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ABSTRACT 

 

Automated collection-to-construction of terrain databases is a critical capability envisioned for future U.S. Army 

training systems. The challenge is how to automatically produce terrain data that supports both visual rendering and 

simulated reasoning with content sufficient to train ground forces in dense urban environments. 

 

The process of automated terrain construction begins with surface capture. Drones and ground-robots are deployed, 

capturing large amounts of raw surface data. Processing the surface data yields point clouds or 3D polygonal 

meshes, providing an initial 3D terrain model, typically with very high point/polygon densities and large raster 

memory requirements. While certain applications may be able to utilize these terrain models directly, most 

visualization applications, require additional processing to generate well-formed model geometry, sharp textures, 

door and window apertures, and material classifications. This additional processing, performed on the point cloud or 

3D polygonal mesh, extracts point, line, and polygon feature geometries along with descriptive feature attributes 

(e.g., height, roofline, roof-type). A bare earth elevation model is generated to provide a ground surface in which to 

place the extracted 3D features. The final enabler of the terrain construction process is the automated generation of 

3D models from the feature and attributed data.  

 

This paper reports on research which expands automated extraction of attributes from images through deep-learning 

and image processing techniques, identifying structural dimensions, apertures (e.g., doors, windows), appendages 

(e.g., A/C-Unit, chimneys), colors, and materials. From this set of enhanced attributes, geo-representative 3D 

models are procedurally generated. In addition, from the same set of enhanced attributes, geo-representative 

building-interiors are speculated and procedurally generated. This paper details these image processing and deep-

learning techniques, describes the enhanced feature attributes that are extracted, explains the methods for interior 

speculation, and details the techniques for procedural 3D model generation. The paper provides lessons-learned and 

recommends a new standard for procedural model generation. 
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INTRODUCTION 

 

This paper reports on research to use image processing and deep learning technologies to extract structural dimensions, 

architectural elements, apertures (e.g., doors, windows), appendages (e.g., A/C-Unit, chimneys), colors, and materials 

from building pictures, drone captures terrain meshes and point clouds. From these extracted feature attributes, geo-

representative exteriors are identified, plausible interiors are speculated, and 3D building models are automatically 

procedurally generated. 

 

Our approach expands the traditional geospatial database production process to incorporate new technologies without 

abandoning current training systems and without compromising current production capabilities. These new 

technologies provide incredible automation and fantastic geospatial content, but they are not yet universally scalable 

due to the limited availability and affordability of source data. 

 

The paper begins with a short background on Automated Feature Extraction (AFE) and procedural model generation 

(PMG) technologies, and highlights references to related research. Next, we review our use-cases—focusing on the 

costliest functions within the current terrain database production processes. Following the use-cases, we discuss the 

reasons for constraining our approach to fit within the existing database production process, discussing the technology 

limitations, explaining our procedural model generation technique, and introducing our automated processing pipeline. 

We next present our approach for extracting information from images, terrain meshes and point clouds, and explain 

our method of coupling the image attribute extraction with our procedural model generation. We then introduce our 

method for interior layout speculation. We end with a short lessons-learned and recommendations for further research. 

 

BACKGROUND 

 

In 2006, Philip Kern, researcher in earth imaging, wrote that “Automation of the feature extraction process has been 

the ‘Holy Grail’ of the photogrammetric data collection industry for many years.” Kern recounts the many years AFE 

has been worked, and he concludes that “we are close, but we haven’t found the Grail yet” (Kern, 2006). Five years 

later, Jarlath O’Neil-Dunne, editor at LiDAR Magazine writes that “Automated feature extraction has long been 

considered the Holy Grail of remote sensing, but for decades there has been relatively little to show for the untold 

millions, perhaps even billions, of dollars that were invested in this technology.” Jarlath suggests that sensor 

limitations are no longer the barrier to AFE, and that new techniques for image classification are improving the feature 

extraction process (O’Neil-Dunne, 2011). Fast forward to 2016, and Deepakrishna, Ediriweera, and Gunatilake, 

researchers in surveying and mapping, demonstrate automatic and efficient extraction of feature information from 

high spatial resolution imagery using an Artificial Neural Network (ANN) (Deepakrishna, 2016). 

