, with all

functions available on one screen. We evaluated two popular UI frameworks: React and Angular2. React3 is a

JavaScript open source library maintained by Facebook, primarily used to generate user interface views. One

advantage of React is it utilizes JSX that allows mixing XML and JavaScript in one file. Angular24 is a JavaScript

component based framework maintained by Google, with the advantage of being a framework containing everything

required to develop a client side website.

We selected Angular2 for the thin client UI framework because it provides a complete framework with preferred

libraries and functionality. It uses the TypeScript language, which is a superset of JavaScript. Because it provides

strong typing and classes, and can be compiled back into JavaScript, it has improved compatibility in all browsers.

Additionally, Angular2 provides an easy to use framework for extending UI components. For databinding and

communication, we selected RxJS (Reactive Extensions for JavaScript). Angular2 uses Observables as part of its

asynchronous interfaces, such as making HTTP requests and communication between components. The RxJS library

comes with a WebSocket Observable. Combining this WebSocket Observable with other RxJS operator extensions

allowed easy filtering of messages and handling reconnections when the websocket was disconnected due to an error.

We designed and implemented the thin client UI to have a single view providing a simple menu to access all 3D

viewer user functions. Pictured below are a few examples of the UI. The Entity List function accesses a list of entities

in the training exercise with the capability to sort, filter, and tether to entities. The Fire Lines function provides the

capability to enable/disable fire lines. The Goto Location function moves the eyepoint to a user provided coordinate.

The finally the Saved Locations function allows the user to save important or interesting locations. The images in

Figure 3 provide two examples of the thin client UI.

Figure 3 Example Thin Client UI

3 https://facebook.github.io/react/
4 https://angular.io/

https://facebook.github.io/react/
https://angular.io/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 7 of 12

Terrain / Model Server Component

The Terrain / Model Server component is an HTTP based server that supplies terrain information consisting of

elevation data, terrain skin textures, and 3D models to the thin client 3D viewer component. We reused a Go based

open source Cesium Terrain Server compiled to run as a native executable on either Windows or Linux. The terrain

data includes 2D imagery tiles and terrain elevation data. The model data provided by the Terrain/Model Server

consists of 3D models of features (e.g., trees,

buildings, etc.), entities (e.g., vehicles, lifeforms,

munitions, etc.), and objects (e.g., log cribs,

fences, barriers, etc.). It should be noted that the

Terrain and Model servers can be run together as

a single server (depicted in Figure 4) or run as

separate processes on different machines with

minimal configuration changes on the Exercise

Service. This allows flexibility in environments

with limited or abundant hardware, and supports

future scalability.

Exercise Service Component

The Exercise Service component hosts the

3D viewer HTML5 client code. The

component handles simulation exercise

specific operations such as decoding

simulation protocol data and forwarding the

events and data to the thin client 3D viewer

components to be rendered. The primary

role of the Exercise Server is to convert

simulation specific protocol information

(e.g. DIS) into a more generic viewer data

format that is forwarded to and then

displayed by the thin client. The server is

written in Python and consists of both third-

party software (i.e. Bottle and CherryPy

frameworks to handle web requests) and

custom written modules to do the

translation. The server defines a REST API

to interact with the Exercise Service.

Through Listener Plugins the Exercise Service can receive and process simulation data via any number of simulation

protocols such as DIS, HLA, and Tena. The prototype version of webVeritas integrates a DIS Listener plugin,

enabling interoperation with systems such as OneSAF for experimentation, test, and demonstrations.

Web-Based 3D Viewer Data Model

We analyzed DIS as a potential data model between the Exercise Service and 3D Viewer browser client since it is

used widely in the MS&T community and supports the necessary data for a 3D viewer. However, DIS PDUs contain

more data than necessary to render entities and battlefield effects in a 3D viewer. Instead of using DIS as-is, we

developed a custom data model using Virtual DIS (VDIS) as a starting point. This custom data model enabled

optimizations in data size, and allowed resource intensive calculations to be performed on the server, instead of in the

light weight browser where resources are constrained. In addition, using a custom data model definition maintains

independence from existing simulation protocols.

We selected the Google protocol buffers (protobuf) software library as the mechanism to represent the custom web-

based 3D viewer data model. Google protocol buffers allow definition of a data model independent of programming

Figure 4 Terrain and Model Server

Figure 5 Exercise Service

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 8 of 12

language, providing language and platform flexibility. For webVeritas, it outputs data model objects to JSON, our

chosen data model format.

Communication Protocols

Communication between the client and server is done via REST (data upon request only) and WebSockets (2 way

communications). The Exercise Service uses the DIS Listener module to capture DIS traffic from the network, then

the DIS Translator module converts the DIS information into viewer specific data, which is then streamed to the

browser 3D viewer client via websockets. The Exercise Service provides a REST API to allow the browser 3D viewer

client to request information such as simulation time, list of terrains, and saved locations as needed.

