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ABSTRACT

Automated collection-to-construction of terrain databases is a critical capability envisioned for future U.S. Army
training systems. The challenge is how to automatically produce terrain data that supports both visual rendering and
simulated reasoning with content sufficient to train ground forces in dense urban environments.

The process of automated terrain construction begins with surface capture. Drones and ground-robots are deployed,
capturing large amounts of raw surface data. Processing the surface data yields point clouds or 3D polygonal
meshes, providing an initial 3D terrain model, typically with very high point/polygon densities and large raster
memory requirements. While certain applications may be able to utilize these terrain models directly, most
visualization applications, require additional processing to generate well-formed model geometry, sharp textures,
door and window apertures, and material classifications. This additional processing, performed on the point cloud or
3D polygonal mesh, extracts point, line, and polygon feature geometries along with descriptive feature attributes
(e.g., height, roofline, roof-type). A bare earth elevation model is generated to provide a ground surface in which to
place the extracted 3D features. The final enabler of the terrain construction process is the automated generation of
3D models from the feature and attributed data.

This paper reports on research which expands automated extraction of attributes from images through deep-learning
and image processing techniques, identifying structural dimensions, apertures (e.g., doors, windows), appendages
(e.g., A/C-Unit, chimneys), colors, and materials. From this set of enhanced attributes, geo-representative 3D
models are procedurally generated. In addition, from the same set of enhanced attributes, geo-representative
building-interiors are speculated and procedurally generated. This paper details these image processing and deep-
learning techniques, describes the enhanced feature attributes that are extracted, explains the methods for interior
speculation, and details the techniques for procedural 3D model generation. The paper provides lessons-learned and
recommends a new standard for procedural model generation.

ABOUT THE AUTHORS

Mr. Ronald Moore is currently the Chief Architect on SE Core CVEM. He has over 35 years of experience in the
modeling, simulation and training industry with expertise in software development, computer graphics, computer
image generation, simulation geospatial terrain database production, sound simulation, streaming audio and video,
and PC and console game development.

Mr. Matthew Reilly is currently a senior software engineer on SE Core CVEM. He has over 20 years of experience
in software and hardware development with a focus on the computer graphics domain. Previous experience includes
CCTT and AVCATT development for the SE Core Architecture and Integration (A&I) Program, the WARSIM
Program, development of console video game titles, avionics instrumentation, and cellular technology.

Mr. Tony Pelham is currently a senior software engineer at GameSim. Tony has over 30 years of experience in the
modeling, simulation, and training industry with expertise in computer image generation, visual simulation, distributed
simulation, 3D database development tools, virtual world development, game design, procedural road generation, and
procedural model generation.

LPCO1-18-ASG-0622-0039

2018 Paper No. 18243 Page 1 of 13



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2018

Exterior Attribute Extraction and Interior Layout Speculation of 3D Structures

Ronald G. Moore, Matthew J. Reilly Tony Pelham
Leidos, Inc. GameSim, Inc.
Orlando, FL Orlando, FL
ronald.g.moore@leidos.com, tony.pelham@gamesim.com

matthew.j.reilly@leidos.com

INTRODUCTION

This paper reports on research to use image processing and deep learning technologies to extract structural dimensions,
architectural elements, apertures (e.g., doors, windows), appendages (e.g., A/C-Unit, chimneys), colors, and materials
from building pictures, drone captures terrain meshes and point clouds. From these extracted feature attributes, geo-
representative exteriors are identified, plausible interiors are speculated, and 3D building models are automatically
procedurally generated.

Our approach expands the traditional geospatial database production process to incorporate new technologies without
abandoning current training systems and without compromising current production capabilities. These new
technologies provide incredible automation and fantastic geospatial content, but they are not yet universally scalable
due to the limited availability and affordability of source data.

