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ABSTRACT 

We live in a virtual explosion of data. The Internet generates an estimated 2.5 quintillion bytes of data every day.  
Though the data from instrumentation on aircraft, vehicles, ships, autonomous systems, simulators, and, increasingly, 
humans themselves does not reach this scale, its volume is significant and increasing. It is natural to want to use this 
wealth of data to build realistic training scenarios.  

The chief difficulty is that, whatever events were recorded, they represent only one path through the world.  This 
makes the recording suitable for replay, but a recording cannot give students the chance to make choices in the 
simulated world that would take them down different paths.  Recordings cannot be directly used for training scenarios 
unless additional steps are taken. This means that accommodations must be made, through subject-matter expertise, 
machine learning, or both, to synthesize the data into realistic entity behaviors in a scenario. 

In this paper, we discuss our experiences building several systems that take these additional steps, which generally 
involve machine learning and intelligent agents, and we discuss in detail an effort that focuses on creating realistic 
constructive maritime patterns of life from real-world data. 

We conclude by discussing the training value of learning patterns of life from real world data, and lessons learned that 
will be useful to help other training professionals create realistic data-driven training scenarios. 
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INTRODUCTION 
 

We live in a virtual explosion of data. The Internet generates an estimated 2.5 quintillion bytes 
of data every day.  Though the data from instrumentation on aircraft, vehicles, ships, 
autonomous systems, simulators, and, increasingly, humans themselves does not reach this 
scale, its volume is significant and increasing. It is natural to want to use this wealth of data to 
build realistic training scenarios.  

There is genuine value in using real-world data to construct training scenarios. Most obviously, it provides a degree 
of realism that is otherwise hard to achieve. Building the scenario entities automatically conveys another benefit as 
well—ease of preparation and execution.  In some of the scenarios we describe below, thousands of entities are 
involved, and this is far more than would be feasible to create by hand. Further, depending on how thoroughly they 
are created manually, instructional personnel may need to monitor their behavior during the training session, which 
takes away from the time they could use actually instructing the students.   

In this paper, we discuss our experiences building several systems that automatically build scenario entities from real-
world data. One such system creates virtual scenarios that reproduce aviation mishaps, another focuses on creating 
realistic constructive patterns of life from real-world data, and a third concerns exploiting data from simulator-based 
air-to-air combat scenarios to create intelligent constructive adversaries. We conclude the paper by discussing lessons 
learned and general principles that will be useful to help other training professionals create realistic data-driven 
training scenarios. 

PAST EXAMPLES 

As reported in Stacy et al. (2010), we 
developed a prototype that sped the process of 
creating scenarios from flight logs with special 
attention to recreating aviation mishaps. The 
approach used a four-step process:  1) the 
original flight path was provided from flight 
data recorder data, either from the actual 
aircraft or from a re-creation of the mishap in a 
simulator; 2) on the flight path, the scenario 
author identified key events and pilot decision 
points; 3) the scenario author generalized the 
events and decision points, that is, they entered 
the values of key variables at those points that 
could also lead to the mishap.  The 
generalization step was an acknowledgement 
that a safety incident will never happen exactly 
the same way twice—the location, altitude, 
speed, or other aspects of the situation may be 
different from the original mishap; and 4) the author connected those regions into a set of continuous envelopes 
describing the mishap-causing values of the key variables. These envelopes constituted the scenario. As long as pilots 
stayed within this envelope during the simulator mission, they encounter the circumstances involved in the mishap, 
and they arrived at the mishap’s critical decision points. When running the scenario, instructors could choose to have 

Figure 1. The instructor is notified that the trainee is outside the 
mishap envelope.  The student is in danger of missing scenario conditions 
that ensure key events and decision points related to the mishap.  Starting 
values for the mishap envelope come from real-world or simulator data, 
and are generalized by the instructor. (From Stacy et al., 2010.)  
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students encounter the mishap, or they could choose to allow the students to make decisions that would let them avoid 
the mishap. Figure 1 shows a screenshot from the prototype.  

