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ABSTRACT 
 
The complexity of manufactured equipment for the U.S. military has increased substantially over the past decade. As 
more complex technology is integrated into battlefield equipment, it is more important than ever that workers 
manufacturing this equipment have the necessary skills. These specialized manufacturing skills require careful 
workforce selection and training. However, traditionally, workers are assigned roles based on instructor evaluation 
and qualitative self-assessments. Unfortunately, these assessments provide limited detail about a candidate’s aptitude. 
By using more detailed data captured from assembly operations, a more complete profile of an operator’s skills can 
be developed. This profile can then guide assignment of a worker to maximize productivity. This paper develops a 
Bayesian Network (BN) to predict worker performance using data captured from 75 participants via augmented reality 
guided assembly instructions. Information collected included step completion times, spatial abilities, and time spent 
on different assembly operations. For analysis, participant data was divided into training and testing sets. The data 
was mined for trends that could statistically predict measures of performance like errors or completion time. Based on 
these trends, the training set was used to construct the BN. The authors found that the model could predict some 
aspects of performance accurately, such as assembly completion time in the testing set. While these results were 
encouraging, further analysis demonstrated the network was biased by probabilities that were greatly influenced by 
the number of data points present in a category. The results highlight that, with small data sets, there is often not 
enough observed evidence to produce accurate predictions with BN. This suggests that a method of data simulation 
or generation is required to increase the number of training set samples. This would enable powerful BN tools to be 
used in real world manufacturing applications were collecting hundreds-of-thousands of data points is not feasible. 
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INTRODUCTION  
 
With the increasing prevalence of commodity sensors and computing devices data can now be collected for relatively 
inconsequential costs and effort. Collecting data on a manufacturing process, customer satisfaction, or disaster 
response can now lead to a wealth of information for those dedicated enough to search for it. Through analyzing 
multivariate relationships between measured variables in collected data, organizations can use these relationships to 
help guide important decisions. These decisions are accomplished by utilizing machine learning techniques that can 
make accurate predictions and forecasts based on trends, even in novel situations. Not only can these machine learning 
tools aid in decision making, they can also be used to understand how different decisions or events impact a system 
as a whole. Companies like Amazon, Google, and Microsoft are using machine learning techniques to gain a 
competitive edge and help improve their product offerings (Biewald, 2016; Reese, 2016; Wilder, 2016). One such 
popular machine learning approach is Bayesian Networks (BN), based on powerful Bayesian statistical theory (Bayes, 
1763). Bayesian Networks utilize the adaptive nature of Bayesian statistics to represent relationships between events 
in a compact, and easy to understand manner. While Bayesian statistics and networks are very powerful predictive 
tools, they often require hundreds-of-thousands or millions of data points to accurately model complex situations. 
 
While using sensors to collect data is becoming more cost efficient, in real-world cases one cannot often collect enough 
data points to use machine learning techniques like BNs. In some domains, like manufacturing or battlefield training, 
events of interest may only happen a handful of times throughout the year. As a result, collecting thousands of unique 
data points is not possible. One specific example of the data volume issue is aircraft manufacturing. The process is 
very complex and involves many different collaborators from union labor to dozens of suppliers all impacting the 
finished product. Specifically, worker suitability can significantly impact assembly and manufacturing process 
outcomes. The ability to assign the correct worker to a job could provide a competitive edge by making sure their 
skills are suitably matched with a task (Ong, Ato, Umar, & Oshino, 2016). However, there might only be a handful of 
planes produced every month, meaning there is not enough worker data to construct a model to predict competencies 
(BBC, 2015). This means that a BN is not an ideal option because of the limited data available for training the network.  
The lack of data means there is not a way to accurately understand the relationships between variables, to predict how 
changes might impact the production process. As a result, these types of complex processes cannot make use of the 
powerful predictive analytics of BN because of the lack of data. The work in this paper begins exploring how small 
quantities of data can be used to construct a BN to accurately predict outcomes of a manufacturing operation. The data 
gathered was from an augmented reality guided assembly process that logged user performance and interaction with 
the assembly. This logged data was then analyzed for trends which were used to construct and train a BN. The goal 
of the network is to predict how well someone would do, in terms of errors and completion time, on the assembly. 
This work was made challenging by the small number of data points collected, 75, and the variation associated with 
human subject data. This paper presents the background of BN, the methods used to collect data, how the data was 
used to construct a BN, and the result of testing the network. In addition, ideas for improving the accuracy of the 
network while still using small amounts of data are discussed. 
 
 
BACKGROUND 
 
Statistical methods have long been used to help make sense of data and predict the likelihood of an event when 
provided with certain parameters. Statistical theory is used in areas spanning from reliability analysis to scheduling 
airline flights (Jacobs et al., 2012; Muller, 2003). The reason statistical methods are used increasingly, especially 
today, is their ability to suggest courses of action based on previously collected data. These suggestions benefit from 
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the ability to look at far more relationships between variables than humans can and provide decisions that are more 
unbiased (De Martino, Kumaran, Seymour, & Dolan, 2009; Hastie, 2001). Companies like Apple, Google, Amazon, 
and Netflix make use of statistical analysis every time they suggest a replacement word with auto correct, complete a 
search request, suggest a new product to order or show to watch. These real-time decisions are made possible by 
automated statistical analysis and machine learning algorithms. This type of customized real time decision making 
was unheard of twenty to thirty years ago and is made possible through using machine learning. Moving forward, 
leveraging this type of powerful analytics outside of the consumer realm is necessary in areas like the military to 
ensure the continued evolution of the warfighter. 
 
