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ABSTRACT

U.S. Naval aviation, similar to units in its sister services, uses the family of simulators approach to training that
enables trainees to build on skills progressively throughout the training pipeline. The progression begins with
system skills (e.g., buttonology), continues to individual tasks (e.g., understanding radar data), and concludes with
aircrew coordination for tactical proficiency (e.g., prosecuting an anti-submarine warfare mission). However, this
approach requires workarounds (e.g., instructor role-players) or a tradeoff in fidelity when trainees reach a point in
skills training that requires communication from other crewmembers while still conducting standalone training
tasks. With recent technological advances in speech recognition (Stensrud, Newton, Atkinson & Killilea, 2015), the
feasibility of incorporating synthetic role-playing crewmembers into a dynamic training event has increased. This
paper highlights the need for this technology within the target transition community, the P-8A Poseidon, as part of
its part-task training simulator. Successful integration will promote efficient use of resources (e.g., manpower),
increased fidelity through the availability of realistic crew communication and coordination, and flexibility in crew
composition availability. The prototype architecture is discussed, including the integration of speech capabilities
(e.g., recognition, dialog, understanding, synthesis) and behavior modeling to yield an interactive model for P-8A
crewmember agents. Next, the authors provide lessons learned and challenges to the technological implementation,
as well as the sustainment, given the rapid pace of tactic and protocol changes that will impact the underlying
technologies. Additionally, the authors provide results of a preliminary usability analysis of the system, including
primary stakeholder fleet evaluations regarding system reliability and synthetic voice analysis. Finally, the authors
highlight the importance of performance testing, offer suggestions for adapting the technology to other use cases,
and discuss future directions for interactive system research and development.
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INTRODUCTION

A long-standing training challenge that has been compounded by increased reliance on simulation-based training is
how to train a single trainee in a task that requires a crew or group to complete it. Typical solutions include rotating
trainees (e.g., having others act as training aids for individual training), or using instructors as role-players.
However, these solutions can be inefficient and costly to implement. Further, in the case of using instructors as role-
players, this distracts from their primary objective, which is to facilitate learning through performance monitoring
and providing appropriate and timely feedback. Fortunately, with recent technological advances in speech
recognition and continued advancements in behavior modeling, the feasibility of incorporating synthetic role-
playing crewmembers into dynamic training has increased.

Within naval aviation training, the P-8A Poseidon serves as an appropriate and willing testbed to further explore this
problem set. The P-8A is a maritime patrol aircraft that is responsible for Anti-Submarine Warfare (ASW), Anti-
Surface Warfare (SUW), and Intelligence, Surveillance, and Reconnaissance (ISR) missions. The crew, flying in a
modified Boeing 737, includes two pilots, a complement of approximately four sensor operators, and a Tactical
Coordinator (TACCO) and Co-TACCO to lead the tactical decision-making. The crew, working in unison to bring
the full capabilities of each of their roles to the mission, requires close communication and coordination. As crucial
as this is, the specialization of each position, number of crew members, and need to coordinate with personnel
outside the aircrew increases the importance of inter- and intra- crew communication.

Naval aviation uses the family of simulators approach to training that enables trainees to build on skills
progressively throughout the training pipeline. The crawl-walk-run progression begins with system skills (e.g.,
buttonology), continues to individual tasks (e.g., understanding radar data), and concludes with aircrew coordination
for tactical proficiency (e.g., prosecuting an ASW mission). After classroom-based lectures, initial system skills are
first learned using table-top trainers or computer-based training. Early training in these types of environments
provides opportunities to interact with specific systems to learn required knowledge, skills, and tasks, such as how to
use the aircraft radio or interacting with a sensor. Next, the crewmember’s individual tasks are trained using a Part-
Task Trainer (PTT), a full fidelity replica of their mission crew workstation. Within this environment, trainees have
an opportunity to learn complex skills and practice tasks that leverage all available aircraft systems. Lastly, aircrew
coordination tasks are trained in a high-fidelity whole-task, whole-crew trainer, which is essentially a fuselage of the
aircraft.