A second relevant example involves generating background, or “clutter,” patterns of life that are qualitatively similar 
to real-life narrative. Clutter activities that appear to follow a narrative can increase learner sense of presence in all 
types of scenarios, and can be the focus of training in some scenarios. In particular, cognitive-perceptual training tasks 
such as observation of a crowd from a distance require narrative clutter activities (Schatz et al., 2012; Wray et al., 
2015). In these efforts, narrative activities included simulated entities moving as individuals and groups within the 
crowd, leaving and entering buildings, and paying attention to things on their route or stopping along the way. If these 
activities are assembled in a random way, there is no message for the observer trainee to find. But when the activities 
are generated according to a narrative, the observer can learn and practice how to infer meaning from the activities in 
the clutter crowd, create a mental baseline of normal activity and observe changes from it, and detect deviations from 
the trend which indicate individuals of interest for further surveillance.  

A current effort involving all the authors seeks to develop patterns of life from real-world data for use in training 
scenarios.   The motivation for doing this is to provide a low-effort way to deploy high-fidelity patterns in training 
scenarios, thus freeing up training personnel to focus on instruction itself.   We are using real-world data about ships 
to create maritime patterns of life, though we expect to use a variety of other types of data and to expand the analysis 
to land-based patterns of life.  

What follows is a description of the processing pipeline that we have set up to automatically create these patterns of 
life.  After discussing the pipeline, we will conclude the paper with a discussion of areas for future research, lessons 
learned, and the training value of easily created, high-fidelity patterns of life. 

CREATING DATA-DRIVEN PATTERNS OF LIFE IN TRAINING SCENARIOS  

The pipeline can be seen in Figure 2. We perform activity learning on the raw data using a variety of machine learning 
techniques and package the result into a language called Activity Description Language (ADL).  The ADL is used as 
the basis for generating entities and their behavior, and the result is fed to the simulation environment for use in 
training sessions. 
 

 
Figure 2. The pattern of life processing pipeline. Activities are learned from raw data, translated into Activity Description 
Language (ADL). In preparation for a training session, meaningful and realistic activities are then generated from the ADL and 
sent to the simulation environment. The entities and behaviors generated this way are responsive to other entities in the simulation, 
unlike what a simple replay of the raw data would provide. 

In the next several sections, we describe the components of the pipeline in greater detail. 
 
THE RAW DATA 

Construction of patterns of life for maritime ship behavior starts with a dataset of ship behavior.  This dataset should 
have a variety of different kinds of ships and represent a variety of different locations.  The assumption was that ship 
behavior varied by location and ship type so, for example, ship navigation behavior in the port at Singapore is different 
from ship navigation behavior in the port at Seattle, which is different from ship behavior through the Strait of Hormuz.  
Ship behavior data over a period of time and ideally through different weather conditions and times of year would 
also be beneficial to represent any differences in behavior based on either time of year or weather conditions.                         
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Ships at sea have a risk of collision and require traffic 
management in busy ports.  To support this, a system 
called AIS (Automatic Identification System) has been 
implemented and deployed starting in the 1990s, first 
using short-range radio and then later using satellite 
transmissions.  Since 2002, most ships over 300 gross 
tons on international voyages must have AIS 
transceivers.  This information is not only valuable to 
the ships at sea, but also for other purposes and several 
commercial companies have emerged that provide 
various subsets or aggregations of collected AIS data.  
Table 1 shows some sample ship information from the 
AIS messages. We obtained AIS data for the entire 
globe for the month of April 2014. 

AIS data provides a variety of information about 
individual ships and their activity.  Ships typically 
transmit current status information such as location and speed every few seconds and transmit ship identification 
information every 6 minutes.  Figure 3 shows a sample of the message locations by ship in two different map locations. 

The data set is large and consists of almost 100 million records of ship information and over 180 million records of 
ship location information.  Plotting the ship location data on a map provides a visual sense of the ship behaviors in 
different regions.   