The paper begins with a short background on Automated Feature Extraction (AFE) and procedural model generation
(PMG) technologies, and highlights references to related research. Next, we review our use-cases—focusing on the
costliest functions within the current terrain database production processes. Following the use-cases, we discuss the
reasons for constraining our approach to fit within the existing database production process, discussing the technology
limitations, explaining our procedural model generation technique, and introducing our automated processing pipeline.
We next present our approach for extracting information from images, terrain meshes and point clouds, and explain
our method of coupling the image attribute extraction with our procedural model generation. We then introduce our
method for interior layout speculation. We end with a short lessons-learned and recommendations for further research.

BACKGROUND

In 2006, Philip Kern, researcher in earth imaging, wrote that “Automation of the feature extraction process has been
the ‘Holy Grail’ of the photogrammetric data collection industry for many years.” Kern recounts the many years AFE
has been worked, and he concludes that “we are close, but we haven’t found the Grail yet” (Kern, 2006). Five years
later, Jarlath O’Neil-Dunne, editor at LIDAR Magazine writes that “Automated feature extraction has long been
considered the Holy Grail of remote sensing, but for decades there has been relatively little to show for the untold
millions, perhaps even billions, of dollars that were invested in this technology.” Jarlath suggests that sensor
limitations are no longer the barrier to AFE, and that new techniques for image classification are improving the feature
extraction process (O’Neil-Dunne, 2011). Fast forward to 2016, and Deepakrishna, Ediriweera, and Gunatilake,
researchers in surveying and mapping, demonstrate automatic and efficient extraction of feature information from
high spatial resolution imagery using an Artificial Neural Network (ANN) (Deepakrishna, 2016).

In 2015, SE Core demonstrated using procedural generation tools to create 3D building models (Eckman, 2015).
Figure 1 provides an example of a procedural generated multi-state 3D model.

Example: Procedurally
generated house

Healthy Damaged Repaired Cleared Destroyed
Figure 1 Procedural 3D Model Generation
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For modeling and simulation (M&S) the goal is more than automated feature footprint extraction, procedural 3D
model generation, and affordable high resolution photorealistic terrain mesh. For M&S the goal is automated
collection-to-construction of terrain data, supporting visual rendering and simulated reasoning with content sufficient
to train ground forces in dense urban environments. Our research began by identifying the technology required to
support a collection-to-construction pipeline, finding the gaps, and determining the best methods to address those
gaps. Consequently, our approach is to leverage drone mapping, photogrammetry, image segmentation and
classification and AFE technologies, and combine them with new automated enhanced attribute extraction
technologies and use new content with the goal to reduce costly processes within the traditional geospatial terrain
database production process.

USE-CASES

SE Core has been producing terrain databases for U.S. Army training systems for more than 13 years. During this
time, SE Core engineers have developed a mature knowledge-base of database content requirements for visual
rendering systems (plan-view-display, digital maps, out-the-window visual, and sensor visual) and simulated reason
systems (semi-automated forces, course-of-action analysis, line-of-sight, and physical interactions). From this
experience, three use-cases were identified in which automated processes could achieve significant cost reductions.

Use-Case One: Training Sites

A primary component of an SE Core terrain database are the high-detailed training areas—identified as the 1:12.5K
scale area-of-interest (AOI). These are typically Military Operations on Urban Terrain (MOUT) sites within the
military installation where live training exercises are performed. Each MOUT sites is faithfully replicated using
blueprints, layout drawings, and facility expert discussions. Additionally, SE Core personnel visit each site to capture
full-color photographs and videos. Such site data is used by the SE Core modeling team to hand-create each of the
1:12.5K scale buildings, where each building includes modeled interiors. Creation of these 3D models using touch-
labor is very costly.

Our first use-case utilized such site-trip data (photos and video), along with our research tools to automatically create
geo-specific 3D building models with usable interiors. In addition to the site-trip data, we also obtained from the
University of Southern California (USC) Institute for Creative Technologies (ICT), a drone-captured polygon mesh
of the West Point MOUT site.

Use-Case Two: Military Installations and Surrounding Cities

The second-most costly area, when producing a military training area terrain database, is the generation of the
cantonment areas surrounding training sites. These typically include the built-up-area or region of the military
installation and the cities surrounding the military installation. On SE Core this is referred to as the 1:25K scale AOI.