Although the interim training step in the PTT is necessary, it does result in some challenges. While this training style
is sufficient when practicing simple procedural tasks (e.g., deploying a sonobuoy), maritime missions increasingly
involve communication among onboard crew and coordination with other platforms (e.g., organizing ASW with
nearby submarines and ships). This walk phase in the training approach requires workarounds (e.g., instructor role-
players) or a significant tradeoff in fidelity when trainees reach a point in skills training that requires communication
from other crewmembers while still conducting standalone training tasks within a PTT. Opportunities to practice
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mission-critical soft behavioral skills like Crew Resource Management (CRM) are paramount to warfighter
readiness and success. Hence, the P-8A crew in general, and TACCOs in particular, are hampered by these
limitations of existing training capabilities to support communication and coordination activities. Further challenges
are experienced in the run phases of training that involve a single aircrew. Optimally, P-8A flight crews would train
alongside other trainees or human role-players to gain skills for interacting within a full mission scenario; however,
this is often a cost- and time-prohibitive route. As such, a key requirement for affordable, persistent, on-demand
Live, Virtual and Constructive (LVC) training is the integration of interactive synthetic role-players to support flight
crew trainees anytime, anywhere.

With recent technological advances in speech recognition (Stensrud, Newton, Atkinson, & Killilea, 2015), the
feasibility of incorporating synthetic role-playing crewmembers into a dynamic training event has increased. This
paper highlights the need for this technology within the target transition community, the P-8A, as part of its PTT
simulator. Successful integration will promote efficient use of resources, increased fidelity through the availability
of realistic crew communication and coordination, and flexibility in crew composition availability. The prototype
system is discussed, including the integration of speech capabilities (e.g., recognition, dialog, understanding,
synthesis) and behavior modeling to yield an interactive model for P-8A crewmember agents. Next, the authors
provide lessons learned and challenges that exist related to the implementation of the technology, as well as the
sustainment, given the rapid pace of tactic and protocol changes that will impact the underlying technologies.
Additionally, the authors provide results of preliminary usability analysis of the system, to include primary
stakeholder fleet evaluations regarding system reliability and synthetic voice analysis. Finally, the authors offer
suggestions on ways to increase the flexibility of the system to provide a common and modular capability that is
adaptable to other use cases.

CURRENT PRACTICE

The operational need for the aforementioned technology lies in the intricacy of a single instructor controlling
multiple PTT scenarios while role-playing. That is, within this specific platform, instructors may be responsible for
leading training for up to three trainees, each interacting with their own individual training event. Given the
complexity of the training system itself, the instructor is responsible for monitoring multiple systems (e.qg., instructor
operator station, semi-automated forces). This task alone requires significant attention, but instructors must also
multi-task/task switch to monitor trainee performance and interject role-playing communications as required. For
this reason, trainees receive limited crew communication and coordination training within this environment. Due to
this training gap, the fleet has limited opportunities to enhance communication skills until later in the training
pipeline. In order for aircrew to receive this training, the current training paradigm would necessitate the assembly
of an entire crew, or the use of Subject Matter Experts (SMESs) to support crew training through role-playing.
Although the quality of training crew coordination, communication, and teamwork improves when full crews are
brought together to train, it is also costly in terms of resources. Thus, a core challenge is determining how individual
training could benefit from the added realism, albeit synthetic, provided by crew interaction. Specifically, when
attaining skills associated with crew roles, the emphasis is on the crew member’s individual skills. However, many
tasks associated with their role rely on inputs from other crewmembers. This is especially true for the TACCO, who
acts as the information nexus during the mission, relying heavily on communication and coordination with his or her
sensor operators and flight crew. While this use case and on-going research efforts discussed in this paper focuses on
the P-8A, the present training problem, and use of automatic speech recognition as a solution, has been examined
before, albeit with various levels of success.