Bayesian Statistics 
 
Powerful machine learning techniques using Bayesian Networks are made possible due to the resurgence of Bayesian 
statistical methods. Bayes Theorem, shown in Equation 1, is unique from traditional statistical methods because it 
allows the incorporation of background information called the prior probability (Bayes, 1763). The term 𝑃 𝐴 𝐵 , 
called the posterior probability, represents the probability of A given that B occurs. The goal is to use what is known 
to calculate this unknown value. To calculate it involves using what is known on the right side of the equation. The 
term 𝑃 𝐵 𝐴 , reads the probability of B given A, is the likelihood of event B when A has already occurred in the 
population sample data. The term 𝑃 𝐴  is the prior probability of the event A happening anywhere in the population 
sample. The denominator term 𝑃 𝐵  is the probability of B occurring at any point in our population sample, which 
can be when A is observed or when A is not observed. Often in practice this term is dropped since the probability 
values are being compared and this term does not impact the results. For sake of space, this term is not explained. For 
a more in depth derivation see (Bayes, 1763).  

𝑃 𝐴 𝐵 = 	
𝑃 𝐵 𝐴 𝑃 𝐴

𝑃 𝐵
1  

The inclusion of a prior differs from traditional statistical likelihood based approaches. These traditional approaches 
mainly estimate probabilities of events based on the observed sample population data (Orloff & Bloom, 2014). The 
introduction of the prior probability term allows for a correction or smoothing of the observed data described by the 
likelihood. Often this prior probability is thought of as an expert specified term. The combination of the prior and the 
likelihood give the posterior probability of an event occurring. Figure 1 shows an example of a possible likelihood 
distribution and a prior. Figure 1 shows the likelihood distribution, created from the data observed, with a strong 
probability of an event around x equals four. However, the prior distribution shows less certainty in the event 
happening at x equals four. The prior also has a wider variance than the likelihood distribution. The difference between 
distributions could be because the likelihood is over confident in the probability of an event occurring because the 
population data set that generated the distribution may not have included outlier data points. The prior distribution, 
created by an expert based on their experience, might consider that there may be outliers and thus decreases the 
probability of an event occurring at x equal to four. Using Bayes Theorem in Equation 1, the two distributions can be 
combined to provide a best estimate of the probability of an event occurring for a given x. Combining the likelihood 
and prior is a powerful strategy 
that allows for prediction of 
probabilities in areas where there is 
little data available, but experts 
know what the probabilities of 
certain events are.  
 
Bayesian Networks 
 
Conceptually, Bayes’ Theorem, is 
straight forward when there are 
few events and few variables. In a 
simple problem, to calculate the 
probability of an event, multiply 
the prior by the likelihood. 
However, determining the 
outcome is challenging when there 
are multiple events with multiple 

0 5 10 15
x

0

0.05

0.1

0.15

0.2

0.25

0.3

P(
x)

Likelihood and Prior Plot

Likelihood - P(B|A)
Prior - P(A)

Figure 1. Likelihood and Prior Plot Example 



 
 
 
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2017 

2017 Paper No. 17224 Page 4 of 13 

variables for each event. Representing the relationships between variables, becomes very complex, very fast. Helping 
to alleviate this problem, Bayesian Networks allow for the representation of dependencies and relationships between 
variables (Stephenson, 2000). This section describes the theory behind Bayesian Networks along with how to construct 
and solve for a network. 
 
Let us start with an example. A quality control engineer is provided with a data set 𝐷 that describes technicians’ 
effectiveness at repairing armored vehicles. This data set is made up of 𝑛 data points with each data point having 𝐗 =
	 𝑣+ ……𝑣-  variables, see Equation 2. The variables in each data point represent data like vehicle type, technician 
experience, oil type used, repair time, use environment, etc. The engineer is tasked with coming up with a maintenance 
schedule assigning technicians to a vehicle, matching their skills with the type of maintenance. The engineer must 
determine how to model the relationships between the variables to properly assign a technician to each repair. 

𝐷 =

𝐗+ = 	 𝑣+ ……𝑣-
.
.
.

𝐗/ = 	 𝑣+ ……𝑣-

2  

Looking at the data, as is, the engineer must work with a joint distribution to understand how all the data behaves. In 
short, the engineer cannot separate out what variables might impact another without looking at all the variables. To 
understand all the relationships between the variables, the engineer must calculate 2- different values, where 𝑖 is the 
number of variables for each data point. 
This requires significant computing 
power for large multivariate data sets 
and it can be difficult for a human to 
interpret these causal relationships to 
make informed decisions.  
 
If there was a way to visually represent 
the important causal relationships in the 
joint distribution, relationships between 
variables would be much easier to 
understand and manipulate. Fortunately, 
Bayesian Networks provide a way to do 
just that through Directed Acyclic 
Graphs (DAGs). These graphs are made 
up of vertices and edges. Vertices, also 
known as nodes, represent the variables that make up the data points and are represented as ovals in Figure 2. Edges 
denote the causal relationships between the vertices and are represented as directed arrows in Figure 2, where the 
vertex at the tail of the arrow is said to cause the vertex at the end of the arrow. These graphs allow for the direct visual 
representation of different variable dependencies, eliminating the need to interpret complex joint probability 
distributions. An example DAG for the technician selection problem is shown in Figure 2. This graph shows three 
causal variables, technician experience, type of vehicle repair and type of vehicle. These variables are known to be 
independent of one another. Meaning that the value of experience does not impact the value of the vehicle variable. 
However, these three variables cause or impact the selection of a technician. 
 