 

In 2015, SE Core demonstrated using procedural generation tools to create 3D building models (Eckman, 2015). 

Figure 1 provides an example of a procedural generated multi-state 3D model.  
 

 
Figure 1 Procedural 3D Model Generation 
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For modeling and simulation (M&S) the goal is more than automated feature footprint extraction, procedural 3D 

model generation, and affordable high resolution photorealistic terrain mesh. For M&S the goal is automated 

collection-to-construction of terrain data, supporting visual rendering and simulated reasoning with content sufficient 

to train ground forces in dense urban environments. Our research began by identifying the technology required to 

support a collection-to-construction pipeline, finding the gaps, and determining the best methods to address those 

gaps.  Consequently, our approach is to leverage drone mapping, photogrammetry, image segmentation and 

classification and AFE technologies, and combine them with new automated enhanced attribute extraction 

technologies and use new content with the goal to reduce costly processes within the traditional geospatial terrain 

database production process. 

 

USE-CASES 

 

SE Core has been producing terrain databases for U.S. Army training systems for more than 13 years. During this 

time, SE Core engineers have developed a mature knowledge-base of database content requirements for visual 

rendering systems (plan-view-display, digital maps, out-the-window visual, and sensor visual) and simulated reason 

systems (semi-automated forces, course-of-action analysis, line-of-sight, and physical interactions). From this 

experience, three use-cases were identified in which automated processes could achieve significant cost reductions. 

 

Use-Case One: Training Sites  

A primary component of an SE Core terrain database are the high-detailed training areas—identified as the 1:12.5K 

scale area-of-interest (AOI). These are typically Military Operations on Urban Terrain (MOUT) sites within the 

military installation where live training exercises are performed. Each MOUT sites is faithfully replicated using 

blueprints, layout drawings, and facility expert discussions. Additionally, SE Core personnel visit each site to capture 

full-color photographs and videos. Such site data is used by the SE Core modeling team to hand-create each of the 

1:12.5K scale buildings, where each building includes modeled interiors. Creation of these 3D models using touch-

labor is very costly.  
 

Our first use-case utilized such site-trip data (photos and video), along with our research tools to automatically create 

geo-specific 3D building models with usable interiors. In addition to the site-trip data, we also obtained from the 

University of Southern California (USC) Institute for Creative Technologies (ICT), a drone-captured polygon mesh 

of the West Point MOUT site. 
 

Use-Case Two: Military Installations and Surrounding Cities  

The second-most costly area, when producing a military training area terrain database, is the generation of the 

cantonment areas surrounding training sites. These typically include the built-up-area or region of the military 

installation and the cities surrounding the military installation. On SE Core this is referred to as the 1:25K scale AOI. 
 

Our second use-case is to create these 1:25K scale AOIs with geo-representative buildings as automatically as possible. 

For our experiment, we worked with Google to get access to a Google Earth terrain mesh and full-color street view 

data. The Google data we received encompassed a section of downtown London, England with approximately 0.1-

meter resolution imagery projected onto a 3D polygon mesh. The Google Street View data was accessed directly from 

Google’s online repository using a Google-provided application programmer’s interface (API). 
 

Use-Case Three: GFT Standalone Training Database 

In the course of producing a terrain database for a specific military site, SE Core will often receive requests to produce 

a companion standalone Games-For-Training (GFT) database to support specialty training. These standalone GFT 

databases are generated in Virtual Battlespace 3 (VBS3®1) format and include 3D building models, complete with 

interiors. Unlike MOUT-type buildings which require open doorway and window apertures, GFT buildings contain 

door and window models, which must be capable of being opened appropriately during an exercise. Creating GFT 

buildings using traditional 3D-modeling tools is costly and time-consuming.  
 

Our third use-case demonstrates our ability to use cell-phone-captured images of building exteriors as input data for 

our experimental tool, automatically creating a GFT 3D building model, with interiors, and placing the generated 

model into a VBS3 database, without modeler intervention. 
 