Previous Automatic Speech Recognition (ASR) Efforts

Previous work related to Automatic Speech Recognition (ASR) has had notable potential military applications for
decades, such as: surveillance, data entry, command and control systems, security, and communication (Beek,
Neuberg, & Hodge, 1977; Griol, Herrero, & Molina, 2016). Another potential application currently being
investigated and developed is the use of ASR for training and simulation use. ASR can conserve many resources,
such as personnel, time, and ultimately money. By using ASR systems, trainees can interact with systems through
speech, instead of interacting with confederates or instructors.
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As an example, the Institute of Creative Technologies (ICT) is currently developing what they term “virtual
humans,” agents who ideally will interact with individuals in an organic way, with both speech and gesture, to
provide users with a comprehensive training environment (Kenny et al., 2007). Similarly, other efforts have been
made to integrate speech recognition technology in a “tactical language training system” which functions more like
trainees playing a video game, learning foreign language and culture (Johnson, Marsella, & Vilhjalmsson, 2004).
These virtual agents use speech recognition to understand and respond to trainees, although Johnson, and colleagues
(2004) note that speech recognition capabilities are especially limited when it comes to language learners. Other
domains, such as Air Traffic Control (ATC) technologies use ASR, both in a training and operational context. The
use of an ASR tool has been shown to reduce controller workload (Helmke, Ohneiser, Mihlhausen, & Wies, 2016),
as well as have useful applications for measuring workload after the fact, through collection of what they term ATC
“events” (Cordero, Rodriguez, Miguel, & Dorado, 2013). However, Cordero and colleagues (2013) do recognize
that the ASR system is time-consuming to train.

Speech recognition and speech-to-text technologies have also been part of attempts to evaluate team performance,
particularly for after-action reviews (Foltz, LaVoie, Oberbreckling, Chatham, & Psotka, 2008; Foltz, LaVoie,
Oberbreckling, & Rosenstein, 2007). However, Foltz and colleagues (2008) cite several issues in the application of
ASR for team performance assessment. Specifically, they identified a word-error rate of over 30% and found
difficulty in assessing performance in real time. While ASR technologies in this context are used to monitor and
assess in near-real time or after the fact, the word-error rate may make real-time monitoring and assessment not only
difficult, but also yield data that is incorrect.

Addressing the Capability Gap

Although previous research on using ASR in training systems has yielded mixed results, the promise of this
technology persists as successful development and implementation can solve long-standing training challenges in
various domains. As previously noted, the current solutions for enabling aircrew training without a full aircrew are
inefficient and yield mixed effectiveness. Developing a software suite that provides a synthetic role-playing
capability serves to enhance the training pipeline and potentially avoid costs by providing value added. Specifically,
the resulting benefit is the ability to provide the trainee with the realistic communication and coordination required
for training, without the need for an entire crew or complement of SME role-players. Additionally, instructors who
also role-play will be free to focus on assessing the trainee’s performance and providing quality and timely feedback
to enhance training. Although this effort seeks to address the training gap identified by the P-8A platform, other
platforms have existing unmet requirements for virtual crewmembers or wingmen that this effort can provide
guidance to inform future development.

CREW ROLE-PLAYERS ENABLED BY AUTOMATED TECHNOLOGY ENHANCEMENTS (CREATE)

CREATE is a research and development (R&D) effort focused on designing a synthetic role-playing capability that
is anticipated to fill the aforementioned gap. The current scope of the effort involves the development of synthetic,
interactive P-8A crew member agents (including the acoustic warfare officer, electronic warfare officer, Co-
TACCO, pilot, and ordnance support personnel) to support TACCO-centric training. To successfully implement a
synthetic role-player capability requires a technology solution that integrates (a) speech capabilities (i.e.,
recognition, understanding, synthesis), (b) SME-level tactical domain information, (c) reaction to multitasking and
high stress situations, and (d) relay of information via means other than speech communication (e.g., software
inputs).

