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ABSTRACT

We live in a virtual explosion of data. The Internet generates an estimated 2.5 quintillion bytes of data every day.
Though the data from instrumentation on aircraft, vehicles, ships, autonomous systems, simulators, and, increasingly,
humans themselves does not reach this scale, its volume is significant and increasing. It is natural to want to use this
wealth of data to build realistic training scenarios.

The chief difficulty is that, whatever events were recorded, they represent only one path through the world. This
makes the recording suitable for replay, but a recording cannot give students the chance to make choices in the
simulated world that would take them down different paths. Recordings cannot be directly used for training scenarios
unless additional steps are taken. This means that accommodations must be made, through subject-matter expertise,
machine learning, or both, to synthesize the data into realistic entity behaviors in a scenario.

In this paper, we discuss our experiences building several systems that take these additional steps, which generally
involve machine learning and intelligent agents, and we discuss in detail an effort that focuses on creating realistic
constructive maritime patterns of life from real-world data.

We conclude by discussing the training value of learning patterns of life from real world data, and lessons learned that
will be useful to help other training professionals create realistic data-driven training scenarios.
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INTRODUCTION

We live in a virtual explosion of data. The Internet generates an estimated 2.5 quintillion bytes
of data every day. Though the data from instrumentation on aircraft, vehicles, ships,
autonomous systems, simulators, and, increasingly, humans themselves does not reach this
scale, its volume is significant and increasing. It is natural to want to use this wealth of data to
i build realistic training scenarios.

There is genuine value in using real-world data to construct training scenarios. Most obviously, it provides a degree
of realism that is otherwise hard to achieve. Building the scenario entities automatically conveys another benefit as
well—ease of preparation and execution. In some of the scenarios we describe below, thousands of entities are
involved, and this is far more than would be feasible to create by hand. Further, depending on how thoroughly they
are created manually, instructional personnel may need to monitor their behavior during the training session, which
takes away from the time they could use actually instructing the students.

In this paper, we discuss our experiences building several systems that automatically build scenario entities from real-
world data. One such system creates virtual scenarios that reproduce aviation mishaps, another focuses on creating
realistic constructive patterns of life from real-world data, and a third concerns exploiting data from simulator-based
air-to-air combat scenarios to create intelligent constructive adversaries. We conclude the paper by discussing lessons
learned and general principles that will be useful to help other training professionals create realistic data-driven
training scenarios.

PAST EXAMPLES
As reported in Stacy et al. (2010), we

developed a prototype that sped the process of e a | P '
creating scenarios from flight logs with special ey
attention to recreating aviation mishaps. The i
approach used a four-step process: 1) the S {_D

original flight path was provided from flight
data recorder data, either from the actual
aircraft or from a re-creation of the mishap in a
simulator; 2) on the flight path, the scenario
author identified key events and pilot decision
points; 3) the scenario author generalized the
events and decision p_OIntS, that is, they_entered Figure 1. The instructor is notified that the trainee is outside the
the values of key variables at those points that  mjishap envelope. The student is in danger of missing scenario conditions
could also lead to the mishap. The  that ensure key events and decision points related to the mishap. Starting
generalization step was an acknowledgement values for the mishap envelope come from real-world or simulator data,
that a safety incident will never happen exactly and are generalized by the instructor. (From Stacy et al., 2010.)

the same way twice—the location, altitude,

speed, or other aspects of the situation may be

different from the original mishap; and 4) the author connected those regions into a set of continuous envelopes
describing the mishap-causing values of the key variables. These envelopes constituted the scenario. As long as pilots
stayed within this envelope during the simulator mission, they encounter the circumstances involved in the mishap,
and they arrived at the mishap’s critical decision points. When running the scenario, instructors could choose to have
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students encounter the mishap, or they could choose to allow the students to make decisions that would let them avoid
the mishap. Figure 1 shows a screenshot from the prototype.