Using the network topology displayed in Figure 2 the joint distribution can be rewritten as the product of individual 
probabilities. The general form of this equation shown in Equation 3. This equation denotes that instead of having to 
calculate the joint probability distribution to find out the probability of an event occurring, only the parents of a vertices 
need to be calculated, since only their values impact the result. Parent vertices, or nodes, are vertices at the start of a 
directed edge leading to a child, or dependent, node. In Figure 2, 𝑣23425-2/62, 𝑣5248-5, and 𝑣92:-6;2 are parents of 𝑣<26:. 
A parent-child network representation reduces the number of required values. The computed values now required are 
no more than 𝑖 ∗ 2>, where 𝑖 is the number of vertices and 𝑘 is the max number of parents of any vertex in the network. 

𝑃 𝑣+, … . . , 𝑣- = 	 𝑃 𝑣- 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑣-

-

+

	 3  

Figure 2. Example Bayesian Network for Technician Selection 
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Continuing with the technician selection example, the probability of an event occurring is given by Equation 4. In this 
equation, the probability of experience, repair, and vehicle are independent of other events because they have no 
parents. However, the probability of tech is dependent on its parents’ experience, repair and vehicle. Using collected 
data, the probabilities of the events in Equation 4 can be calculated to provide a numerical probability of an event. 

𝑃 𝑣23425-2/62, 𝑣5248-5, 𝑣92:-6;2, 𝑣<26: = 	𝑃 𝑣23425-2/62 𝑃 𝑣5248-5 𝑃 𝑣92:-6;2 𝑃 	𝑣<26: 𝑣23425-2/62, 𝑣5248-5, 𝑣92:-6;2 4  

Before discussing how to solve for those event probabilities, it is important to mention that, in the example above, the 
network is already constructed. This, however, is not always the case. When creating a Bayesian Network to predict 
the probability of a given event there are four types of situations. 

1. Known network topology and known relationships between vertices 
2. Unknown network topology and unknown relationships between vertices 
3. Known network topology and unknown relationships between vertices 
4. Unknown network topology and known relationships between vertices 

Learning network structure, or topology, from data is an active research area and requires significant amounts of data 
to ensure that the topology is accurate. Due to this paper dealing with small data sets, other methods are employed to 
construct the network topology. This paper focuses on calculating the relationships between vertices after the topology 
has been set (i.e. variation 3).  
 
Continuing again with the technician example from above, let us consider a very small data set 𝐷	consisting of four 
data points. The variables, or 𝑣-′𝑠, measured for each data point are experience level (high or low), repair type (easy 
or difficult), vehicle type (common or rare), and technician experience (novice or expert). Each of these data points 
were actual repairs that were assigned based on an expert service manager’s assessment of the situation. However, 
this service manager is retiring and the shop would like to capture their knowledge in an automated system. The data 
set gathered from the expert service manager’s assignments is: 𝐗+ = ℎ𝑖𝑔ℎ, 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡, 𝑟𝑎𝑟𝑒, 𝑒𝑥𝑝𝑒𝑟𝑡 ; 	𝐗Q =
𝑙𝑜𝑤, 𝑒𝑎𝑠𝑦, 𝑟𝑎𝑟𝑒, 𝑛𝑜𝑣𝑖𝑐𝑒 ; 𝐗U = 𝑙𝑜𝑤, 𝑒𝑎𝑠𝑦, 𝑐𝑜𝑚𝑚𝑜𝑛, 𝑛𝑜𝑣𝑖𝑐𝑒 ; 𝐗W = 𝑙𝑜𝑤, 𝑒𝑎𝑠𝑦, 𝑐𝑜𝑚𝑚𝑜𝑛, 𝑛𝑜𝑣𝑖𝑐𝑒 . With these 

data points, the relationships between vertices in Figure 2 can be computed. To do that, a table of observed evidence 
must be created and grouped by prediction category, in this case the experience level of the technician assigned to the 
repair. In addition, the prior for each of the prediction categories must be computed. The prior calculation for 
discretized values is a simple probability calculation displayed in Equation 5, where 𝑛6 is the total number of 
observations that appear in a specific category (i.e. novice or expert) and 𝑛/ is the total number of obersvaitons in the 
data set 𝐷. Theoretically using this formulation, the prior probabilities for categories of a variable will sum to one. 
The prior probabilities for the vertices’ who’s value the network attempts to predict, in this case technician skill level, 
is shown in Table 1. 

𝑃 𝑋 =
𝑛6
𝑛/
	 5  

The prior probabilities in Table 1 indicate that if we didn’t know anything about the structure of the network or 
anything else about the data points, that when a job comes in it would be assigned to a novice 75% of the time. This 
occurs since 75% of the data in our training data set is falls into the novice category. However, looking at the data 
points there is more information available to help better assign a job to a technician based on additional variables. 
Using these variable values, the likelihood of selecting a technician category can be calculated given some information 
about the event.       