TACCO:s are responsible for synthesizing information from multiple sensor operators, as well as their flight crew, to
make tactical decisions about how to pursue targets of interest. For this reason, most TACCO activities involve
interacting verbally or non-verbally with other members of the crew. For example, a TACCO might need to request
data from a sensor operator, coordinate or direct activities with the flight deck, or maintain shared situation
awareness with the rest of the crew or command and control organizations outside the on-board aircrew. The novelty
of this technology is effectively integrating speech recognition into training tasks, allowing the interactive synthetic
agents to simulate the actions and communication of other crewmembers. However, emerging technological
advances in science and technology often encounter challenges when translating to applied settings.
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Technical Challenges and Solutions

A robust speech capability is especially important in the P-8A training context, as interactions between
crewmembers are frequent and rarely follow doctrinal phraseology. In our work developing interactive agents for
training systems, we divide this problem into three sub-problems: speech recognition, speech understanding, and
dialogue management. The first two are highly interdependent. Speech recognition is the first phase, in which the
audio of the spoken utterance is analyzed and words are extracted. At this point, assuming nothing has gone wrong
in the speech recognition phase, the agent knows what was said, but nothing about what was meant. Speech
understanding attempts to glean meaning from the words, whether they denote, for example, a new directive, a
response to a previous query, or a request for new information.

Many factors influence the performance of speech recognition systems (Shneiderman, 2000). Interference from
noisy environments (particularly noise in “spurts”) can render speech unintelligible to a speech recognizer; people
speaking in the background and the noise from a passing truck are examples of this kind of interference. Variation
between speakers also has a substantial impact on speech recognizer performance, given that recognizers rely
heavily on pronunciation models, regional accents, enunciation differences (e.g., mumbling), and even voice pitch
(e.g., whether the speaker is male or female, old or young) and the rate of speech are examples of speaker variation
that affect recognition performance. Many of these examples could also pose problems for human listeners, but
people are still much better at ignoring the noise than computer speech recognizers. Likewise, speech understanding
performance is affected by a variety of factors (Jurafsky & Martin, 2008). Speech recognizer performance has a
considerable influence, as incorrectly recognized utterances are often hard to correctly understand. Moreover, people
often do not speak in “canonical” sentences, and it can be hard to anticipate the many ways in which people might
express the same meaning. People often do not fully express the meaning of an utterance, or use pronouns and other
referents from earlier in the dialogue, forcing the listener to “fill in the blanks” based on context. Effective speech
understanding must find ways to address these challenges.

Our team is currently developing and testing a multi-pronged speech recognition and dialog strategy to provide the
necessary capability to support flexible, non-doctrinal interactions between the human trainee and the automated
support roles. This approach includes the following activities:

e A robust P-8A interaction grammar. While P-8A phraseology amongst the crew is not standardized, there are
known best practices and patterns for issuing/requesting information, tasking, and reports that can be encoded
into our grammar. This ensures that utterances fitting known patterns will be recognized fully by the system and
parsed into a machine-readable format for ingestion. With support from SMEs and the fleet, this grammar can
be extended as necessary to support alternate patterns (different ways to say the same things) as those
alternatives are identified.

e A text pattern-recognition parser. We additionally encode less structured patterns (expressed as regular
expressions) that can match incoming phrases that are not matched by the grammar above. This parser, when
run in parallel with the full grammar, can supplement the primary recognition pathway with either full or partial
matches on incoming utterances. In cases of a partial match, the software agent can potentially make a high-
confidence guess about the message based on known context. Regular expressions can be used to detect full
phrase patterns or even simple patterns, such as known keywords.