A second relevant example involves generating background, or “clutter,” patterns of life that are qualitatively similar
to real-life narrative. Clutter activities that appear to follow a narrative can increase learner sense of presence in all
types of scenarios, and can be the focus of training in some scenarios. In particular, cognitive-perceptual training tasks
such as observation of a crowd from a distance require narrative clutter activities (Schatz et al., 2012; Wray et al.,
2015). In these efforts, narrative activities included simulated entities moving as individuals and groups within the
crowd, leaving and entering buildings, and paying attention to things on their route or stopping along the way. If these
activities are assembled in a random way, there is no message for the observer trainee to find. But when the activities
are generated according to a narrative, the observer can learn and practice how to infer meaning from the activities in
the clutter crowd, create a mental baseline of normal activity and observe changes from it, and detect deviations from
the trend which indicate individuals of interest for further surveillance.

A current effort involving all the authors seeks to develop patterns of life from real-world data for use in training
scenarios. The motivation for doing this is to provide a low-effort way to deploy high-fidelity patterns in training
scenarios, thus freeing up training personnel to focus on instruction itself. We are using real-world data about ships
to create maritime patterns of life, though we expect to use a variety of other types of data and to expand the analysis
to land-based patterns of life.

What follows is a description of the processing pipeline that we have set up to automatically create these patterns of
life. After discussing the pipeline, we will conclude the paper with a discussion of areas for future research, lessons
learned, and the training value of easily created, high-fidelity patterns of life.

CREATING DATA-DRIVEN PATTERNS OF LIFE IN TRAINING SCENARIOS

The pipeline can be seen in Figure 2. We perform activity learning on the raw data using a variety of machine learning
techniques and package the result into a language called Activity Description Language (ADL). The ADL is used as
the basis for generating entities and their behavior, and the result is fed to the simulation environment for use in
training sessions.

Offline Training Session Training Session
Preparation
Activity Entity and
Raw Data Description Behavior
Language Data
— (ADL) —
Activity .| Activity
Learning Generation

Figure 2. The pattern of life processing pipeline. Activities are learned from raw data, translated into Activity Description
Language (ADL). In preparation for a training session, meaningful and realistic activities are then generated from the ADL and
sent to the simulation environment. The entities and behaviors generated this way are responsive to other entities in the simulation,
unlike what a simple replay of the raw data would provide.

In the next several sections, we describe the components of the pipeline in greater detail.

THE RAW DATA

Construction of patterns of life for maritime ship behavior starts with a dataset of ship behavior. This dataset should
have a variety of different kinds of ships and represent a variety of different locations. The assumption was that ship
behavior varied by location and ship type so, for example, ship navigation behavior in the port at Singapore is different
from ship navigation behavior in the port at Seattle, which is different from ship behavior through the Strait of Hormuz.
Ship behavior data over a period of time and ideally through different weather conditions and times of year would
also be beneficial to represent any differences in behavior based on either time of year or weather conditions.
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Ships at sea have a risk of collision and require traffic 1,510 1. AIS Ship and Location Data Examples
management in busy ports. To support this, a system
called AIS (Automatic Identification System) has been ! ! ! !
implemented and deployed starting in the 1990s, first Ship Information Ship Location
using short-range radio and then later using satellite Information
transmissions. Since 2002, most ships over 300 gross IMO - Unique id fora | MMSI - Maritime Mobile

tons on international voyages must have AIS ship hull Service identity
transceivers. This information is not only valuable to International radio call | Navigation Status such as
the ships at sea, but also for other purposes and several sign “at anchor”, “underway
commercial companies have emerged that provide using engine”

various subsets or aggregations of collected AIS data. Type of ship/cargo Speed over ground

Table 1 shows some sample ship information from the Draught of ship Current Position

AIS messages. We obtained AIS data for the entire Destination of ship True heading

globe for the month of April 2014. Expected time of Time

AIS data provides a variety of information about arrival at destination
individual ships and their activity. Ships typically

transmit current status information such as location and speed every few seconds and transmit ship identification
information every 6 minutes. Figure 3 shows a sample of the message locations by ship in two different map locations.