                                                           
1 VBS is a registered trademark of Bohemia Interactive Simulations within the United States and/or other countries. 
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PRODUCTION PROCESS CONSTRAINTS 

 

The challenge of our research was to create a capability that could integrate into the traditional training terrain database 

production process. Figure 2 captures the primary data flows and processes performed in the generation of a typical 

SE Core terrain database. The blue boxes represent the current runtime database production process. Boxes in green 

depict the addition of the capability to automatically extract enhanced attribute information and speculate the interior 

layout of the procedurally-generated 3D building models. 
 

 

The importance of our approach—that of extracting additional attributes and procedurally constructing the 3D 

model—may not be obvious to the reader. Simply put, the 3D building models must have all the required geometry 

and attributes to support the visual rendering systems and the simulated reasoning systems. Additionally, 3D models 

must include working doors and windows, artificial intelligence routes, shadow volumes, collision volumes, etc. Of 

equal importance, 3D building models inside an AOI cannot look or behave differently than 3D building models 

outside of an AOI; this is to prevent the introduction of artificial cues to the trainee regarding the importance of a 

specific geographic area. Lastly, and most importantly, the representation of a building in feature form is much more 

usable and flexible than the “bag of polygons” 3D model representation. 

 

TECHNOLOGY LIMITATIONS 

 

Our research began by developing an understanding 

of the limits and strengths of the current 

photogrammetry, and Structure-from-Motion (video) 

technologies. Generation of a terrain database from 

imagery can result in realistic looking geo-specific 

buildings, especially when viewed from a distance. 

Figure 3 shows a Google Earth view of London.  

 

Although such data can be visually impressive, and 

potentially useful as source data for training database 

generation, this type of source data can be very 

expensive to procure and source data for many 

desired locations may not be available, thus limiting 

universal adoption. 

 

Figure 3 Google Earth Perspective View 

Figure 2 Traditional Database Production Process with Enhance Process 
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Usability of Photogrammetry-Derived Terrain 

Photogrammetry-derived source data can also suffer from a 

number of artifacts. Figure 4 shows a view of Google Earth 

in an area of London illustrating one of the limitations of 

photogrammetry-derived terrain – poorly formed geometry. 

Realistic buildings for training should obey basic rules of 

building design, i.e., have straight edges, vertical walls, and 

roofs that are separate and distinct from walls. 

 

Photogrammetry-derived terrain can result in many 

hundreds or thousands of polygons. Excessive polygon 

counts can impact real-time rendering performance and 

streaming throughput. Polygon mesh simplification can 

reduce polygon counts, but it is difficult to do without 

compromising feature shapes. 

 

Photogrammetry-derived terrain requires unique textures for all surfaces, easily generating unmanageable volumes of 

texture data for a relatively small area, impacting storage requirements and streaming throughput. For web browsing, 

slow texture updates are acceptable. For real-time training applications, slow texture paging is unacceptable. 

 

Achieving an acceptable texture resolution for geo-specific buildings for training in dense urban terrain can be 

challenging. Even the highest-resolution Google Earth imagery is far too low for most training scenarios. A brute-

force solution of increasing the texture resolution imposes new constraints on source data acquisition and radically 

increases runtime texture storage and streaming throughput requirements. Figure 5 and Figure 6 contrasts the high-

resolution image of Google Street view and the low-resolution texture of the Google Earth reconstructed polygon 

mesh. 
 

In addition to the issues described above, such reconstructed meshes have windows and doors that are only defined 

by texture colors, which are of limited usefulness in many training scenarios. 
 

 

Clear, unobstructed imagery from collected 

sources is difficult to achieve. Without careful 

processing, the occulting objects can become 

embedded into the building textures, as seen 

in Figure 7, from reconstructed drone 

imagery. An even worse case is illustrated in 

Figure 8, where occulting tree coverage was 

of sufficient density to distort the building 

geometry reconstruction in addition to texture 

embedding. 

 

Figure 4 Google Earth Close-up View 

Figure 5 Google Street View Image Figure 6 Google Earth Building 

Figure 8 Deformed Building Figure 7 Tree in Building 
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Affordability of Photogrammetry-Derived Terrain 

Obtaining reconstructed building meshes for large-areas utilizing brute-force techniques can become prohibitively 

expensive. Obtaining the raw source data may require contracting to data providers to utilize specialized drones, 

aircraft, or other equipment to obtain source data at the qualities and resolutions desired. 