Table 1. Technician Skill Level Prior Probabilities 

To calculate the likelihood of an event given some evidence, 
the network must know what evidence it must base a decision 
on. The levels of evidence the network sees in each category 
are shown in Table 2. Note that the data described in Table 2 
has been discretized rather than using continuous distributions like shown in Figure 1. This discretization is the process 
of taking continuous values and separating them into categories with an upper and lower bound. Discretizing values 
into categories makes the numerical calculations for solving a Bayesian Network less computationally intensive. There 
are numerous ways to discretize values, but one of the most popular is Hierarchical Clustering (Kerber, 1992).  
 
Table 2 shows that using the training data set above, only one data point fell into the Expert technician category and 
there were three data points in the Novice category. The three data points in the Novice category exhibited two 

Category Prior Probability 
Expert 1 4 = 	 .25 
Novice 3 4 = 	 .75 
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different evidence states or unique combinations of the experience, repair, and vehicle variables. The goal, then, is to 
turn these observed evidence levels into probabilities that guide decisions about what category of technician a data 
point falls into based on the observed variables. To do this, the likelihood of an event given some evidence must be 
computed. Two traditional methods are called Laplace Smoothing and M-Estimate (Jiang, Wang, & Cai, 2007; 
MacKay, 1998; Williams, 1995). These methods are popular since they consider the probability of seeing a 
combination of evidence even if an event is not observed in the training data.  This is helpful during the testing stage 
where a network may encounter novel data combinations.  

Table 2. Laplace Smoothing Likelihood Calculations for Evidence  

Technician 
Category 

Experience Repair Vehicle Count Likelihood Likelihood Non-
Appearing 

Expert High  Difficult Rare 1 (1 + 1)
(1 + 2) = 0.67 

0 + 1
1 + 2

= 	0.33 

Novice Low Easy Rare 1 (1 + 1)
3 + 2 = 0.4 0 + 1

3 + 2
= 	0.2 Novice Low Easy Common 2 (2 + 1)

3 + 2 = 0.6 

The Laplace Smoothing equation is shown in Equation 6. This equation calculates the likelihood, the term 𝑃 𝐵 𝐴  in 
Equation 1, of evidence 𝜃 falling into class 𝑋 and is read the probability of 𝑋 given 𝜃. The term 𝑛6 in this equation is 
the number of times a combination of evidence or variables appears in a category. For the expert category in Table 2, 
this value would be one since there is only one recorded occurrence of the unique combination of the 𝐗+ =
ℎ𝑖𝑔ℎ, 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡, 𝑟𝑎𝑟𝑒, 𝑒𝑥𝑝𝑒𝑟𝑡 .	The variable 𝑛 is the total number of combinations in the category. In the example 

shown in Table 2, this value would be one since there is only one data point in the expert category. In the novice 
category, however, this value would be three since there are three data points falling under this classification. The 
term 𝑐 is the number of categories. In the example above, this term would be two since there are two categories, expert 
and novice. The last term in the Laplace Smoothing equation is one. This is called the smoothing factor. Notice, in 
Table 2, for the Expert category there is less observed evidence than in the novice. As a result, since there is less 
known about this category, the Likelihood that testing evidence could appear in this category unknown to the trained 
model it is higher than the Novice category, which contains more observations. This probability is represented as a 
“Likelihood Non-Appearing” column in Table 2. 

𝑃 𝑋|𝜃 = 	
𝑛6 + 1
𝑛 + 𝑐

	 6  

The M-Estimate method of calculating Likelihood is shown in Equation 7. This method has been shown, in some 
cases, to increase the accuracy of Bayesian Networks (Jiang et al., 2007). In this equation, the term 𝑛6 is the number 
of times a combination of evidence or variables appears in a category. The term 𝑘 is the number of categories, 𝑝 is the 
prior probability for a category, and 𝑛 is the total number of combinations in the category. 

𝑃 𝑋|𝜃 = 	
𝑛6 + 𝑘 ∗ 𝑝
𝑛 + 𝑘

	 7  

After Likelihood calculations, the network is considered trained. New points can be passed into the network for 
classification. For example, consider a new repair having the following measured states 𝐗b =
𝑙𝑜𝑤, ℎ𝑎𝑟𝑑, 𝑐𝑜𝑚𝑚𝑜𝑛, ? . The shop wants to know who to assign this repair to so they put it though the trained 

Bayesian Network. 

Table 3. Posterior Probability for Test Data Point 

Category Posterior Probability  
𝑃(𝐸𝑥𝑝𝑒𝑟𝑡|𝑙𝑜𝑤, ℎ𝑎𝑟𝑑, 𝑐𝑜𝑚𝑚𝑜𝑛)  𝑃 𝐸𝑥𝑝𝑒𝑟𝑡 𝑃 𝑙𝑜𝑤, ℎ𝑎𝑟𝑑, 𝑐𝑜𝑚𝑚𝑜𝑛 𝐸𝑥𝑝𝑒𝑟𝑡 = 	0.25 ∗ 0.33	 ⟹ 	0.0825 
𝑃(𝑁𝑜𝑣𝑖𝑐𝑒|𝑙𝑜𝑤, ℎ𝑎𝑟𝑑, 𝑐𝑜𝑚𝑚𝑜𝑛) 𝑃 𝑁𝑜𝑣𝑖𝑐𝑒 𝑃 𝑙𝑜𝑤, ℎ𝑎𝑟𝑑, 𝑐𝑜𝑚𝑚𝑜𝑛 𝑁𝑜𝑣𝑖𝑐𝑒 = 	0.75 ∗ 0.2	 ⟹ 0.15 