e Agent-based dialog management. Any artifacts from the speech recognition pipeline will also need to be
interpreted correctly by the software role-players to complete a dialogue. Our approach to handling the task of
fusing these artifacts and placing utterances in the correct conversational context, determining to whom the
trainee is speaking, etc., leverages existing work on the Smart Interaction Device (SID). SID will be
responsible for both understanding incoming speech and also managing dialogue between each P-8A agent and
the trainee. As recognition artifacts are generated and sent to the agent using the Aria infrastructure, SID will
process and make sense of them in terms of the agent’s knowledge base and understanding of the current
dialogue state. In this sense, SID serves as a fusion engine for the various speech recognition artifacts, using the
agent’s knowledge base and known context to recognize and react to trainee utterances: (1) Is the agent waiting
for a particular cue or piece of information? (2) Is a question from the trainee an appropriate thing to expect at
the current moment? (3) Does executing the requested task make sense given current activity? (4) Does the
message have sufficient information, or do | need clarification? By framing all interactions alongside the rest of
the agent’s tactical knowledge base, agents can use dialogue to both advance the conversation and also respond
to unclear statements. For instance, if communication fails for some reason (e.g., the user gives ambiguous
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inputs or omits some information), the system is designed to ask the user for clarification or for the missing
information.

PRELIMINARY ANALYSIS

Speech data were collected with representatives from the Patrol and Reconnaissance Wing Eleven (CPRW-11) to
support an engineering evaluation of the speech recognition capability that underlies the CREATE technology. The
purpose of this analysis was to establish a baseline for the speech recognition performance in the domain early in the
development process to identify areas for improvement. In this analysis, we used the P-8A aircrew’s audio samples
against a fixed, hand-generated speech grammar developed during early prototyping. During the analysis,
researchers identified specific gaps and opportunities for improvements that can be addressed during on-going
development to advance the state-of-the-practice while increasing the likelihood of transition success.

Two collection events yielded data for analysis from skilled aircrew from the P-8A: the first event at Naval Air
Station Jacksonville and a second event at NAWCTSD in Orlando. Additional data collection was conducted
internally at SoarTech with seven untrained civilians (three of which had some familiarity with the domain). In total,
2,350 audio samples were collected across 17 participants.

During data collection, participants were asked to record themselves speaking a sequence of utterances randomly
selected from the set of in-grammar utterances. Recording took place using a push-to-talk button, so users controlled
when the recording started and stopped. Roughly half of the recordings were made using a laptop’s built-in
microphone, while the other half were made using a noise-cancelling headset microphone.

These recordings were then fed through a speech pipeline to measure its performance. This pipeline starts with
speech recognition, which provides a text hypothesis of what was said. The next stage of the evaluation runs the
recognition hypotheses through the understanding phase of the speech pipeline, to see whether it can produce correct
semantics (i.e., whether the semantics for the recognition hypothesis were identical to those for the expected
utterance), even in cases where the hypothesis was not completely correct. In some cases, speech recognition may
fail (i.e., not exactly match the expected text), but understanding still succeeds. This is because the understanding
phase is typically forgiving about simple variants (e.g., the word “the” may be optional in some places, and the word
“AWO” may be substituted for “Jez”, etc.). In this context, the most appropriate metric of speech performance and
success is correct understanding.

Comparisons were made between recognition and understanding rates with and without a headset. To give a sense of
how “close” the failed recognitions were, the word edit distance was calculated for each one (i.e., Levenshtein
distance; Levenshtein, 1966). This distance represents the number of edits—word replacements, deletions, or
insertions—required to transform the recognition hypothesis into the expected utterance.

Finally, we analyzed the audio itself in order to better understand the causes of failures. Specifically, we identified
and quantified utterances that were cutoff at the beginning or end (which is due to user error), utterances in which
the user did not say the correct thing (e.g., added, dropped, or substituted words), and high degrees of noise. Due to
resource limitations, we were unable to listen to and categorize every recording. Instead, we sampled recordings
across all datasets, selecting approximately proportionally from each dataset (i.e., larger datasets contributed more
samples). We then extrapolated from these samples to estimate the total number of failures due to each issue. Of
course, multiple issues may apply to any given sample.