 

Availability of Photogrammetry-Derived Terrain 

Source data at the required resolution and fidelity are not always available, due to security, logistical, or other data 

use considerations. Some standard sources of commercially available data such as Google datasets are not available 

for secure and military sites. Modeling and generation of training databases for military bases, MOUT training sites, 

and associated cantonment areas require specialized access and secure data handling processes which may rule out 

many commercial data providers. 

 

PROCEDURAL MODEL GENERATION 

 

Procedurally-generated models are constructed using a set of operators and construction primitives, along with a 

specialized building grammar. This procedural grammar includes functionality such as extrusion operators to create 

building volumes from footprints, slicing operators used to delineate building floors and to carve out apertures from 

walls, roof operators creating hip and gable roofs, and instancing operators to place specific door and window models 

and any pre-modeled building features. The building grammar allows operators to be modularized into reusable rules, 

and also supports language constructs to allow conditional and iterative processing.  

 

Given such building grammar and the associated construction primitives, specific scripts may be written for each type 

of structure desired. Each script embeds specific rules for generation of that type of structure and exposes input 

parameters that can affect the generation of a specific building instance of that type. For example, a script to generate 

a church structure may include specialized routines to construct a steeple. Input parameters may guide the placement, 

size, and type of steeple, or even its inclusion in the final model. Lacking any specific inputs, a default church model 

will be created from a footprint. The script may utilize heuristics to derive the default steeple location from the 

footprint data.  

 

The default script settings also allow pseudorandom variations based on seed values, so that a single script can generate 

large variations in external appearance and forms. When used to generate city blocks or neighborhoods, such variations 

allow generation of large tracts of buildings without repeating appearances.  

 

Model Categories/Classes 

Procedural building scripts are divided into classes, such as churches, parking garages, hangars, residential, 

commercial, etc. Examples of some of the building classes are shown in Figure 9. 

 

 
Figure 9 Examples of Procedural Building Classes 

Subdividing Classes 

Even among one class of building features, such as residential, it has proven useful to further subdivide and generate 

unique scripts for specific types of buildings in that class. Different types of residential structures have wildly varying 

appearances. Rules for generating mobile homes, ranch-style houses, or middle-east residences will have markedly 

different constraints and properties. Sample residential buildings of various types can be seen in Figure 10. 
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Figure 10 Examples of Procedural Residential Building Types 

Procedural Model Advantages 

Constructing models procedurally provides a 

number of advantages over building models using 

only photogrammetric techniques. Procedural 

models utilize geo-typical textures that can be 

reused for multiple models. These geo-typical 

textures are high resolution and meet requirements 

for close-up viewing and interaction. Because the 

textures are reused, overall texture storage 

requirements are minimized.  

 

These geo-typical textures can contain rendering 

layers such as specular maps, normal maps, 

reflection maps, emissive maps, dirt maps, material 

maps and other components necessary to enable 

high-quality physically-based rendering on systems 

that support higher level rendering. Figure 11 and 

Figure 12 show representative exteriors and 

interiors using procedural model - rendered in the 

Unreal®24 game engine. 

 

Procedurally-generated models can have cut-in 

apertures for window openings and doorways. Such 

apertures may include window and door models that 

open and close. Procedurally-generated interiors 

can be coupled to each building-type script. These 

interiors respect aperture placement to prevent walls 

from being placed across apertures. 

 

RESEARCH PROCESSING PIPELINE 

 

Given the maturity of AFE and PMG, our processing pipeline utilized existing building footprint feature data, either 

from traditional geographic information system (GIS) data sources or derived from LIDAR or Photogrammetric 

processing. Our research’s processing workflow integrates well with the traditional terrain database workflow, 

exemplified by the SE Core production process. The Conform GIS tool from GameSim®3 was utilized as the 

framework for our enhanced attribute extraction and expanded procedural model generation capabilities. Conform is 

currently used on SE Core for both automated feature modelization and procedural model generation. 

 

                                                           
2 Unreal is a trademark of Epic Games, Inc. within the United States and/or other countries. 
3GameSim is a registered trademark of GameSim, Inc. within the United States and/or other countries. 