The data set is large and consists of almost 100 million records of ship information and over 180 million records of
ship location information. Plotting the ship location data on a map provides a visual sense of the ship behaviors in
different regions.

Figure 3. Map of AlIS location messages plotted by ship in the southern California and Strait of Hormuz regions from April
2014. Each dot represents an AlS message, and different colors represent ships of different types. Viewed at this distance, the dots
appear to form into tracks. Forming the messages into suitable tracks like these, taking care that they did not appear to cross land,
was the first step in activity learning.
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Table 2. Sample Ship Types and Navigation Statuses To manage this complexity, 10
[N | R s = B B v AT
; \ o — p California and the Persian Gulf,
AL Al r - .
" e ° e were identified and processed
Cargo Moored 284 Tanker Moored 185
seaparately. Table 2 shows a
Cargo Not Under Command 57 Tanker Mot Under Command 90 . -
sample of the kinds of ship types
Cargo Restricted Manoeuverability 55 Tanker Underway Sailing 34 . .
and navigation statuses that were
Cargo Underway Sailing 119 Tanker Underway Using Engine 390 | bl . fth .
Cargo Underway Using Engine 432 Towing . - avallable In one O e regions.
DivingOps Moored 16 Towing Restricted Manoeuverability 55 ACTIVITY LEARNING
Dred, [v]
i . rap; | bility 22 Towing Underway Sailing 26 i
Fishing Engaged In Fishing 28 Towing Underway Using Engine 55 TO Create a generallze_d mOdeI Of
Large Towing Restricted Manoeuverability 12 Tug At Anchor 159 Shlp A moveme.nt’ bUIIF on our
— e . Lo e previous activity learning efforts
Passenger Not Under Command 22 Tug Restricted Manoeuverability 206 (LeVChUk, Lea: & Pattlpatly 2008,
Pilot Vessel Underway Sailing 28 Tug Underway Salling 116 LeVChUk, Shabarekh, & Furjanlc,
Pleasure Craft Underway Sailing 15 Tug Underway Using Engine 277 2011; LeVChU k, Jacobson, &
Furjanic, 2013; Levchuk &

Shabarekh, 2013), we took a two-
phased approach. First, we compute a set of areas in the ocean within which the activities most commonly occurred.
We then compute the most probable connections among the areas, for each ship activity type, where activity type is
defined by a pairwise combination of ship type and navigation status. This result is a topology that effectively
describes generalized sea lanes within which movement can occur for each activity type, as the ships navigate from
their origin to their destination. For each activity type, the topologies are supplemented by activity information on
probable origins and destinations, and by parameters that describe the distributions of ship density per day and ship
velocities.

Computing the areas. Areas are described by a set of adjacent polygons that cover regions in the ocean where there
was AIS activity. When traffic is heavy the areas are smaller, and when it is lighter the areas are larger. Figure 4
shows an example of the resulting areas in the ocean off the coast of Southern California.

Figure 4. Areas computed for Southern California. Areas represent concentrations of tracks formed from AIS messages,
discovered using clustering algorithms. Higher density traffic resulted in smaller areas, and lower density traffic resulted in larger
areas. The areas that are shown cover all activity types, but not all areas were involved in every activity type.

AIS messages contain a fair amount of variability in their usage, and this is especially true for the frequency of
broadcast. We obtain ship tracks by connecting sequential AIS messages for specific ships. Unfortunately, ships that
broadcast infrequently as they go around land features like peninsulas can make naively-connected tracks to appear to
travel over land. For this reason, we set time and distance thresholds for connecting them—successive messages that
exceed either threshold are not connected. The result is a set of tracks that are spatially and temporally connected and
that always are over water.
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We then create areas by clustering the waypoints in these tracks based on traffic density. For our initial set of areas,
we use k-means clustering (MacQueen, 1967). The result is a set of polygons, as in Figure 4: each is a two-dimensional
representation of points based on latitude and longitude. K-means clusters points relative to a center point (centroid)
expressly to minimize within-cluster variance. To increase separation between clusters, we add some noise using a
technique called regularization. Work in progress uses graph hashing algorithms instead of K-means clusters (cf. Liu
et al., 2011), which will take advantage of spatial and temporal information in the tracks.