  
Figure 3. Map of AIS location messages plotted by ship in the southern California and Strait of Hormuz regions from April 
2014. Each dot represents an AIS message, and different colors represent ships of different types.  Viewed at this distance, the dots 
appear to form into tracks. Forming the messages into suitable tracks like these, taking care that they did not appear to cross land, 
was the first step in activity learning. 

Table 1. AIS Ship and Location Data Examples 

Ship Information Ship Location 
Information 

IMO - Unique id for a 
ship hull 

MMSI - Maritime Mobile 
Service identity 

International radio call 
sign 

Navigation Status such as 
“at anchor”, “underway 
using engine” 

Type of ship/cargo Speed over ground 
Draught of ship Current Position 
Destination of ship True heading 
Expected time of 
arrival at destination 

Time 
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To manage this complexity, 10 
regions, such as Southern 
California and the Persian Gulf, 
were identified and processed 
seaparately.  Table 2 shows a 
sample of the kinds of ship types 
and navigation statuses that were 
available in one of the regions. 

ACTIVITY LEARNING  

To create a generalized model of 
ship movement, built on our 
previous activity learning efforts 
(Levchuk, Lea, & Pattipati, 2008; 
Levchuk, Shabarekh, & Furjanic, 
2011; Levchuk, Jacobson, & 
Furjanic, 2013; Levchuk & 
Shabarekh, 2013), we took a two-

phased approach. First, we compute a set of areas in the ocean within which the activities most commonly occurred.  
We then compute the most probable connections among the areas, for each ship activity type, where activity type is 
defined by a pairwise combination of ship type and navigation status.  This result is a topology that effectively 
describes generalized sea lanes within which movement can occur for each activity type, as the ships navigate from 
their origin to their destination.  For each activity type, the topologies are supplemented by activity information on 
probable origins and destinations, and by parameters that describe the distributions of ship density per day and ship 
velocities. 

Computing the areas. Areas are described by a set of adjacent polygons that cover regions in the ocean where there 
was AIS activity. When traffic is heavy the areas are smaller, and when it is lighter the areas are larger.  Figure 4 
shows an example of the resulting areas in the ocean off the coast of Southern California. 

 
Figure 4. Areas computed for Southern California. Areas represent concentrations of tracks formed from AIS messages, 
discovered using clustering algorithms. Higher density traffic resulted in smaller areas, and lower density traffic resulted in larger 
areas. The areas that are shown cover all activity types, but not all areas were involved in every activity type.    

AIS messages contain a fair amount of variability in their usage, and this is especially true for the frequency of 
broadcast.  We obtain ship tracks by connecting sequential AIS messages for specific ships. Unfortunately, ships that 
broadcast infrequently as they go around land features like peninsulas can make naively-connected tracks to appear to 
travel over land. For this reason, we set time and distance thresholds for connecting them—successive messages that 
exceed either threshold are not connected.  The result is a set of tracks that are spatially and temporally connected and 
that always are over water. 

 

 
 

Table 2. Sample Ship Types and Navigation Statuses 
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We then create areas by clustering the waypoints in these tracks based on traffic density. For our initial set of areas, 
we use k-means clustering (MacQueen, 1967). The result is a set of polygons, as in Figure 4: each is a two-dimensional 
representation of points based on latitude and longitude. K-means clusters points relative to a center point (centroid) 
expressly to minimize within-cluster variance. To increase separation between clusters, we add some noise using a 
technique called regularization.  Work in progress uses graph hashing algorithms instead of K-means clusters (cf. Liu 
et al., 2011), which will take advantage of spatial and temporal information in the tracks. 

Computing the connections among areas.  The next step is to compute the connections among the areas for each 
activity type. The rationale for separating connections by activity type is that different kinds of ships, with different 
navigation statuses, might well use different paths in the ocean.  For example, cargo ships might stick more to deeper 
sea lanes while fishing ships might take less-traveled paths on the way to their fishing grounds, and pleasure craft 
might stick closer to shore. Navigation status plays a role, as well: a ship that is underway using engine might travel 
in different places than one that is underway sailing, or restricted by her draft; and ships that are at anchor or moored 
will not often be in the same locations as those that are travelling. 