Table 3 contains the results of the Bayesian Network for the testing data point. The network predicts that the job 
should be given to a novice technician. Notice how much the prior probability impacts the result and how the network 
makes a prediction for a combination it has not encountered in the training data. Selecting an accurate prior is very 
important since it can greatly impact results. Selecting a prior probability is challenging with small amounts of data 
since little is known about the behavior of the data set numerically. Coming up with a way to have enough data in the 
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network to accurately account for behaviors a network might encounter, especially with users, is very challenging. 
This paper looks at how accurate a network is with a small amount of data. In addition, the work looks at how the 
distribution of the testing and training data falls onto the network. 
 
Bayesian Networks in Manufacturing 
 
Bayesian networks are powerful predictive tools. They are used extensively in industry and academia in areas from 
biological systems modeling to medical diagnosis (Aguilera, Fernández, Reche, & Rumí, 2010; Constantinou, Fenton, 
Marsh, & Radlinski, 2015; Molina, Bromley, Garcia-Arostegui, Sullivan, & Benavente, 2010). However, there is 
limited use of Bayesian networks in the manufacturing domain and even less work looking at human operators. This 
lack of human operator research is partially due to the challenges associated with collecting sufficient amounts of data 
to populate a network and because of the challenges associated with modeling human behavior. The limited work that 
exists detailing Bayesian Networks in manufacturing point to their ability to help accurately predict situations on the 
shop floor. Work by Jin, Liu, and Lin uses’ optical sensor measurements to detect fixture faults in auto bodies and 
assess if the faults are outside tolerance (Jin, Liu, & Lin, 2012). Their work shows that BN can accurately predict 
when a part is out of tolerance. They conclude that BN are powerful and flexible tools for manufacturing, but that 
large amounts of data are required in some cases to produce accurate predictions. Work by Yang and Lee detailed a 
Bayesian Network for diagnosing faults in manufactured semiconductors (Yang & Lee, 2012). Their work uses 
automated sensors to measure characteristics of each wafer to predict if the wafer is good or bad. They found that by 
using a BN they could understand interactions between predictor variables. They, also, noted that the large amount of 
data and the training cycles for the network could be prohibitive to its widespread adoption. Mak, Afzulpurkar, et al. 
collected data form an automated soldering process using computer vision (Mak, Afzulpurkar, Dailey, & Saram, 
2014). They used 330 samples to build a network that could predict when a faulty weld occurred. With their network, 
they could achieve 91% accuracy with a relatively small data set. However, while this data set was small for a 
traditional BN, the variation was very low. Using a small data set is easier with a low variation processes, this is not 
the case with human subjects. Dey and Stori used an even smaller data set to construct a BN (Dey & Stori, 2005). 
They collected 16 data points to predict variation in work piece hardness, stock size, and tool wear for a machining 
operation. Using their data, they achieved 80% accuracy. Although, again this work deals with consistent and 
repeatable machining data, which does not vary as much as human subject data.  
 
Overall, the work presented above shows the potential of Bayesian Networks in the manufacturing domain. However, 
collecting enough data to build an accurate model is a challenge. This paper looks at using data collected from an 
augmented reality system to predict how well a participant can complete the assembly of a mock aircraft wing. 
 
 
METHODS 
 
Data Collection and Processing 
 
Building the Bayesain Network first required data. Data 
was collected from an assembly task using Augmented 
Reality guided work instructions. This type of application 
was used to collect data because AR has shown 
considerable promise at helping improve assembly 
accuracy (Nakanishi, Ozeki, Akasaka, & Okada, 2007; 
Richardson et al., 2014; Wang, Ong, & Nee, 2016). In 
addition, the computer based AR system is an ideal 
platform for collecting the detailed process data required 
to predict manufacturing aptitude in a Bayesian Network. 
Participants in the study were asked to assemble a mock 
aircraft wing made of painted wood components and 
metal threaded fasteners. The study setup was designed to 
mimic a traditional work cell found in a manufacturing 
environment. To ensure that the assembly task aligned 
with operations found on an actual manufacturing floor, 
the instructions and assembly were created with input Figure 3. Wing Assembly 
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from The Boeing Company. The wing was 
approximately 4 feet high and had a fixed base, 
shown in Figure 3. The wing had 12 large wooden 
components, three wires, and 14 fastener sets, 
which contained different varieties of bolts and 
nuts. For the study, AR instructions, shown in 
Figure 4, were delivered on a tablet computer fixed 
to a movable base. The AR application recoded 
when a participant moved between steps using a 
time stamped log file. These log files were then 
parsed to calculate how long participants spent on 
each step and how long they took to complete the 
assembly. Throughout the study observers sat 
behind a desk, where they recorded participant 
errors. For more information on this study, please 

see previously published work (Hoover et al., 2016; MacAllister, Gilbert, Holub, Winer, & Davies, 2016; Richardson 
et al., 2014). 
 