Results of Testing
Baseline performance results are shown in Table 1. The length of utterances in each condition was essentially the
same, as we would expect from a sufficient random sample. Clearly, a noise-cancelling headset made a sizable

difference in recognition and understanding accuracy. Additionally, the understanding phase was robust enough to
some misrecognitions to improve performance by a few points in both cases.
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Table 1. Speech performance

Avg. Length | Recognition | Understanding
No Headset 10.9 39.7% 44.8%
Headset 10.8 51.8% 55.0%

Analysis of the audio itself is shown in Table 2. While some utterances were correctly recognized despite the errors,
the error rates were generally higher for incorrect utterances, as expected. The exception was noise in the no headset
case; we expect that this was lower because there were other failure causes in the incorrect cases, but in the correct
case those were lower, leaving a higher proportion of noise. Additionally, high noise rate only affected the no
headset condition, which explains why overall recognition and understanding rates were lower in that case. Cutoffs
were also high, implying that some participants did not understand how to use the push-to-talk function (i.e., they
started recording too late or ended too early). Finally, utterance variations were also high in the incorrect cases.
Examples of these include incorrect pronunciation (e.g., saying “E-W-0O" as separate letters, or saying “four zero
zero” instead of “four hundred”), repeating “TACCO” at the start of the utterance, and word addition or omission
(e.g., leaving out “and”, or adding “the”). There were also occasionally mis-reads, where the wrong word was said
entirely, and stutters. Finally, sometimes different terminology was substituted (e.g., “three” instead of “EWO”).

Table 2. Audio analysis

High noise? | Cutoff? | Utterance variation?
No Headset Correct 41.7% 12.5% 4.2%
No Headset Incorrect 24.5% 22.5% 36.7%
Headset Correct 0% 10.6% 11.8%
Headset Incorrect 0% 31.9% 42.0%

The final analysis was conducted to understand failures for the headset condition. The results, wherein word edit
distance is characterized, are shown in Table 3. Also shown in Table 3 are the percentages of utterances that were
one edit away from correct, within two edits, and within three edits. This indicates that the majority of understanding
failures were actually very close to correct. We also characterized it with the cutoff utterances removed, as we
would expect real-world users to not make this mistake.

Table 3. Word edit distance analysis for understanding errors

1-3 Edits
81.2%

1 Edit
39.6%

1-2 Edits
63.9%

Headset

LESSONS LEARNED

One prominent lesson learned is that noise-cancelling headsets are critical for good speech performance. Most
modern speech recognition technologies still struggle with background noise. Additionally, utterances that are cut
off by users hitting the push-to-talk button too late or releasing too early, have a detrimental impact on recognition
and understanding. It is likely that these issues can be addressed for future data collection through training with the
data collection tool, or through use of equipment that more closely replicates the technology used in training. With
these changes, we would expect these rates to be much lower among the target training population. There may be
other techniques to help with this as well, such as continuous recording in which the push-to-talk signal is treated as
a hint as to where utterances start and end, but the system is intelligent about actually looking for gaps in speech.

Many utterance variations can likely be addressed via improved training or increased use of end users (e.g., a real
user would never say “E-W-O” as separate letters). Further, improved parsing such as adding support for variants
would also likely result in increased speech system performance. Additionally, users were often off by only a small
amount in their utterances. This indicates that small improvements in recognition performance can make a
substantial difference. Another approach would be to take advantage of small edit distances. Fixing small edit
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distances may also help address cutoffs, as typically these affect just the first and/or last word in an utterance.
Overall, many of these changes are within relatively easy reach.

Table 4 shows prospective understanding performance with various issues addressed. This assumes a noise-
cancelling headset, which already addresses the noise problems. The columns include estimated understanding rates
that could be expected from fixing each of the issues individually; the final column identifying the estimated
understanding rate that would be achievable if we fixed all issues identified by these analyses. Because many
samples have multiple problems, these do not strictly add (i.e., fixing one class of problems may also fix some of
another class of problems). If each issue were fixed individually, there would be moderate improvements in
performance, with increasing edit distance fixes making the largest difference. If all fixes were combined, for this
dataset we would theoretically achieve 98% understanding. While it is probably unrealistic to achieve 100% fixes
for each of these areas, this estimation demonstrates that focusing effort in this space of problems is likely to result
in performance gains that would increase the likelihood of technology success as part of the CREATE training tool.