To compute these connections, the tracks 
used for computing the areas are segmented 
into tracklets by identifying contiguous 
portions of the tracks that have the same 
navigation status. We use the tracklets to 
create a network of connected areas for 
each activity type. Figure 5 shows the 
connections for two ship types, (a) cargo 
ships underway using engine and (b) 
fishing ships engaged in fishing.  The 
connections are depicted by connecting the 
centers of the areas, and the areas are 
omitted from the figures for clarity. In 
reality, the connections allow ships to 
travel from any place in an area to anyplace 
in the connected area, not just from 
polygon center to polygon center. This 
allows for realistic variation in ship 
behavior. 

The areas and connections comprise a 
topology for each activity type, and 
topologies in effect define the generalized 
sea lanes that each individual ship can use 
to get from origin to destination. 

BEHAVIOR ENVELOPES AND 
ACTIVITY DESCRIPTION 
LANGUAGE  

Over a series of scenario-based training 
efforts, we have developed a formal 
description of learned activities (Stacy & 
Freeman, 2016; Jones, et al., 2015a), and 
it has been expressed in a language called 

Activity Description Language (ADL.)  ADL is a language defined by an XML Schema, which means it is readable 
by machines and interpretable by humans.  We use ADL to express the activity networks that results from activity 
learning, and to express additional information about those networks, including activity type densities and parameters 
to describe the distribution of ship velocities per activity type.   

Figure 5. Connections among areas in Southern California for two activity 
types. For ease of presentation, the connections are between area centers, but they 
in reality the connections denote movement from anywhere in the originating area 
to anywhere in the destination area. Connections are computed per activity type, 
and, as is evident, can look markedly different for different activity types. Areas 
and connections together represent an activity type’s topology, which is 
effectively a set of generalized sea lanes along which ships may travel. 
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The major elements of ADL are shown in Figure 6. The 
elements of constraint are one or more variables with a 
specified relationship. Typical relationships are simple 
mathematical ones such as “≤”, “=”, and “≠”; however, 
the relationships can also be more complicated, such as 
the relationship “all different” among multiple variables. 
Importantly, a variable has a domain which represents the 
possible values it can assume. Domains can consist of a 
finite set of integers, such as the number of threats a 
student should face during a vignette, a continuous 
interval, such as a range of distances from a target the 
instructor intends for the student, or a finite set, such as 
the defensive resources a student can bring to bear. 
Domains can be refined during the course of scenario 
execution as resources change and time elapses. Variables 
and domains are defined in the support element, and 
constraints are defined in the state element.   

ACTIVITY GENERATION 

After the behavior envelopes in ADL have been 
generated, they can be used to generate activities that are 
displayed in training simulation environments. This 
section describes the process of doing so.  

While the high-level approach to activity generation is 
general, implementation details do have an impact on 
design. The atomic actions available in a particular 
simulation environment will change what activities may be 
generated and how they should be carried out. In order to 
minimize this impact, a hierarchical planner (Folsom-
Kovarik et al., 2015) is used to abstract detail where 
possible. However, our experience suggests that the 
abstraction will not remove the need to know about the underlying simulation, because of different affordances and 
capabilities.  

The present example discusses movement of ships on a geodetic surface of water. The available atomic actions in this 
synthetic environment allow for movement of one simulation entity from its current position to a new position in a 
straight line at a given speed. All other activities, such as movement along complex paths or coordinated movement 
of groups, must be assembled from these atomic actions.  

It is easy to imagine adding actions as needed in different training domains for changing altitude, turning a body or 
head to a certain angle, loading people into vehicles, controlling broadcast emissions, and more actions that could 
exist in a simulation environment to meet specific training needs. In addition, the authors have separately used similar 
activity generation to support training in much more abstract domains, such as simulated cyberattacks (Nicholson et 
al., 2016.). Even abstract training domains still need to present trainees with an appearance of narrative and purposeful 
intent. 