Figure 11 Rendering w/Dirt and Normal Textures 

Figure 12 Rendering w/Normal Maps 
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Working within the context of our site-visit use-case, 

we assumed that we could obtain geo-registered 

photographs for each building and that PMG art assets 

and construction scripts existed for generation of the 

target 3D models (or that we could develop them). In 

our experimental approach, we associated 

photographs with the appropriate footprint, processed 

the images to extract the desired building attributes, 

assigned these enhanced attributes to the appropriate 

footprint feature and PMG construction scripts, and 

finally generated the “digital twin” of the real-world 

3D building. Figure 13 shows an example plan view 

where the red box icons indicated the photograph 

locations associated with the blue highlighted building 

footprint. Figure 14 displays a MOUT building with 

an extracted and procedurally-generated digital twin. 

 

 

EXTRACTION OF ENHANCED ATTRIBUTES FROM IMAGES 

 

Two primary technologies were investigated for feature attribute extraction from imagery: 1) Image Processing and 

2) Deep Learning. Both technologies have the potential to identify and extract the desired information. 

 

Extraction using image processing 

Our first experiments used image processing techniques such as region-boundary detection, Canny edge-detection, 

and Hough line-detection to identify wall locations from perspective camera images. Wall locations allowed 

generation of an intermediate ortho-rectified wall image, which was utilized to identify and extract apertures. The 

purple outline in Figure 15 shows a primary wall detected from a camera image of a small MOUT building using an 

area-fill function. Figure 16 and Figure 17 shows the results of the ortho-rectified images from the detected walls, 

from which the outline shows the window apertures, using edge-detection image processing. 

 

 

The OpenCV toolkit was used as the primary platform for image processing functions. The identification and 

extraction of the desired features using image processing met with mixed results. Nevertheless, with footprint data 

available to assist in the processing, we were able to reliably extract the desired aperture data for roughly 80% of the 

site visit building images. 

 

Figure 13 Footprint w/Geo-registered Images 

Figure 15 Wall Detection Figure 17 Aperture Detection Figure 16 Edge Detection 

Figure 14 MOUT Building with Procedurally-Generated Digital Twin 
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Deep Learning Image Extraction 

Our second experiments utilized deep learning techniques via trained 

Convolutional Neural Networks (CNNs). A variety of CNN networks 

were trained to recognize and extract various building features, such as 

wall corners, aperture locations, roof types, exterior materials, and 

colors. As we experimented with CNN capabilities it became apparent 

that we could iteratively analyze the images, and on each iteration 

constrain both the image area and the CNN recognition to successfully 

extract the desired attributes. For the training site photographs, the 

CNN, once trained, proved very successful – 100% identification. 

 

As discussed earlier, we also tested our extraction on a drone-collected photogrammetrically-derived terrain mesh of 

the same training area of our site visit photographs. To ensure consistency within our production process we created 

a viewer that could extract screenshots of the mesh as “virtual photographs.” We also created a depth buffer extraction 

tool to generate an image of the depth, again to ensure we could use all of the available information with a consistent 

approach.  

 

One advantage of the terrain mesh was observed. We could use range-

gating techniques to eliminate features that occulted the desired feature. 

Figure 18 illustrates the CNN results for wall and window detection 

stages. One advantage of CNNs is that they can be trained with lower 

resolution data, such as MOUT imagery derived from drone-captured 

data, and still give satisfactory results. Figure 19 shows building 

aperture detection using CNN with partially occulted and low-

resolution source data. 

 

Utilizing Neural Net Stages 

In our final workflow, three distinct network stages were utilized. Stage One detected wall-corners, building-height, 

roof features, entrances, and external stairs and railings. Stage Two detected roof materials and colors, and exterior 

materials and colors. Neural nets for Stage Two were trained on small rectangular areas of material from the training 

instances, and thus returned many detected areas on the source imagery. The multiple color and material return values 

for all sides of the structure were compiled, and the most common return values were selected as the designated color 

and material for the entire building. Stage Three detected building apertures. Aperture size and location on each wall, 

in normalized wall-coordinates, were returned, along with each aperture type. 