Our second use-case is to create these 1:25K scale AOIs with geo-representative buildings as automatically as possible.
For our experiment, we worked with Google to get access to a Google Earth terrain mesh and full-color street view
data. The Google data we received encompassed a section of downtown London, England with approximately 0.1-
meter resolution imagery projected onto a 3D polygon mesh. The Google Street View data was accessed directly from
Google’s online repository using a Google-provided application programmer’s interface (API).

Use-Case Three: GFT Standalone Training Database

In the course of producing a terrain database for a specific military site, SE Core will often receive requests to produce
a companion standalone Games-For-Training (GFT) database to support specialty training. These standalone GFT
databases are generated in Virtual Battlespace 3 (VBS3®?) format and include 3D building models, complete with
interiors. Unlike MOUT -type buildings which require open doorway and window apertures, GFT buildings contain
door and window models, which must be capable of being opened appropriately during an exercise. Creating GFT
buildings using traditional 3D-modeling tools is costly and time-consuming.

Our third use-case demonstrates our ability to use cell-phone-captured images of building exteriors as input data for
our experimental tool, automatically creating a GFT 3D building model, with interiors, and placing the generated
model into a VBS3 database, without modeler intervention.

1 VBS is a registered trademark of Bohemia Interactive Simulations within the United States and/or other countries.
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PRODUCTION PROCESS CONSTRAINTS

The challenge of our research was to create a capability that could integrate into the traditional training terrain database
production process. Figure 2 captures the primary data flows and processes performed in the generation of a typical
SE Core terrain database. The blue boxes represent the current runtime database production process. Boxes in green
depict the addition of the capability to automatically extract enhanced attribute information and speculate the interior
layout of the procedurally-generated 3D building models.

= tored In green - the added attribute
.r'mi?l Mesh extraction and interior
- speculation for
Georegistere > Geo-representative
Photos/Videos Attributes 3D models in Areas of
FeatureData | | Vector _c:| ain Feature Interests
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Imagery i
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Figure 2 Traditional Database Production Process with Enhance Process

The importance of our approach—that of extracting additional attributes and procedurally constructing the 3D
model—may not be obvious to the reader. Simply put, the 3D building models must have all the required geometry
and attributes to support the visual rendering systems and the simulated reasoning systems. Additionally, 3D models
must include working doors and windows, artificial intelligence routes, shadow volumes, collision volumes, etc. Of
equal importance, 3D building models inside an AOI cannot look or behave differently than 3D building models
outside of an AOI; this is to prevent the introduction of artificial cues to the trainee regarding the importance of a
specific geographic area. Lastly, and most importantly, the representation of a building in feature form is much more
usable and flexible than the “bag of polygons” 3D model representation.

TECHNOLOGY LIMITATIONS

Our research began by developing an understanding
of the Ilimits and strengths of the current
photogrammetry, and Structure-from-Motion (video)
technologies. Generation of a terrain database from
imagery can result in realistic looking geo-specific
buildings, especially when viewed from a distance.
Figure 3 shows a Google Earth view of London.

Although such data can be visually impressive, and
potentially useful as source data for training database
generation, this type of source data can be very
expensive to procure and source data for many
desired locations may not be available, thus limiting :
universal adoption. Figure 3 Google Earth Perspectlve View
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Usability of Photogrammetry-Derived Terrain
Photogrammetry-derived source data can also suffer from a
number of artifacts. Figure 4 shows a view of Google Earth
in an area of London illustrating one of the limitations of
photogrammetry-derived terrain — poorly formed geometry.
Realistic buildings for training should obey basic rules of
building design, i.e., have straight edges, vertical walls, and
roofs that are separate and distinct from walls.

Photogrammetry-derived terrain can result in many
hundreds or thousands of polygons. Excessive polygon
counts can impact real-time rendering performance and
streaming throughput. Polygon mesh simplification can
reduce polygon counts, but it is difficult to do without
compromising feature shapes.

i ; Google Earth
Figure 4 Google Earth Close-up View

Photogrammetry-derived terrain requires unique textures for all surfaces, easily generating unmanageable volumes of
texture data for a relatively small area, impacting storage requirements and streaming throughput. For web browsing,
slow texture updates are acceptable. For real-time training applications, slow texture paging is unacceptable.