Within the example of ship movement, activity generation consists of creating ships and planning routes for them that 
present a coherent pattern of life. The behavior envelopes define how important aspects of these patterns may vary, 
because the activity generated must always stay within the relevant envelopes. Simple examples include an envelope 
that defines how many ships of a particular type should start the scenario within a given geographic region, what 
speeds are typical in this area, and what areas ships may or may not move into. Then activity generation defines where 
individual ships will actually move, staying within the given constraints. 

A high-level view of our activity generation sub-pipeline is presented in Figure 7 below. Activity planning takes high-
level goals specified in behavior envelopes and produces a sequence of specific actions that occur in an entity’s 
lifecycle. Next, this plan is refined at increasingly high levels of fidelity until it meets all local and/or environmental 
constraints (for example, ensuring generated planes follow appropriate altitude blocks in a tactical air domain, or 

Figure 6. Top-level elements of ADL.  The support element 
describes the variables and relations involved in constraints, 
which in turn describe the behavior envelopes that comprise 
states in a vignette. A role in a vignette has a set of goals and 
is effectively an activity type in the current analysis, and, 
among other things, it describes the activity type’s topology. 
Areas are described under the terrain element. 
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generated ship trajectories always lie on surface water). Finally, these low-level actions are translated into atomic 
actions specific to the target simulation. This hierarchical refinement process allows even complex behaviors to be 
embedded in training simulation environments that have only basic entity controls available. 

A key contribution of activity 
generation is providing underlying 
intent to simulated entities. That is, 
each entity will not simply move 
randomly within the given 
boundaries. Random movement 
does not provide the interpretable 
cues that trainees need to be able to 
perceive for training purposes. 
Instead, individual movements are 
planned in the hierarchical planner 
so that they sum up to subgoals and 
an overarching goal of the entity. 
For example, one fishing ship might 
have a goal to leave home, fish for a 
day, and return with the catch. 
Although the goal is never 
communicated directly, trainees can 
infer it from the individual 
movements that are generated in the 

simulation. For example, the fishing ship starts moving in the early morning and not late in the day, it moves quickly 
to a fishing area and then moves slowly as it trawls, and when the ship returns home it moves to the same place it 
came from not a different dock location. Tractable planning of the hierarchical goals, subgoals, and atomic actions for 
a large population is a computational challenge we have previously discussed elsewhere (Jones et al., 2015b). 

To carry out its goals 
within an array of 
behavior envelopes, 
our activity generation 
uses two fundamental 
methods to combine 
multiple behavior 
envelopes: 
progression and 
composition. 
Progression refers to 
planning how to move 
from one active 
envelope or set of 
envelopes to another. 
It is accomplished by 
the hierarchical 
planner. Composition 
refers to composing or 
combining multiple 
envelopes that are 
relevant to the same simulation entity. For example, two separate behavior envelopes might specify (1) top speed of 
a cargo ship is 20 knots and (2) the speed within this geographical region is limited to produce no wake. An entity 
might find that one, the other, or both envelopes govern its movement speed at any given time. In real training, many 
envelopes at once might partially overlap in this way. To address this, we compose input envelopes during activity 
generation and find a partition of the activity space into smaller, artificially generated sub-envelopes which do not 
overlap. From the point of view of any particular cargo ship, it is either in a sub-envelope where its top speed is 20 
knots, or it is in a sub-envelope with a limited speed, but never both. By applying envelope composition to the many 

Figure 7. The activity generation pipeline. The applicable behavior envelopes are 
identified, and planning is performed at a high level.  Because the activities learned from 
AIS may not have had the required granularity to show local behaviors, these activities 
are refined into a smooth behavior plan, which is then translated to a set of simulation-
environment-specific atomic actions. 