Computing the connections among areas. The next step is to compute the connections among the areas for each
activity type. The rationale for separating connections by activity type is that different kinds of ships, with different
navigation statuses, might well use different paths in the ocean. For example, cargo ships might stick more to deeper
sea lanes while fishing ships might take less-traveled paths on the way to their fishing grounds, and pleasure craft
might stick closer to shore. Navigation status plays a role, as well: a ship that is underway using engine might travel
in different places than one that is underway sailing, or restricted by her draft; and ships that are at anchor or moored
will not often be in the same locations as those that are travelling.

To compute these connections, the tracks
used for computing the areas are segmented
into tracklets by identifying contiguous
portions of the tracks that have the same
navigation status. We use the tracklets to
create a network of connected areas for
each activity type. Figure 5 shows the
connections for two ship types, (a) cargo
ships underway using engine and (b)
fishing ships engaged in fishing. The
connections are depicted by connecting the
centers of the areas, and the areas are
omitted from the figures for clarity. In
reality, the connections allow ships to
travel from any place in an area to anyplace
in the connected area, not just from
polygon center to polygon center. This
allows for realistic variation in ship
behavior.

The areas and connections comprise a
topology for each activity type, and
topologies in effect define the generalized
sea lanes that each individual ship can use
(b) Fishing ships engaged in fishing to get from origin to destination.

Figure 5. Connections among areas in Southern California for two activity BEHAVIOR ENVELOPES AND

types. For ease of presentation, the connections are between area centers, but they ACTIVITY DESCRIPTION

in reality the connections denote movement from anywhere in the originatingarea LANGUAGE

to anywhere in the destination area. Connections are computed per activity type, . . ..

and, as is evident, can look markedly different for different activity types. Areas Over a series of scenario-based training

and connections together represent an activity type’s topology, which is effort_s, _We have develc_)p_eq a formal

effectively a set of generalized sea lanes along which ships may travel. description of learned activities (Stacy &
Freeman, 2016; Jones, et al., 2015a), and

it has been expressed in a language called
Activity Description Language (ADL.) ADL is a language defined by an XML Schema, which means it is readable
by machines and interpretable by humans. We use ADL to express the activity networks that results from activity
learning, and to express additional information about those networks, including activity type densities and parameters
to describe the distribution of ship velocities per activity type.
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The major elements of ADL are shown in Figure 6. The
elements of constraint are one or more variables with a
specified relationship. Typical relationships are simple
mathematical ones such as “<”, “=", and “#”; however,

the relationships can also be more complicated, such as
the relationship “all different” among multiple variables.

. i . B attributes
Importantly, a variable has a domain which represents the

possible values it can assume. Domains can consist of a
finite set of integers, such as the number of threats a
student should face during a vignette, a continuous
interval, such as a range of distances from a target the
instructor intends for the student, or a finite set, such as
the defensive resources a student can bring to bear.
Domains can be refined during the course of scenario
execution as resources change and time elapses. Variables
and domains are defined in the support element, and
constraints are defined in the state element.

ACTIVITY GENERATION

After the behavior envelopes in ADL have been
generated, they can be used to generate activities that are
displayed in training simulation environments. This
section describes the process of doing so.

While the high-level approach to activity generation is

general, implementation details do have an impact on gigyre 6. Top-level elements of ADL. The support element
design. The atomic actions available in a particular describes the variables and relations involved in constraints,
simulation environment will change what activities may be which in turn describe the behavior envelopes that comprise
generated and how they should be carried out. In order to states in a vignette. A role in a vignette has a set of goals and
minimize this impact, a hierarchical planner (Folsom- is effectively an activity type in the current analysis, and,
Kovarik et al., 2015) is used to abstract detail where among other things, it describes the activity type’s topology.
possible. However, our experience suggests that the Areas are described under the terrain element.

abstraction will not remove the need to know about the underlying simulation, because of different affordances and
capabilities.