 

Several additional neural net stages were considered for inclusion. The addition of an initial neural net stage could be 

used to distinguish between broad types of building automatically, such as distinguishing between MOUT buildings, 

residential, containers, etc. The inclusion of a final CNN stage allowed the code to make determinations about the 

specific window and door models to be utilized for the apertures. 

 

Training the Neural Nets 

Neural nets were trained by utilizing training images which were manually marked with the locations of the features 

to be detected. Typically, anywhere from 25 to 100 marked images were utilized in training the nets. This was 

sufficient to demonstrate the proof-of-concept for our test cases.  

 

One unique innovation involved automation of neural net training by utilizing 

existing PMG capability. In the process of creating artwork for a specific 

geographic location, we utilized PMG to create “generic” procedural models 

with the desired style for that location. Screen captures of these generic 

procedurally-generated models were then used as CNN training images. In the 

future, we propose to fully automate much of the neural net training by using 

these generic models, replacing the step of manually marking the training 

images with automated marking obtained from the knowledge of feature 

locations implicitly available from the procedural generation process. Figure 

20 displays a procedural 3D model being used in training the neural net. 

Figure 18 CNN Wall and Roof Detection 

Figure 19 Aperture Detection Low Resolution 

Figure 20 Training on PMG Models 
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PROCEDURAL GENERATION OF GEO-REPRESENTATIVE 3D MODELS 

 

To illustrate the values of each stage and every attribute extracted we demonstrate incremental and progressive 

improvement to a geo-representative procedurally-generated model. With progressive attribute refinement, each 

additional piece of input information serves to refine the generated output, improving faithfulness to the desired real-

world target. Figure 21 through Figure 31 show the incremental progress from default residential building to geo-

representative building. 

 

Residential house - Randomly-assigned Defaults 

Figure 21 represented a procedurally-generated house based on a 

building footprint and a “residential house” building function type. The 

color and style are based on rules and randomly-selected building 

characteristics. 

 

Detection of Building Sides - One Story 

We identify the wall outline for each building side. Using this outline, 

along with footprint edge-lengths, building height is computed from the 

image and passed procedurally to generation scripts. Figure 22 shows 

the results of front wall detection, transforming the default two-story 

building into a single-story building of the appropriate height, as seen 

in Figure 23. 

 

Detection of Exterior – Tan Stucco 

We identify the exterior color and material by comparing selected areas 

on each building side to preexisting color/material palettes available to 

the scripts. Residential building materials include brick, siding, and 

stucco, each with a number of color variations. Figure 24 show results 

after a color/material of “tan stucco” was identified. 

 

Detection of Roof Attributes – Brown Hip 

Roof type (hip, gable, flat) is detected by assessing all available camera 

images and detecting key features that indicate the base roof-type (e.g., 

large gable covering one side). Figure 25 shows the step where hip 

roof-type is detected and passed to generation routines. Roof color and 

material are also detected. 

 

Detection of Aperture Locations – Right Side Garages 

Apertures are identified with image processing and neural net 

techniques. Aperture type is determined heuristically, based on 

aperture size and location, or from neural net detection. Figure 26 

shows apertures detected on the front of the residential building, while 

Figure 27 shows the results of the apertures in the procedural model.  

Figure 21 Default Residential House 

Figure 22 Front Wall Detection Figure 23 Building Height 

Figure 24 Color and Material 

Figure 25 Roof Type and Color 
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Aperture information for each building side is passed to the procedural scripts. If no aperture information is included 

for a building side, default apertures are generated for the building side. 

 

Detection of Gable Locations – Front Gables 

Front facing gable roof sections are detected, as shown in Figure 28. Detected gable front protrusions are created based 

in the detected areas. Front entrances are also detected and used to designate the main entrance overhang and porch 

area. Figure 29 shows the resultant effects. 

 

Detection of Appendages – A/C Unit 

We currently detect three types of appendages: chimneys, A/C units, and utility boxes. Once detected, location, type, 

and size information are passed to the procedural build state. Pre-built models for ac-units and utility boxes are 

instanced at the detected size in the designated areas. If detected, chimneys are procedurally built using script logic. 