Figure 8. The resulting activities. The output of activity generation is shown by the green, within the 
areas from the behavior envelopes that describe activity type-specific movement, shown in white. 
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envelopes that govern an entire training simulation, it becomes tractable to apply progression through the sub-
envelopes and plan the movement of each entity. 

We close with an illustration of the realism inherent in the result of activity generation. Figure 8 depicts a coastal area 
with ports and a visualization of the behavior envelopes that were learned from real-world data for that area. The areas 
in the behavior envelopes, depicted as white polygons, describe areas where ships are likely to be found and 
connections in the behavior envelopes that descript how to move between areas (not shown). Based on these inputs, 
the activity generation sub-pipeline created cargo ships that move along the green paths in the figure. These paths can 
be seen to move in the same areas as the real ships did, move in and out of ports on the map, and move with inferable 
intention. 

THE TRAINING VALUE OF PATTERNS OF LIFE FROM DATA 

Our validation efforts are ongoing, but it is worthwhile to report some preliminary results here. The goals of the 
validation are to establish both 1) an increase in the fidelity of white shipping patterns of life and 2) a decrease in the 
effort that instructional personnel need to spend to create and execute them in a training environment, and to 
accomplish both of these things with an improvement to training effectiveness. 

Certain training objectives (TOs) from certain domains require high-fidelity background shipping activity. This is 
true, for example, for certain TOs in Intelligence, Reconnaissance, and Surveillance missions that require detecting 
anomalous behavior, and for other TOs in Anti-Submarine Warfare that require realistic acoustic environments. The 
current approach to preparing scenarios for these TOs is labor-intensive: scenario designers visit a relevant AIS web 
sites for reference and work up descriptions of 100-150 commercial ships in the area of interest. Executing the scenario 
is labor-intensive as well, because instructional personnel must monitor those ships to ensure they show plausible 
behavior. This is time taken away from actual instruction during the session. Further, in some cases a realistic number 
of ships might be 1000 or more, which is an infeasible number to create or execute manually. 

On the other hand, technologies exist to quickly generate large numbers of ships in a scenario—it is just that the 
resulting ship behavior is not very realistic, but rather is controlled by a handful of simple rules.  For some TOs, those 
that do not depend on high-fidelity background traffic, this is fine; but when it is important to be able to identify 
anomalous behavior, or to learn to work in realistic acoustic environments, more realistic white shipping is a 
requirement. 

Preliminary reports from instructors are enthusiastic about the prospect of being able to create realistic maritime traffic 
easily and automatically, primarily because they look forward to being able to spend their time actually instructing 
the trainees rather than maintaining the scenario. The general strategy of providing realistic patterns of life as 
intelligent background in training scenarios, of course, is not limited to the maritime arena; a similar strategy can be 
used for any training arena, whenever TOs require accuracy in background activity.  We believe that this capability 
will lead to improved training effectiveness and efficiency, and ultimately to a higher level of readiness. 

LESSONS LEARNED  

• Be prepared for big variations in coverage and quality of the data sources. Creating realistic patterns of life 
from data very much depends on the availability and quality of data. In a sense, maritime patterns of life are 
relatively easy because of the widespread use and availability of AIS data, though real-world AIS data has a 
surprising amount of noise and other unexpected “features.” Not only was there large variability in the frequency 
of message broadcast, but there were also free-text fields that users filled in surprising ways. For example, one 
ship’s destination field read, “**ARMED ESCORT**”, presumably to discourage piracy.   

In addition, the granularity of AIS data was not always adequate to infer smaller-scale behavior like docking in a 
port with the assistance of tugboats.  Fortunately, the activity generation portion of our pipeline is capable of 
filling in the blanks in a realistic manner for such behaviors. 

For traffic data, there is generally good coverage in some areas of the world like the U.S. and Europe, but other 
regions of the world either have no traffic data or do not want to make it available outside the country. Pedestrian 
data is very sparse, generally limited to a specific neighborhood in a U.S. city.  This means that for most land-
based patterns of life it will be necessary to do some additional modeling to provide approximations for areas in 
which there is no coverage.  