Data parsed from the log files, that were used to train the network, consisted of time spent on different types of steps 
required to complete the wing (picking, placing, and assembly), paper folding score, errors committed, and total time. 
The goal was to use easily measured variables like step times and paper folding score to predict how quickly and how 
well an operator would complete the assembly. Ideally, being able to predict a participant’s performance on a practice 
assembly, like the wing, could in the future be generalized to predict performance on a more substantial assembly. 
After this practice assembly, they could then be assigned to a job based on their projected abilities on a full assembly. 
If this were possible, a worker could come in to perform a short assembly that measured specific skills. After this 
practice assembly, they could then be assigned to a job based on their projected abilities on a full assembly. Current 
practices require workers to go through rigorous training taking weeks to months. Many workers drop out and only a 
fraction of those who compete it become proficient on the actual assembly line. This adds up to significant cost and 
time for the military or a company. BNs paired with detailed task data captured from AR work instructions offer the 
potential to significantly decrease these resources. Since worker suitability can significantly impact assembly and 
manufacturing process outcomes, the ability to assign the correct worker to a job could provide a competitive edge by 
making sure warfighters are assigned to tasks where they can make the highest impact (Ong, Ato, Umar, & Oshino, 
2016).  

Table 4. Linear Regression R2 Values Between Variables 

Constructing the Bayesian 
Network 
 
After data were collected, before 
network training could occur, it had 
to be analyzed for trends. This 
analysis was necessary due to the 
small data set, meaning research 
methods that construct network 
structure could not be used. Data trends found through analysis helped establish the network structure representing 
the causal relationships between variables that impact a person’s number of errors committed and total completion 
time. To understand the relationships between variables, linear regression models were created to show the strength 
of influence of variables upon each other. By finding the relationships between each variable, it can be established 
which variables can be used to predict time and errors. The R2 values, the values that describes the strength of linear 
relationship between variables, are shown in Table 4. Generally, a higher R2 value shows that there is a strong linear 
relationship between the variables. However, a low R2 value does not mean the model is inherently bad. Since this 
data is from a human subjects’ study, it is expected that there is a high amount of variance within the data. Therefore, 
the authors looked for strong trends between variables and relatively high R2 values when building the network 
structure. 
 

 Time Fold Score Picking Placing Assembly Errors 
Time   0.135 0.479 0.299 0.673 0.067 
Fold 
Score 0.135   0.113 0.112 0.019 0.202 

Picking  0.479 0.113   0.081 0.075 0.103 
Placing 0.299 0.112 0.081   0.158 0.076 
Assembly 0.673 0.019 0.075 0.158   0 
Errors 0.067 0.202 0.103 0.076 0   

Figure 4. Augmented Reality Guided Work Instructions 
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From looking at the values in 
Table 4 and trying to predict 
overall time it is apparent that 
both picking and assembly step 
times display strong relationships. 
This suggests that completion 
time is dependent on the outcome 
of picking and assembly times. 
This means an edge should be 
drawn from the vertices of 
picking time and assembly time to 
total time. This is represented in 
the network structure shown in 
Figure 5. The regression model 
used showed that for Time vs 
Assembly Time (p < 0.0005) and 
Time vs Picking Time (p < 
0.0005) there was a statistically 
significant relationship. 
 
When trying to predict the 
number of errors a participant 
would make, the linear regression 
models showed fold score, picking time and placing time as variables with the strongest relationships. Errors vs Fold 
Score (p < 0.0005), Errors vs Picking Time (p = 0.005) and Errors vs Placing time (p = 0.017) were all statistically 
significant and displayed the highest R2 values. However, since there were relatively very few errors on average, there 
was high variance among the data. This could explain the low R2 error correlation values, relative to time, and 
potentially cause issues modeling error behavior of participants in the system. 

Table 5. Evidence Counts and Probabilities for Laplace Estimate 

Predictor 
Category 

Evidence- 
Assembly 

Evidence- 
Picking 

Evidence 
Count 

Likelihood - 
Laplace Est 

Likelihood - Non-
Appearing Est 

Time1 Assemb2 Picking1 1 0.285 0.142 Time1 Assemb3 Picking2 1 0.285 
Time2 Assemb3 Picking2 18 0.655 

0.034 Time2 Assemb3 Picking3 5 0.206 
Time2 Assemb1 Picking5 1 0.068 
Time3 Assemb3 Picking3 4 0.454 0.090 Time3 Assemb3 Picking2 2 0.272 
Time4 Assemb3 Picking3 1 0.285 0.142 Time4 Assemb4 Picking3 1 0.285 
Time5 Assemb1 Picking3 1 0.222 

0.111 Time5 Assemb4 Picking4 2 0.333 
Time5 Assemb5 Picking3 1 0.222 

 
Discretizing the Continuous Participant Data 
 
To discretize the data, Hierarchical Clustering was used to group like values (Kerber, 1992). Grouping the data into 
clusters or categories makes the likelihood calculations less computationally intensive. In addition, discretized data 
works better with smaller data sets since there may not be enough data to construct a continuous probabilistic 
distribution. The results of the clustering algorithm are shown in network structure in Figure 5. Each vertex has 
multiple categories, instead of just high/low or expert/novice like in the background section example, with lower and 
upper bounds. Discretizing the data requires a participant’s recorded numeric value for a variable to be assigned to a 
category where it fits inside the bounds. Each category houses multiple participant values that fall within its specific 
assigned range. As a result, instead of continuous values, categorical values are used for training networks. Figure 5 

Figure 5. Bayesian Network Structure 
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shows the upper and lower bounds for each category and how many of the 37 training points fell into each. The number 
of points in a category divided by the total number of total points was used to calculate the prior probability. Only half 
the data, which was selected randomly, was used to calculate these probabilities and train the network. The other half 
of the data was held out as a testing set.  
 