The present example discusses movement of ships on a geodetic surface of water. The available atomic actions in this
synthetic environment allow for movement of one simulation entity from its current position to a new position in a
straight line at a given speed. All other activities, such as movement along complex paths or coordinated movement
of groups, must be assembled from these atomic actions.

It is easy to imagine adding actions as needed in different training domains for changing altitude, turning a body or
head to a certain angle, loading people into vehicles, controlling broadcast emissions, and more actions that could
exist in a simulation environment to meet specific training needs. In addition, the authors have separately used similar
activity generation to support training in much more abstract domains, such as simulated cyberattacks (Nicholson et
al., 2016.). Even abstract training domains still need to present trainees with an appearance of narrative and purposeful
intent.

Within the example of ship movement, activity generation consists of creating ships and planning routes for them that
present a coherent pattern of life. The behavior envelopes define how important aspects of these patterns may vary,
because the activity generated must always stay within the relevant envelopes. Simple examples include an envelope
that defines how many ships of a particular type should start the scenario within a given geographic region, what
speeds are typical in this area, and what areas ships may or may not move into. Then activity generation defines where
individual ships will actually move, staying within the given constraints.

A high-level view of our activity generation sub-pipeline is presented in Figure 7 below. Activity planning takes high-
level goals specified in behavior envelopes and produces a sequence of specific actions that occur in an entity’s
lifecycle. Next, this plan is refined at increasingly high levels of fidelity until it meets all local and/or environmental
constraints (for example, ensuring generated planes follow appropriate altitude blocks in a tactical air domain, or
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generated ship trajectories always lie on surface water). Finally, these low-level actions are translated into atomic
actions specific to the target simulation. This hierarchical refinement process allows even complex behaviors to be
embedded in training simulation environments that have only basic entity controls available.

A key contribution of activity

Envelope Search . . - .
@ Select which envelopels) apply given current generation is providing underlying
EEDRPG pore, and btk s et intent to simulated entities. That is,
each entity will not simply move
Activity Planner _ randomly  within  the  given
T e boundaries. Random _ moveent
of envelopes does not provide the interpretable
cues that trainees need to be able to
Activity Refinement : perceive for training purposes.

Incorporate local and environmental constraints . -

@ toproduce asingle low-level behavior plan Instead, individual movements are

planned in the hierarchical planner
o so that they sum up to subgoals and
Sequence of Atomic Actions . .

e b i e an overarching goal of the entity.

::;zrlt:::na;g;?s specific to the target simulation FOI’ example, one flShlng Shlp mlght

have a goal to leave home, fish for a

Figure 7. The activity generation pipeline. The applicable behavior envelopes are day, and return with the catch.

identified, and planning is performed at a high level. Because the activities learned from ~ Although the goal is never

AIS may not have had the required granularity to show local behaviors, these activities communicated directly, trainees can

are refined into a smooth behavior plan, which is then translated to a set of simulation- jafer it from the individual

environment-specific atomic actions. movements that are generated in the

simulation. For example, the fishing ship starts moving in the early morning and not late in the day, it moves quickly

to a fishing area and then moves slowly as it trawls, and when the ship returns home it moves to the same place it

came from not a different dock location. Tractable planning of the hierarchical goals, subgoals, and atomic actions for
a large population is a computational challenge we have previously discussed elsewhere (Jones et al., 2015b).

To carry out its goals ‘.
within an array of
behavior  envelopes,
our activity generation
uses two fundamental
methods to combine
multiple behavior
envelopes:
progression and
composition.
Progression refers to
planning how to move
from one  active
envelope or set of
envelopes to another.
It is accomplished by
the hierarchical
planner. Composition & 187 S !
refers to composing or - Figyre 8. The resulting activities. The output of activity generation is shown by the green, within the

combining  multiple areas from the behavior envelopes that describe activity type-specific movement, shown in white.
envelopes that are

relevant to the same simulation entity. For example, two separate behavior envelopes might specify (1) top speed of
a cargo ship is 20 knots and (2) the speed within this geographical region is limited to produce no wake. An entity
might find that one, the other, or both envelopes govern its movement speed at any given time. In real training, many
envelopes at once might partially overlap in this way. To address this, we compose input envelopes during activity
generation and find a partition of the activity space into smaller, artificially generated sub-envelopes which do not
overlap. From the point of view of any particular cargo ship, it is either in a sub-envelope where its top speed is 20
knots, or it is in a sub-envelope with a limited speed, but never both. By applying envelope composition to the many
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envelopes that govern an entire training simulation, it becomes tractable to apply progression through the sub-
envelopes and plan the movement of each entity.