Achieving an acceptable texture resolution for geo-specific buildings for training in dense urban terrain can be
challenging. Even the highest-resolution Google Earth imagery is far too low for most training scenarios. A brute-
force solution of increasing the texture resolution imposes new constraints on source data acquisition and radically
increases runtime texture storage and streaming throughput requirements. Figure 5 and Figure 6 contrasts the high-
resolution image of Google Street view and the low-resolution texture of the Google Earth reconstructed polygon
mesh.

In addition to the issues described above, such reconstructed meshes have windows and doors that are only defined
by texture colors, which are of limited usefulness in many training scenarios.

il i m NN
Figure 5 Google Street View Image

Clear, unobstructed imagery from collected
sources is difficult to achieve. Without careful
processing, the occulting objects can become
embedded into the building textures, as seen
in Figure 7, from reconstructed drone
imagery. An even worse case is illustrated in
Figure 8, where occulting tree coverage was
of sufficient density to distort the building
geometry reconstruction in addition to texture
embedding.

Figure 7 Tree in Building Figure 8 Deformed Building
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Affordability of Photogrammetry-Derived Terrain

Obtaining reconstructed building meshes for large-areas utilizing brute-force techniques can become prohibitively
expensive. Obtaining the raw source data may require contracting to data providers to utilize specialized drones,
aircraft, or other equipment to obtain source data at the qualities and resolutions desired.

Availability of Photogrammetry-Derived Terrain

Source data at the required resolution and fidelity are not always available, due to security, logistical, or other data
use considerations. Some standard sources of commercially available data such as Google datasets are not available
for secure and military sites. Modeling and generation of training databases for military bases, MOUT training sites,
and associated cantonment areas require specialized access and secure data handling processes which may rule out
many commercial data providers.

PROCEDURAL MODEL GENERATION

Procedurally-generated models are constructed using a set of operators and construction primitives, along with a
specialized building grammar. This procedural grammar includes functionality such as extrusion operators to create
building volumes from footprints, slicing operators used to delineate building floors and to carve out apertures from
walls, roof operators creating hip and gable roofs, and instancing operators to place specific door and window models
and any pre-modeled building features. The building grammar allows operators to be modularized into reusable rules,
and also supports language constructs to allow conditional and iterative processing.

Given such building grammar and the associated construction primitives, specific scripts may be written for each type
of structure desired. Each script embeds specific rules for generation of that type of structure and exposes input
parameters that can affect the generation of a specific building instance of that type. For example, a script to generate
a church structure may include specialized routines to construct a steeple. Input parameters may guide the placement,
size, and type of steeple, or even its inclusion in the final model. Lacking any specific inputs, a default church model
will be created from a footprint. The script may utilize heuristics to derive the default steeple location from the
footprint data.

The default script settings also allow pseudorandom variations based on seed values, so that a single script can generate
large variations in external appearance and forms. When used to generate city blocks or neighborhoods, such variations
allow generation of large tracts of buildings without repeating appearances.

Model Categories/Classes
Procedural building scripts are divided into classes, such as churches, parking garages, hangars, residential,
commercial, etc. Examples of some of the building classes are shown in Figure 9.

s Parking Garage A:rport Hanger

MOUT Site Residential Downtown MOUT Site
Container Office

Collegiate
Retall Farm Church

Figure 9 Examples of Procedural Building Classes

Subdividing Classes

Even among one class of building features, such as residential, it has proven useful to further subdivide and generate
unique scripts for specific types of buildings in that class. Different types of residential structures have wildly varying
appearances. Rules for generating mobile homes, ranch-style houses, or middle-east residences will have markedly
different constraints and properties. Sample residential buildings of various types can be seen in Figure 10.
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Figure 10 Examples of Procedural Residential Building Types

Procedural Model Advantages

Constructing models procedurally provides a
number of advantages over building models using
only photogrammetric techniques. Procedural
models utilize geo-typical textures that can be
reused for multiple models. These geo-typical
textures are high resolution and meet requirements
for close-up viewing and interaction. Because the
textures are reused, overall texture storage
requirements are minimized.