The 3D browser client retrieves information from the Terrain and Model servers through standard HTTP requests.

The Terrain Server implements the Tile Map Service (TMS) specification, allowing the 3D client to retrieve both

imagery tiles as well as terrain height maps via a REST API that takes a zoom level and an x/y grid specified in the

request URL. For imagery, a jpeg or png file is returned for the given request, and for terrain heights a file containing

height data in the "heightmap-1.0" format is returned for the queried area. 3D models files (terrain features, entities

and animations) are retrieved by URL by the client software using a plain HTTP GET request. File return types depend

on the type of resource, e.g. glTF for entity models and b3dm for terrain features.

TERRAIN ELEVATION, IMAGERY, AND 3D MODELS

Terrain Elevation

Elevation data is rendered by the 3D viewer as terrain height maps in the Cesium heightmap-1.0 terrain format. We

used SE Core provided DTED level 2 elevation data with a post spacing of 30m in GeoTIFF format. The SE Core

elevation data is converted by dividing it into smaller tiles that can be easily streamed from the terrain server to the

thin client. The conversion is done off-line and the data is stored on a server to be accessed by the Terrain / Model

Server and streamed to the thin client as the eyepoint is moved. Elevation data is cached by the thin client along with

other data streamed by the Terrain / Model Server.

Imagery

A 3D viewer must display realistic ground surface textures to support exercise monitor and AAR activities. Cesium

uses imagery to display ground surface textures. Depending upon the use case, different imagery resolution may be

needed. For example, a fixed-wing flight simulator is typically operating at high altitudes, so low-resolution imagery

may be sufficient. However, ground, or near ground simulations like the Close Combat Tactical Trainer (CCTT) and

the Aviation Combined Arms Tactical Trainer (AVCATT) will require high-resolution imagery so ground textures

look realistic. Terrain imagery is draped over terrain elevation height maps. When webVeritas is started, a virtual

globe is visible in the thin client. We are using Blue Marble imagery at 500m resolution for the virtual globe. This

enables the operator to go anywhere in the world and have terrain even if it’s very low resolution when zoomed in. A

user can provide high resolution imagery for locations on the globe where needed for training. For our research and

experimentation, we leveraged SE Core correlated terrain products such as satellite and synthetic imagery, elevation

data, OneSAF Terrain Format (OTF), and OpenFlight terrain data.

Figure 6 JBLM Satellite Imagery

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 9 of 12

In our initial experiments, we used the SE Core Joint Base Lewis-McChord (JBLM) data. The JBLM satellite imagery

is provided at approximately 2m pixel resolution. Our evaluation of the satellite imagery found it to be unsuitable for

ground- or air-based simulations because the imagery becomes stretched, blurry, and unrecognizable when viewed

close to the terrain surface (see images in Figure 6).

SE Core produces synthetic imagery which can be produced at

much higher resolutions than available satellite imagery.

Synthetic imagery has no shadows, clouds, vehicles, and when

zoomed in close, no tree or building images. Additionally,

synthetic imagery correlates closely with other SE Core runtime

formats because they are all produced from the same source

data. We considered streaming performance and storage

requirements for the synthetic imagery, and evaluated different

resolutions to see which might be sufficient for viewing ground

based simulations. We integrated 2m aerial imagery covering

the entire database, 0.5m resolution ground surface imagery for

an inset area, and 0.1m resolution ground surface imagery for a

smaller insert area. The 2m aerial imagery included tree and

building images which enables the viewer to render the scene

faster because it is only rendering imagery and not 3D models

of the tress and buildings.

Our evaluation of synthetic imagery found that the 2m

resolution was of similar quality overall as the satellite imagery.

However, it was better than satellite imagery because it

correlates with other SE Core runtime formats and did not have

clouds, shadows, and other artifacts often found in satellite

imagery. The 0.5m ground surface imagery looked much better

than the 2M aerial imagery and the 0.1M looked much better

than the 0.5m ground surface imagery. The 0.1M imagery is of

similar quality as terrain textures found in SE Core OpenFlight

terrain databases. See the images in Figure 7 for comparison

between the different synthetic imagery pixel resolutions.

3D Models

The thin client viewer renders 3D models of terrain features such as trees and buildings. As the operator moves the

viewer eyepoint around the synthetic environment 3D models are streamed from the Terrain/Model Server to the thin

client. For webVeritas we extracted tree and building 3D models from SE Core OpenFlight terrain and put them into

the Cesium 3D tile format using an off-line conversion tool. The 3D thin client viewer renders the visual models for

all entities and objects received from the Exercise Service. When the thin client receives an entity from the Exercise

Service it retrieves the corresponding 3D visual model from storage in the Terrain / Model Server. The Terrain /

Model Server stores all 3D visual models for vehicles, objects, munitions, etc. that are to be rendered in the simulation

battlespace. The thin client is built on the Cesium framework and requires the 3D models to be in the format Cesium

uses to render moving models which is glTF.