We close with an illustration of the realism inherent in the result of activity generation. Figure 8 depicts a coastal area
with ports and a visualization of the behavior envelopes that were learned from real-world data for that area. The areas
in the behavior envelopes, depicted as white polygons, describe areas where ships are likely to be found and
connections in the behavior envelopes that descript how to move between areas (not shown). Based on these inputs,
the activity generation sub-pipeline created cargo ships that move along the green paths in the figure. These paths can
be seen to move in the same areas as the real ships did, move in and out of ports on the map, and move with inferable
intention.

THE TRAINING VALUE OF PATTERNS OF LIFE FROM DATA

Our validation efforts are ongoing, but it is worthwhile to report some preliminary results here. The goals of the
validation are to establish both 1) an increase in the fidelity of white shipping patterns of life and 2) a decrease in the
effort that instructional personnel need to spend to create and execute them in a training environment, and to
accomplish both of these things with an improvement to training effectiveness.

Certain training objectives (TOs) from certain domains require high-fidelity background shipping activity. This is
true, for example, for certain TOs in Intelligence, Reconnaissance, and Surveillance missions that require detecting
anomalous behavior, and for other TOs in Anti-Submarine Warfare that require realistic acoustic environments. The
current approach to preparing scenarios for these TOs is labor-intensive: scenario designers visit a relevant AlS web
sites for reference and work up descriptions of 100-150 commercial ships in the area of interest. Executing the scenario
is labor-intensive as well, because instructional personnel must monitor those ships to ensure they show plausible
behavior. This is time taken away from actual instruction during the session. Further, in some cases a realistic number
of ships might be 1000 or more, which is an infeasible number to create or execute manually.

On the other hand, technologies exist to quickly generate large numbers of ships in a scenario—it is just that the
resulting ship behavior is not very realistic, but rather is controlled by a handful of simple rules. For some TOs, those
that do not depend on high-fidelity background traffic, this is fine; but when it is important to be able to identify
anomalous behavior, or to learn to work in realistic acoustic environments, more realistic white shipping is a
requirement.

Preliminary reports from instructors are enthusiastic about the prospect of being able to create realistic maritime traffic
easily and automatically, primarily because they look forward to being able to spend their time actually instructing
the trainees rather than maintaining the scenario. The general strategy of providing realistic patterns of life as
intelligent background in training scenarios, of course, is not limited to the maritime arena; a similar strategy can be
used for any training arena, whenever TOs require accuracy in background activity. We believe that this capability
will lead to improved training effectiveness and efficiency, and ultimately to a higher level of readiness.

LESSONS LEARNED

e Be prepared for big variations in coverage and quality of the data sources. Creating realistic patterns of life
from data very much depends on the availability and quality of data. In a sense, maritime patterns of life are
relatively easy because of the widespread use and availability of AIS data, though real-world AlS data has a
surprising amount of noise and other unexpected “features.” Not only was there large variability in the frequency
of message broadcast, but there were also free-text fields that users filled in surprising ways. For example, one
ship’s destination field read, “**ARMED ESCORT**”, presumably to discourage piracy.

In addition, the granularity of AIS data was not always adequate to infer smaller-scale behavior like docking in a
port with the assistance of tugboats. Fortunately, the activity generation portion of our pipeline is capable of
filling in the blanks in a realistic manner for such behaviors.