These geo-typical textures can contain rendering
layers such as specular maps, normal maps,
reflection maps, emissive maps, dirt maps, material
maps and other components necessary to enable
high-quality physically-based rendering on systems
that support higher level rendering. Figure 11 and
Figure 12 show representative exteriors and
interiors using procedural model - rendered in the
Unreal®?4 game engine.

Procedurally-generated models can have cut-in
apertures for window openings and doorways. Such
apertures may include window and door models that
open and close. Procedurally-generated interiors
can be coupled to each building-type script. These
interiors respect aperture placement to prevent walls
from being placed across apertures.

Figure 12 Rendering w/Normal Maps

RESEARCH PROCESSING PIPELINE

Given the maturity of AFE and PMG, our processing pipeline utilized existing building footprint feature data, either
from traditional geographic information system (GIS) data sources or derived from LIDAR or Photogrammetric
processing. Our research’s processing workflow integrates well with the traditional terrain database workflow,
exemplified by the SE Core production process. The Conform GIS tool from GameSim®® was utilized as the
framework for our enhanced attribute extraction and expanded procedural model generation capabilities. Conform is
currently used on SE Core for both automated feature modelization and procedural model generation.

2 Unreal is a trademark of Epic Games, Inc. within the United States and/or other countries.
3GameSim is a registered trademark of GameSim, Inc. within the United States and/or other countries.
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Working within the context of our site-visit use-case,
we assumed that we could obtain geo-registered
photographs for each building and that PMG art assets
and construction scripts existed for generation of the
target 3D models (or that we could develop them). In
our experimental approach, we associated

photographs with the appropriate footprint, processed

the images to extract the desired building attributes,
assigned these enhanced attributes to the appropriate

footprint feature and PMG construction scripts, and \
finally generated the “digital twin” of the real-world
3D building. Figure 13 shows an example plan view
where the red box icons indicated the photograph
locations associated with the blue highlighted building

« D

footprint. Figure 14 displays a MOUT building with Figure 13 Footprint w/Geo-registered Images
an extracted and procedurally-generated digital twin.

Figure 14 MOUT Building with Procedurally-Generated Digital Twin
EXTRACTION OF ENHANCED ATTRIBUTES FROM IMAGES

Two primary technologies were investigated for feature attribute extraction from imagery: 1) Image Processing and
2) Deep Learning. Both technologies have the potential to identify and extract the desired information.

Extraction using image processing

Our first experiments used image processing techniques such as region-boundary detection, Canny edge-detection,
and Hough line-detection to identify wall locations from perspective camera images. Wall locations allowed
generation of an intermediate ortho-rectified wall image, which was utilized to identify and extract apertures. The
purple outline in Figure 15 shows a primary wall detected from a camera image of a small MOUT building using an
area-fill function. Figure 16 and Figure 17 shows the results of the ortho-rectified images from the detected walls,
from which the outline shows the window apertures, using edge-detection image processing.

Fiaure 15 Wall Detection Figure 16 Edge Detection Figure 17 Aperture Detection

The OpenCV toolkit was used as the primary platform for image processing functions. The identification and
extraction of the desired features using image processing met with mixed results. Nevertheless, with footprint data
available to assist in the processing, we were able to reliably extract the desired aperture data for roughly 80% of the
site visit building images.
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Deep Learning Image Extraction

Our second experiments utilized deep learning techniques via trained
Convolutional Neural Networks (CNNs). A variety of CNN networks
were trained to recognize and extract various building features, such as
wall corners, aperture locations, roof types, exterior materials, and
colors. As we experimented with CNN capabilities it became apparent
that we could iteratively analyze the images, and on each iteration
constrain both the image area and the CNN recognition to successfully
extract the desired attributes. For the training site photographs, the
CNN, once trained, proved very successful — 100% identification.