PERFORMANCE

We captured webVeritas performance metrics throughout development. Our objective was to meet performance

numbers of the desktop Veritas application. We focused our performance metrics on thin client CPU usage and frames

per second (FPS). We found that webVeritas performed as well as the desktop application when panning and zooming

the terrain without entities. During an exercise, webVeritas performance varied depending on the number of entities

and battlefield effects rendered by the thin client. See the table below for a comparison between desktop and web-

based Veritas running the same scenario on the SE Core Camp Grayling terrain. Additional performance testing and

optimization will be needed to fully support MS&T programs.

Figure 7 Synthetic Imagery (0.1m, 0.5m, 2m resolution)

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 10 of 12

Performance Test Desktop FPS/CPU WebVeritas FPS/CPU

No entities panning/zooming 60/3% 50-60/3%

25 Moving ground vehicles with dense forest and buildings 60/5% 20/13%

Engagements fire and smoke effects in dense feature area 60/6% 10-15/13%

Ground vehicle with articulation in view w/other vehicles outside view 60/4% 30-40/10%

Single RWA in view of camera with other vehicles near 60/4% 30-45/9%

10 RWA with moderate building and tree feature density 60/4% 20/12%

Tethered to flight of 5 moving RWA. Dense trees & buildings 60/6% 40-50/9%

TECHNOLOGY TRANSITION

One of the objectives for this research project was the transition of developed technologies to US Army MS&T PORs

with 3D viewer requirements. To this end, we developed the web-based 3D viewer with open source technologies,

Army MS&T common components (e.g., SE Core terrains, 3D models, and V-DIS), and delivered it with Government

Purpose Rights to reduce many of the traditional barriers to technology transition to MS&T programs. The maturity

level of the software produced was at TRL 6 and included, design and test artifacts designed to enable easier transition.

PM ITE targeted LVC-IA POR as the first adopter of the webVeritas research product since many of the web-based

3D viewer research requirements were derived from LVC-IA 3D viewer requirements. LVC-IA v2.0 is currently

deployed with the desktop version of Veritas.

Throughout development of webVeritas, our team met with the LVC-IA development team. We held periodic

technical exchange meetings to describe our architecture, design, and implementation approach, and elicit feedback

to ensure we kept implementation on track to be a candidate for transition to LVC-IA. We participated in LVC-IA

design reviews and provided technical guidance on their approach for connecting the web-based AAR to webVeritas

for AAR playback.

In addition to transitioning this research product to the LVC-IA POR, PM ITE also used the results of this research to

feed the development of a 3D viewer sharable asset for the PM ITE enterprise. The 3D viewer sharable asset is one of

several sharable assets being developed under a PM ITE product line engineering approach that provides common

simulation & training capabilities across the synthetic (V, C, G) systems portfolio. The PM ITE product line approach

is part of a larger enterprise modernization initiative known as the Synthetic Simulation Transformation (S2T) whose

purpose is to facilitate communication with developers, users, and our industry partners to support standards and

common solutions for synthetic simulation. S2T portal can be found at https://www.s2tportal.mil/

PROOF OF CONCEPT DEMONSTRATION

As a proof-of-concept we wanted to demonstrate the web-based 3D viewer prototype in a relevant or operational

environment. The Army LVC-IA system provided an ideal operational environment to demonstrate the webVeritas

capabilities. The demonstration showed how the webVeritas prototype capabilities met the requirement set and

provided evidence that the webVeritas 3D Viewer is ready to be transitioned and productized by a Program of Record.

We worked closely with the LVC-IA development and test teams to install and configure webVeritas, develop and

test the demonstration scenario, and execute the demonstration. We installed the Exercise Service and Terrain/Model

Server on two Linux Virtual Machines (VMs) on LVC-IA servers. The demonstration included three core systems—

CCTT, AVCATT, and Games for Training (GFT) VBS3. We ran the webVeritas thin client 3D viewer in a FireFox

browser on a Windows PC workstation. Finally, we also ran the desktop Veritas on a separate workstation to show a

comparison of capabilities between the current 3D viewer and webVeritas.

https://www.s2tportal.mil/

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 11 of 12

The demonstration scenario ran on the SE Core

Camp Grayling terrain. Figure 9 illustrates the

demonstration locations on Camp Grayling. The

demonstration scenario included approximately

100 entities from GFT, CCTT, and AVCATT executing at two separate areas on the Camp Grayling terrain. The

image below shows the two areas used in the demonstration exercise. In the first scenario, AVCATT Blackhawks

flew from the MOUT site to the location where two GFT DI were waiting. The GFT DI was mounted and was flown

to the MOUT site to support CCTT Blufor infantry to engage with CCTT hostile forces. The second scenario took

place on the east coast of Michigan in the 0.1M resolution inset. This showed the high resolution synthetic imagery,

allowing comparison to the low resolution 2m synthetic imagery where the first scenario occurred. The scenario

consisted of approximately 90 CCTT and AVCATT entities. First, we ordered AVCATT Apaches to fly to a location

outside an airfield and engage with CCTT hostile ground forces occupying the airfield. Next, we showed a CCTT