While discretizing using, hierarchical clustering is preferred, for errors, existing standards dictated specific category 
bounds. The clustering algorithm did not follow this logic, so the bounds for the error vertex where set manually. To 
do this the participants were split into three groups based on their performance: high performers, moderate performers, 
and low performers. Values for these high, medium, and low performers was set based on expert evidence following 
manufacturing process specifications for Aerospace applications. 
 
Training the Bayesian Network 
 
Training the network required calculating the likelihood of observing specific evidence states within a predictor 
category. The predictor vertices in the network were time and errors. To calculate the likelihood of observing specific 
evidence, first, the number of times evidence combinations appeared were calculated for a predictor category as shown 
in Table 5 for time. From here, the number of observed combinations allowed calculating the likelihood using Equation 
6 or Equation 7. Table 5 shows the observed evidence counts and the likelihood calculations using the training half of 
the data. This likelihood is multiplied by the prior probability during testing to produce the probability that a certain 
data point belongs to a certain time or error category. The non-appearing estimation column gives the probability that 
observed evidence is found in the category even if the specific combination does not appear in the training data. The 
same type of calculation was done for errors using combinations of fold score, picking time, and placing time to make 
up the evidence table. In addition, the network was trained using both the Laplace Estimate and M-Estimate likelihood 
estimator. The accuracy of the two methods is presented in the results section. Through comparing these two methods, 
insight can be gained if one of the metric is more accurate for small datasets. 
 
 
RESULTS AND DISCUSSION              Table 6. Bayesian Network Accuracy by Likelihood Method 
 
After using half of the data to train the network, the 
other half of the data was passed back through the 
network to gauge its accuracy at predicting a 
participant’s completion time and errors. The simplest metric of gauging the accuracy of the two networks, Laplace 
and M-Estimate, is looking at how often a network categorized a testing data participant correctly. Table 6 shows the 
overall accuracy for each of the likelihood methods when attempting to predict a participant’s time and errors from 
testing data. The table shows that Laplace Smoothing is slightly more accurate at predicting a participant’s time 
category. Though, both methods were fairly accurate at predicting time, even with such a small data set. However, 
both methods struggled to accurately predict a participant’s error category. For errors, each method was only slightly 
above the probability of randomly guessing between the three categories, which would be one-third. 

Table 7. Laplace Smoothing Confusion Matrix for Time Prediction 

 Predicted T1 Predicted T2 Predicted T3 Predicted T4 Predicted T5 Actual Count 
Actual T1 0 1 0 0 0 1 
Actual T2 0 26 0 0 0 26 
Actual T3 0 6 0 0 0 6 
Actual T4 0 2 0 0 0 2 
Actual T5 0 1 0 0 1 2 
Predicted Count 0 36 0 0 1  

 
While the overall accuracy can present a macro measure of performance, it does not tell the whole story. Looking at 
more detailed performance metrics can provide more insight into areas where the network encounters issues 
categorizing testing data points. One such method is called a confusion matrix. A confusion matrix shows the 
difference in the actual category and the predicted category. Table 7 shows the confusion matrix for the Laplace 
Smoothing likelihood calculation when predicting time. The table shows that of 37 training data points there were 36 
data points predicted to fall into time category two. The table also shows that in the training dataset, only 26 of the  

Likelihood Method Accuracy – Time Accuracy – Errors 
Laplace Smoothing .73 .38 
M-Estimate .70 .38 
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Table 8. Laplace Smoothing Confusion Matrix for Error Prediction 

data points were actually in 
time category two, meaning the 
network over predicted 
participants would fall into 
time category two range of 
completion times. In fact, all 
six data points that were actually in time category three were incorrectly predicted to be in time two. The overall 
network accuracy for time was only high because just over 60 percent of the data points, after hierarchal discretization, 
fell into the time category two. Meaning that when the network assigned a time category two to a point, it had a greater 
probability of being correct. This bias towards assigning to time category two is due to the large prior probability 
associated with time category two, shown in Figure 5. This prior bias was due to the small sample sizes in the other 
categories. The time confusion matrix showed that the large prior probability biased the network to assigning time 
category two. The errors confusion matrix in Table 8 also shows that this is an issue for errors. Error category one has 
a slightly higher prior probability than the other error categories. Even through the difference is about ten percent, it 
seems to be enough to bias the network’s assignment. In addition to the prior bias, the weak correlations found between 
evidence and predicted values for errors in Table 4 likely made predicting errors more challenging than time. To 
balance out the bias, either more data is needed to describe the evidence found in other categories or a different prior 
probability formulation is needed. A more balanced prior probability model would be less impacted by the imbalance 
in sample size. Moving forward, a distribution could be created from the data that better describes the prior probability 
for a given category. This could be accomplished by using fuzzy logic curves or by simulating data. 