Fiaure 18 CNN Wall and Roof Detection

As discussed earlier, we also tested our extraction on a drone-collected photogrammetrically-derived terrain mesh of
the same training area of our site visit photographs. To ensure consistency within our production process we created
a viewer that could extract screenshots of the mesh as “virtual photographs.” We also created a depth buffer extraction
tool to generate an image of the depth, again to ensure we could use all of the available information with a consistent
approach.

One advantage of the terrain mesh was observed. We could use range-
gating techniques to eliminate features that occulted the desired feature.
Figure 18 illustrates the CNN results for wall and window detection
stages. One advantage of CNNs is that they can be trained with lower
resolution data, such as MOUT imagery derived from drone-captured
data, and still give satisfactory results. Figure 19 shows building
aperture detection using CNN with partially occulted and low-
resolution source data.

Figure 19 Aperture Detection Low Resolution

Utilizing Neural Net Stages

In our final workflow, three distinct network stages were utilized. Stage One detected wall-corners, building-height,
roof features, entrances, and external stairs and railings. Stage Two detected roof materials and colors, and exterior
materials and colors. Neural nets for Stage Two were trained on small rectangular areas of material from the training
instances, and thus returned many detected areas on the source imagery. The multiple color and material return values
for all sides of the structure were compiled, and the most common return values were selected as the designated color
and material for the entire building. Stage Three detected building apertures. Aperture size and location on each wall,
in normalized wall-coordinates, were returned, along with each aperture type.

Several additional neural net stages were considered for inclusion. The addition of an initial neural net stage could be
used to distinguish between broad types of building automatically, such as distinguishing between MOUT buildings,
residential, containers, etc. The inclusion of a final CNN stage allowed the code to make determinations about the
specific window and door models to be utilized for the apertures.

Training the Neural Nets

Neural nets were trained by utilizing training images which were manually marked with the locations of the features
to be detected. Typically, anywhere from 25 to 100 marked images were utilized in training the nets. This was
sufficient to demonstrate the proof-of-concept for our test cases.

One unique innovation involved automation of neural net training by utilizing
existing PMG capability. In the process of creating artwork for a specific
geographic location, we utilized PMG to create “generic” procedural models
with the desired style for that location. Screen captures of these generic
procedurally-generated models were then used as CNN training images. In the
future, we propose to fully automate much of the neural net training by using

these generic models, replacing the step of manually marking the training = bottom _left

images with automated marking obtained from the knowledge of feature 1

locations implicitly available from the procedural generation process. Figure

20 displays a procedural 3D model being used in training the neural net. Eiaure 20 Trainina on PMG Models
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PROCEDURAL GENERATION OF GEO-REPRESENTATIVE 3D MODELS

To illustrate the values of each stage and every attribute extracted we demonstrate incremental and progressive
improvement to a geo-representative procedurally-generated model. With progressive attribute refinement, each
additional piece of input information serves to refine the generated output, improving faithfulness to the desired real-
world target. Figure 21 through Figure 31 show the incremental progress from default residential building to geo-
representative building.

Residential house - Randomly-assigned Defaults

Figure 21 represented a procedurally-generated house based on a
building footprint and a “residential house” building function type. The
color and style are based on rules and randomly-selected building
characteristics.

Detection of Building Sides - One Story

We identify the wall outline for each building side. Using this outline,
along with footprint edge-lengths, building height is computed from the
image and passed procedurally to generation scripts. Figure 22 shows
the results of front wall detection, transforming the default two-story
building into a single-story building of the appropriate height, as seen
in Figure 23.

Figure 21 Default Residential House

Fiaure 22 Front Wall Detection

Detection of Exterior — Tan Stucco

We identify the exterior color and material by comparing selected areas
on each building side to preexisting color/material palettes available to
the scripts. Residential building materials include brick, siding, and
stucco, each with a number of color variations. Figure 24 show results
after a color/material of “tan stucco” was identified.