Figure 30 shows the A/C unit CNN detection. Figure 31 shows the addition of the A/C unit to the procedural model. 

 

INTERIOR SPECULATION 

 

The default interior building layout utilizes heuristics to assign room types and sizes. Some level of control is allowed 

per building type, but no specific room type assignments are made. Our “speculator” function adds the concept of 

interior speculation about room types by extraction of attributes from the building exterior. Some speculations were 

relatively straightforward— e.g., garage doors open into interior garages. Others may be more subtle—small windows 

may be associated with bathrooms, or upper floor windows may be associated with bedrooms. The speculator function 

assesses apertures and can pass an interior room hint with every aperture to the interior generation software. Figure 

Figure 26 Aperture Detection Figure 27 Right Side Garages 

Figure 28 Gable Detection Figure 29 Front Gables 

Figure 30 A/C Unit Detection Figure 31 A/C Unit 
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32 shows three apertures, where hints are being 

passed, and the resultant room generation with the 

hints. Speculation rules for each building type 

provide support for a variety of interiors. 

 

Certain training tasks require building detail only in 

limited areas, such as the first few floors of a 

multiple story high rise building. Upper stories, may 

not require interiors or apertures. Generation of 

unnecessary detail can greatly increase polygon 

counts. Procedural generation can utilize input 

parameters to limit detail only to required areas. 

Using hints from the ground floor enhanced 

attributes can be used to create the ground floor 

layout. 

 

LESSONS LEARNED 

 

Many lessons were learned as we worked through our experiment and developed our automated approach. Below we 

have identified a few key lessons:  

 

Features are Flexible 

Extracting information from photographs or photogrammetrically-derived terrain mesh, and representing the data as 

enhanced feature attributes makes it possible to: 

 integrate the enhanced attribute data with existing geospatial feature data 

 edit errors in extracted data 

 generate variable fidelity 3D models for a variety of run-time systems 

 reuse the data in the future to build higher fidelity models for run-time systems not yet built 

Features are Efficient 

Representing features in their abstract forms (verses polygons) are: 

 more efficient to store 

 much more efficient to stream 

 easily tailored for use in simulated reasoning systems 

 effortlessly transformed to be viewed by visual rendering systems 

 suitable for analytical processing 

Identifying Sub-Feature enables Speculation of Interiors 

Speculating the interior layout of a building is readily enabled by identifying the apertures and appendages. 

Procedural Modeling provides Flexibility 

Generating 3D models procedurally allows for: 

 changing the seasons – not constrained by the date of data capture 

 fictitious location generation – easily change the feature data 

 a consistent appearance and representation of the database regardless of available data 

Deep Learning Performs Best Contextual 

By constraining the problem-space for our deep learning tools, very reliable results are possible. 

 

RECOMMENDATIONS AND FUTURE WORK 

From our experiments, we have identified the need for a standard for procedural 3D model generation. We recommend 

a standard for rules and a standard for art asset generation. The Esri®4 Computer Generated Architecture (CGA) 

specification provides such a set of rules (Esri, 2018).  CGA’s are the shape grammar of Esri’s CityEngine, used to 

generate architectural 3D content. To complement the CGA standard, it is recommended that we define standards for 

                                                           
4 ESRI is a registered trademark of Environmental Systems Research Institute, Inc. within the United States and/or 

other countries. 

Figure 32 Interior Room Layout with hints 
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art assets that support the procedural generation tools. These standards need to define texture spatial resolution, 

wrapping and tiling schemes, map types, and any other attributes that ensure reusability. 

 

Our future work will build upon the existing Conform framework, adding automation, expanding building types and 

refining feature and sub-feature extraction. We plan to add two additional stages to our Neural Net Stages. First, 

adding an initial neural net stage to distinguish between broad types of building automatically. And, second, adding a 

stage following the aperture and appendages stage to determine the specific window and door models to be utilized 

for the apertures. We plan to implement a fully automated neural net training system using procedurally-generated 

models, replacing the manual marking with automated marking obtained from the knowledge of feature locations 

implicitly available from the procedural generation process. We will expand the detection of appendages to support 

roof-vents, stand-pipes, and skylights. 
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