Table 9. Common Observed Evidence Between Testing and Training Data - Time 

Predictor 
Category 

Evidence- 
Assembly 

Evidence-
Picking 

# Training Likelihood 
Training 

# Testing Likelihood 
Testing 

Time1 Assembly3 Picking2 1 0.285 1 0.333 
Time2 Assembly3 Picking2 18 0.75 23 0.884 
Time2 Assembly3 Picking3 5 0.208 3 0.115 
Time3 Assembly3 Picking3 4 0.454 5 0.545 
Time4 Assembly4 Picking3 1 0.285 1 0.285 
Time5 Assembly4 Picking4 2 0.333 1 0.285 

Another way to benchmark network performance, is to compare the distribution of the testing and training data within 
the predictor categories. By looking at how the data fell into the network categories, insight can be gained into how 
different data sets impact the likelihood of observing certain evidence. Table 9 shows the difference in Laplace 
Smoothing likelihoods for evidence levels in the training and testing data. Looking at the table, it is evident that the 
testing and training sets can have different likelihood values for the same levels of observed evidence. While these 
differences are slight. This can make a difference in accuracy since Bayesian Networks are a winner take all 
categorization tool. In some categorization decisions, the difference between two categories posterior distribution may 
be very small. This difference in the likelihood values between testing and training sets shows that there is a certain 
amount of variation in the small data set used. As a result, the network as is cannot fully describe the behavior of the 
data set. This can create issues when trying to accurately categorize or predict an assembler’s skill level. 
Table 10. Common Observed Evidence Between Testing and Training Data – Errors 

Predictor 
Category 

Evidence- 
Fold 
Score 

Evidence-
Picking 

Evidence-
Placing 

# Training Likelihood 
Training 

Likelihood 
Testing 

# Testing 

Error1 FS5 Picking2 Placing2 2 0.157 0.25 3 
Error1 FS4 Picking2 Placing2 4 0.263 0.125 1 
Error1 FS3 Picking2 Placing3 1 0.105 0.25 3 
Error1 FS3 Picking2 Placing2 2 0.157 0.187 2 
Error1 FS3 Picking3 Placing4 1 0.105 0.125 1 
Error2 FS4 Picking2 Placing2 3 0.307 0.263 4 
Error3 FS2 Picking3 Placing3 1 0.133 0.181 1 
Error3 FS3 Picking2 Placing3 1 0.133 0.181 1 
Error3 FS3 Picking2 Placing2 1 0.133 0.181 1 

 Predicted E1 Predicted E2 Predicted E3 Actual Count 
Actual E1 13 0 0 13 
Actual E2 14 0 2 16 
Actual E3 7 0 1 8 
Predicted Count 34 0 3  
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The network described in this work is fairly simple, with only one layer of evidence and predictors. As tasks become 
more complex, the number of vertices and layers go up. As a result, the number of unique evidence combinations 
exponentially increases. With small datasets, seeing these combinations is challenging because there is not enough 
data in each of the evidence levels to statistically model. Above in Table 9, with two level of evidence predicting time, 
there was a large portion of the data sets that appeared in common categories. However, when the number of evidence 
levels is increased to three, in  Table 10, only about half the data points fall into common evidence levels. This lack 
of common evidence between the testing and training data sets means that in many cases the non-appearing likelihood 
probability is being used to calculate the posterior, resulting in potentially lower categorization accuracies. This is a 
problem when working with human subject data, where, it is known that there is variation in the population sample. 
Points that do not fall into the common observed evidence in the testing and training sets are less likely to be 
categorized accurately. Those data points describe events or users that the system needs to be able to handle and 
predict skill levels for. However, with the current amount of data, there is not enough evidence to describe these 
values. As a result, the network will not accurately predict the skill of these users. To ensure that all users can benefit 
from such a system, more work needs to be done using the data available to simulate additional data. This additional 
data, can be used to train a network that is not biased by heavily weighted priors. 
 
 
CONCLUSION AND FUTURE WORK 
 
Bayesian Networks are a very powerful tool for modeling and predicting complex relationships between variables. 
These powerful tools have been shown to have applications in a wide variety of fields. However, the thousands or 
millions of data points required, mean that for some applications Bayesian Networks are not a viable option. This 
paper explores using Bayesian Networks to predict assembly accuracy and completion time. Data for the project was 
collected from an augmented reality guided assembly operation. The data from 75 participants was analyzed for trends 
to construct a Bayesian Network. Half of the participant data was used to train the network and the other half to test. 
Results indicated the network could predict assembly time with around seventy percent accuracy, but was only able 
to achieve thirty-eight percent error count accuracy. While these results were encouraging, further analysis 
demonstrated the network was biased by priors greatly influenced by the number of data points in a category. Further 
analysis, also, revealed that as network complexity increases the problems associated with small data sets increase. 
With small data sets, there are often not enough observed evidence combinations in categories to produce accurate 
predictions. The results suggest that for more complex problems, a method of data simulation or generation is required 
to increase the training set. 
 
In the future, the authors would like to explore the ability to simulate data using the small collected data set as a seed. 
Using generated data grounded in user harvested data, powerful Bayesian Network tools can be deployed in non-
traditional domains. Being able to use the powerful predictive tools of Bayesian Networks in areas like predictive 
maintenance or military training applications could help more accurately assign warfighters to tasks, improving 
success rates. In the end, the work presented above provides the first steps towards coming up with a strategy to begin 
using Bayesian Networks in manufacturing problems with small data sets. 
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