M1A2 platoon maneuvering through a built-up area. Lastly, we demonstrated a large AVCATT and CCTT Blufor

and Opfor engagement in an open location north of the airfield. The demonstration successfully proved we met our

research objectives and goals to develop a web-based 3D viewer that runs in an operational environment, uses common

Army MS&T products and standards including SE Core terrain and 3D models, and exchanges simulation events via

the V-DIS protocol.

Figure 10: Proof-of-concept demonstration

LESSONS LEARNED

Throughout the research project we learned a number of lessons that will help us improve how we execute future

research and development efforts, and help us improve the web-based 3D viewer prototype in follow-on efforts. In

addition, these lessons learned can help others doing similar research. In this section, we share some of the lessons

learned on this project.

Figure 9: Demonstration Locations

Figure 8 Proof-of-Concept Demonstration Setup

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017

2017 Paper No. 17067 Page 12 of 12

Cesium Capabilities

Our selection of Cesium as the thin client 3D render framework provided time and cost savings because it already had

many capabilities needed for our thin client viewer, and has been leveraged on related work [4]. Leveraging Cesium’s

existing functionality allowed us to focus on other capabilities, and mature the prototype further than planned. For

example, Cesium provided a Geocentric coordinate space API for interacting with objects and entities making it

unnecessary to convert to a local coordinate space. The Cesium engine supports downloading model files in the

background and loading them when ready. Cesium also provides an optimized capability to load imagery and

elevation tiles. In addition, a basic tethering capability is implemented in Cesium, which we extended to include tether

from the UI entity list. We leveraged existing Cesium code to provide battlefield effects like smoke, fire, and dust.

Cesium also provides ground clamping of entities and objects. We estimate that using Cesium saved us over two

months of research and development effort.

Actively Support Open Source Project

Cesium is an actively supported open source project with a strong user community. This allowed us to leverage the

work of other developers using Cesium and share ideas and solutions to issues through online forums. We cloned the

Cesium open source third party APIs in our local git repositories, which allowed us to mirror Cesium, collada2gltf,

and other tools locally. We created branches when updates to these baselines were committed and easily downloaded

upstream updates and merged with our local branches.

Cesium Elevation Tile Issues

We represent terrain elevation in the 3D viewer using Cesium elevation tiles. After implementing and testing with

Cesium elevation tiles we found that random breaks in the terrain surface can be seen between tiles during pan and

zoom operations close to the terrain surface. Creating the elevation tiles is a simple process, but when Cesium renders

an upscaled elevation tile at higher zoom levels, there is an error with precision in the resulting vertices. On something

as simple as a sloped terrain, the result is blocky with a vertex count that is higher than necessary and also resulted in

cracks between the upsampled tiles. We investigated alternative solutions to using elevation tiles, such as converting

elevation GDAL to Cesium quantized mesh tiles, which will be considered as a future improvement to webVeritas.

CONCLUSION

This research proved the viability of a light-weight, web-based 3D viewer, using open source technologies and

leveraging Army MS&T common components and standards. Cesium proved to be a successful solution for rendering

3D content in a thin client 3D viewer. Leveraging SE Core terrain and model data ensures a high level of correlation

and supports interoperability with existing and future simulation systems using SE Core products. A web-based 3D

viewer is easier to install, maintain, and configuration manage than a traditional desktop viewer application. The

result of this research effort is webVeritas, a GPR, TRL-7 tool that runs as a thin client in an internet browser to

provide 3D visualization for Point-of-Need and Cloud-based training.

REFERENCES

1. Powell Jr, D. A. (2013). “The Military Applications of Cloud Computing Technologies,” Army Command and

general Staff College Fort Leavenworth School of Advanced Military Studies.

2. Bair, L., Fairchild, J., Elkins, S. (2016) “High-Fidelity Training on Demand via the Cloud,” Modsim World

Proceedings 2016.

3. Dukstein, G., Watkins, J., Le, K., and Gonzalez, H., (2013) Extending construction simulators through

commonality and innovative research, in Proceedings of the Interservice/Industry Training, Simulation, and

Education Conference, pp. 2355–2365, Orlando, Fla, USA

4. Santiago, F., Verdesca, M., & Watkins, J. (2012) Geospatial Correlation Testing Framework and Toolset.

Proceedings of I/ITSEC 2012

5. Cesium website: https://cesiumjs.org/