For traffic data, there is generally good coverage in some areas of the world like the U.S. and Europe, but other
regions of the world either have no traffic data or do not want to make it available outside the country. Pedestrian
data is very sparse, generally limited to a specific neighborhood in a U.S. city. This means that for most land-
based patterns of life it will be necessary to do some additional modeling to provide approximations for areas in
which there is no coverage.

e Thevery real virtues of activity learning aren’t always apparent to casual observers. Initially, when learning
about the activity learning-activity generation pipeline, casual observers sometimes ask whether a simple replay
would suffice. For most application, the answer is “no.” First, the replay of the pattern of life will not change no
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matter what else happens in the scenario. The pattern of life is limited to exactly what happened in that particular
place at that particular time. Entities cannot react to or interact with other “live” entities around them. Second,
the fact that there may be noise and inconsistencies in the data, and that there will be holes in coverage, means
that entities may appear to behave oddly or may disappear once certain geographic boundaries are crossed.
Finally, there will be no opportunity to display variability in the pattern of life—it will always be exactly the same
for every use of the scenario. Variability is in general valuable for training (cf. Schmidt & Bjork, 1992), especially
for retention and transfer to new tasks, and in any case, experienced students may be able to game the system
since they will be able to know exactly how the pattern of life will behave. For these reasons, activity learning
and generation are an integral part of providing an effective training environment when generating scenarios from
data.

e Scalability matters. The AIS data involved nearly 400,000 ships worldwide. While it would be an unusual
scenario that would cover the entire globe or that would need all of the ships to participate in a pattern of life, the
fact is that a large number of ships were involved in each of the ten regions we analyzed. In some cases, it was
necessary to tune our activity learning algorithms in order to fully analyze a region; and generating activities for
thousands of ships required taking a special approach to specifying behavior in the simulation environment so as
not to overwhelm the systems it was running on. In our experience, it is definitely worth understanding and
adapting to the scalability constraints of the activity learning and generation environments.

e The human visual system easily spots patterns that are challenging algorithmically. It is often interesting to
view the data at a low enough granularity that patterns emerge for individual ships. For example, we found a ship
track that crossed a region of the ocean in a back-and-forth zigzag manner. On further investigation, we
discovered that it was a research ship, likely engaging in an activity like search or making precise bathymetry
measurements. Patterns like these are easy for people to spot, because they stand out from other, more mundane
tracks, but in general, algorithmically finding meaningful anomalous patterns in large data sets, and especially
interpreting them, is an area of active research in the pattern recognition community, and it remains challenging.

CONCLUSIONS AND FUTURE RESEARCH

One obvious avenue for future research is the application of the pattern of life pipeline to other data. Our initial effort
will focus on using land-based vehicle traffic data to create traffic patterns of life, but eventually we expect to be able
to use data describing trains, commercial aircraft, and pedestrians. Ultimately, we expect to be able to use all the data
in conjunction with narrative accounts of missions and other events to automatically provide a rich set of meaningful
scenario behaviors.

Future research also includes improved real-time responsiveness of activities. When learners not only observe but
interact with and disturb the generated activities, the responsiveness must be quite robust in order to support all
anticipated and unanticipated inputs. While the current activity generation supports responding to changes within an
expected range of input, there is an interesting research question surrounding response when the learner makes an
unanticipated choice. The generated activities should appear to respond reasonably and, ideally, should act to return
the scenario flow back to a channel that is anticipated and will show useful training. The envelope representation of
behaviors may enable efficient definition of how to act when outside any expected envelope in one or more
dimensions. With proper nesting and prioritization of such envelopes, it may be possible to make activities more robust
to the kinds of disruption that the human element introduces in any training scenario.

Complex, realistic, easily constructed patterns of life are valuable for training, but for the most part, they will be in
the background during the training scenario. Another research goal will be to extend the technology to be able to create
foreground entities that are directly related to training objectives, as in Stacy & Freeman (2016.)

Despite the fact that we have been able to generate realistic maritime patterns of life, we believe that techniques for
creating scenarios from real-world data are still in the early stages. We look forward to their continued development,
and to the dramatic improvements in realism and convenience in complex scenario-based training that will result.
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