• The very real virtues of activity learning aren’t always apparent to casual observers.  Initially, when learning 
about the activity learning-activity generation pipeline, casual observers sometimes ask whether a simple replay 
would suffice.  For most application, the answer is “no.” First, the replay of the pattern of life will not change no 
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matter what else happens in the scenario. The pattern of life is limited to exactly what happened in that particular 
place at that particular time.  Entities cannot react to or interact with other “live” entities around them. Second, 
the fact that there may be noise and inconsistencies in the data, and that there will be holes in coverage, means 
that entities may appear to behave oddly or may disappear once certain geographic boundaries are crossed. 
Finally, there will be no opportunity to display variability in the pattern of life—it will always be exactly the same 
for every use of the scenario. Variability is in general valuable for training (cf. Schmidt & Bjork, 1992), especially 
for retention and transfer to new tasks, and in any case, experienced students may be able to game the system 
since they will be able to know exactly how the pattern of life will behave. For these reasons, activity learning 
and generation are an integral part of providing an effective training environment when generating scenarios from 
data. 

• Scalability matters.  The AIS data involved nearly 400,000 ships worldwide. While it would be an unusual 
scenario that would cover the entire globe or that would need all of the ships to participate in a pattern of life, the 
fact is that a large number of ships were involved in each of the ten regions we analyzed.  In some cases, it was 
necessary to tune our activity learning algorithms in order to fully analyze a region; and generating activities for 
thousands of ships required taking a special approach to specifying behavior in the simulation environment so as 
not to overwhelm the systems it was running on. In our experience, it is definitely worth understanding and 
adapting to the scalability constraints of the activity learning and generation environments. 

• The human visual system easily spots patterns that are challenging algorithmically. It is often interesting to 
view the data at a low enough granularity that patterns emerge for individual ships. For example, we found a ship 
track that crossed a region of the ocean in a back-and-forth zigzag manner.  On further investigation, we 
discovered that it was a research ship, likely engaging in an activity like search or making precise bathymetry 
measurements. Patterns like these are easy for people to spot, because they stand out from other, more mundane 
tracks, but in general, algorithmically finding meaningful anomalous patterns in large data sets, and especially 
interpreting them, is an area of active research in the pattern recognition community, and it remains challenging.  

CONCLUSIONS AND FUTURE RESEARCH  

One obvious avenue for future research is the application of the pattern of life pipeline to other data. Our initial effort 
will focus on using land-based vehicle traffic data to create traffic patterns of life, but eventually we expect to be able 
to use data describing trains, commercial aircraft, and pedestrians. Ultimately, we expect to be able to use all the data 
in conjunction with narrative accounts of missions and other events to automatically provide a rich set of meaningful 
scenario behaviors. 

Future research also includes improved real-time responsiveness of activities. When learners not only observe but 
interact with and disturb the generated activities, the responsiveness must be quite robust in order to support all 
anticipated and unanticipated inputs. While the current activity generation supports responding to changes within an 
expected range of input, there is an interesting research question surrounding response when the learner makes an 
unanticipated choice. The generated activities should appear to respond reasonably and, ideally, should act to return 
the scenario flow back to a channel that is anticipated and will show useful training. The envelope representation of 
behaviors may enable efficient definition of how to act when outside any expected envelope in one or more 
dimensions. With proper nesting and prioritization of such envelopes, it may be possible to make activities more robust 
to the kinds of disruption that the human element introduces in any training scenario. 

Complex, realistic, easily constructed patterns of life are valuable for training, but for the most part, they will be in 
the background during the training scenario. Another research goal will be to extend the technology to be able to create 
foreground entities that are directly related to training objectives, as in Stacy & Freeman (2016.) 

Despite the fact that we have been able to generate realistic maritime patterns of life, we believe that techniques for 
creating scenarios from real-world data are still in the early stages. We look forward to their continued development, 
and to the dramatic improvements in realism and convenience in complex scenario-based training that will result.  
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