Table 4. Speculative performance improvements to understanding from addressing identified speech failure

categories
Address Address Address 1 Address1 | Address 1,
Base Utterance Edit & 2 Edit 2, & 3 Edit | Cumulative
Cutoffs e - 3 .
Variations Failures Failures Failures
| Headset 55.1% 69.4% 74.0% 72.9% 83.8% 91.6% 98.0%
CONCLUSION

While these analyses highlighted several challenges that exist with this prototype speech recognition and
understanding technology, the overall effort is still in the early R & D phase. By collecting this data early, as
highlighted by the results above, several achievable methods for improving performance were identified. Further,
the analyses and results discussed here were done under a minimal budget without impacts to the development
schedule. Through early, frequent, and continued analyses such as this, the team can continue to identify common
issues that, when addressed, can potentially provide performance gains. This is critical for an interactive technology
such as the CREATE training tool, because human-computer interaction significantly impacts user perceptions of
technology. From usability issues that decrease buy-in for using technology, to unintended negative training when
the system reacts in ways that do not mirror the real-world environment, poor performance of technologies such as
speech tools often result in failed transitions. Or worse, transition of technologies that remain unused due to
challenges that users perceive as insurmountable. Further, from an instructor perspective, performance shortfalls of
an interactive technology have the potential to increase workload and impact their trust in this or other automated
systems.

As this research effort continues in the coming months, the team will continue to collect similar data sets for further
analysis and system refinement. In addition, for a better understanding of challenges that may exist within the larger
interactive technology, the team proposes to collect usability data from end users when using an interactive speech
capability (i.e., full up speech recognition, understanding, and synthesis), as well as a full CREATE prototype.
Finally, as a full-scale solution is prototyped, research into instructor workload and displays that provide
transparency on automated systems that underpin the technology are necessary to deliver an effective and efficient
training tool that facilitates instructional processes.

The primary use case for prototype development has been TACCO training within the PTT. Existing funding will
expand this use case to include training for other operators within the PTT environment and expanded mission sets.
However, other opportunities exist to increase training efficiencies for the P-8A as well. For example, pilot training
conducted within the Operational Flight Trainers (OFT) currently lack the noise and interaction that would be
encountered during a live flight. In this use case, the technology would be expanded to provide background chatter
overheard on the radio when monitoring command and control frequencies and provide the ability to interact with
air traffic control organizations. Additionally, as noted in the introduction, crew-based training is accomplished in
the later phases of training using a Weapons Tactics Trainer. During these training events, a full crew is expected:;
however, there are occasions when competing priorities or other factors (e.g., illness) result in missing
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crewmembers. As the technology matures, the CREATE training tool provides an option to “turn on” desired
synthetic crew members to fill out an aircrew for training, without requiring another operator to fill the gap.

While the use case for this specific effort is currently the P-8A, the training challenges described are prevalent
across multiple aviation platforms and domains. For example, even though most fighters only have a single
individual comprising the crew, formation flying and integrated warfare requires interaction with others in the
mission environment. For this reason, expanding the technology to provide options such as virtual wingmen would
be follow-on use cases. Further, due to the limited availability of cross-platform training due to training schedules
and resources, this technology provides unique opportunities to train as we fight even during standalone training
events.

Advancements in ASR and component technologies have provided opportunities to develop an integrated capability
that provides virtual crewmembers in simulation-based training environments through the development of synthetic,
interactive models. The results of this paper highlight that while not insurmountable, developers of emerging
technologies must take the steps necessary to identify possible points of failure early during design and development
to overcome pitfalls that may lead to failure. Further, this technology does not represent an end to this challenge on
its own. Rather, continued R&D is required to address additional training and lifecycle issues that face speech
systems such as increased utility for automated performance assessment (e.g., Foltz et al., 2007, 2008) and
mechanisms to maintain speech libraries after fielding to overcome outdated technologies as tactics, techniques, and
systems change over time.
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