Detection of Roof Attributes — Brown Hip

Roof type (hip, gable, flat) is detected by assessing all available camera
images and detecting key features that indicate the base roof-type (e.g., Finire 24 Color and Material
large gable covering one side). Figure 25 shows the step where hip
roof-type is detected and passed to generation routines. Roof color and
material are also detected.

Detection of Aperture Locations — Right Side Garages

Apertures are identified with image processing and neural net
techniques. Aperture type is determined heuristically, based on
aperture size and location, or from neural net detection. Figure 26
shows apertures detected on the front of the residential building, while
Figure 27 shows the results of the apertures in the procedural model. Figure 25 Roof Type and Color
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Figure 26 Aperture Detection Figure 27 Right Side Garages
Aperture information for each building side is passed to the procedural scripts. If no aperture information is included
for a building side, default apertures are generated for the building side.

Detection of Gable Locations — Front Gables

Front facing gable roof sections are detected, as shown in Figure 28. Detected gable front protrusions are created based
in the detected areas. Front entrances are also detected and used to designate the main entrance overhang and porch
area. Figure 29 shows the resultant effects.

1

Ficﬂire 'é‘8'Ga le Detection Fiaure 29 Front Gables

Detection of Appendages — A/C Unit

We currently detect three types of appendages: chimneys, A/C units, and utility boxes. Once detected, location, type,
and size information are passed to the procedural build state. Pre-built models for ac-units and utility boxes are
instanced at the detected size in the designated areas. If detected, chimneys are procedurally built using script logic.
Figure 30 shows the A/C unit CNN detection. Figure 31 shows the addition of the A/C unit to the procedural model.

Figure 30 A/C Unit Detection Fiaure 31 A/C Unit

INTERIOR SPECULATION

The default interior building layout utilizes heuristics to assign room types and sizes. Some level of control is allowed
per building type, but no specific room type assignments are made. Our “speculator” function adds the concept of
interior speculation about room types by extraction of attributes from the building exterior. Some speculations were
relatively straightforward— e.g., garage doors open into interior garages. Others may be more subtle—small windows
may be associated with bathrooms, or upper floor windows may be associated with bedrooms. The speculator function
assesses apertures and can pass an interior room hint with every aperture to the interior generation software. Figure
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32 shows three apertures, where hints are being
passed, and the resultant room generation with the

hints. Speculation rules for each building type | Fiorida Room @ 7 Kitchen
provide support for a variety of interiors.

Certain training tasks require building detail only in
limited areas, such as the first few floors of a
multiple story high rise building. Upper stories, may
not require interiors or apertures. Generation of
unnecessary detail can greatly increase polygon
counts. Procedural generation can utilize input
parameters to limit detail only to required areas.
Using hints from the ground floor enhanced ) ) ) 3
attributes can be used to create the ground floor Figure 32 Interior Room Layout with hints
layout.

Bathroom

LESSONS LEARNED

Many lessons were learned as we worked through our experiment and developed our automated approach. Below we
have identified a few key lessons:

Features are Flexible

Extracting information from photographs or photogrammetrically-derived terrain mesh, and representing the data as
enhanced feature attributes makes it possible to:

e integrate the enhanced attribute data with existing geospatial feature data

o editerrors in extracted data

e generate variable fidelity 3D models for a variety of run-time systems

e reuse the data in the future to build higher fidelity models for run-time systems not yet built
Features are Efficient

Representing features in their abstract forms (verses polygons) are:

more efficient to store

much more efficient to stream

easily tailored for use in simulated reasoning systems

effortlessly transformed to be viewed by visual rendering systems

suitable for analytical processing

ldentifying Sub-Feature enables Speculation of Interiors

Speculating the interior layout of a building is readily enabled by identifying the apertures and appendages.
Procedural Modeling provides Flexibility

Generating 3D models procedurally allows for:

¢ changing the seasons — not constrained by the date of data capture

o fictitious location generation — easily change the feature data

e aconsistent appearance and representation of the database regardless of available data
Deep Learning Performs Best Contextual

By constraining the problem-space for our deep learning tools, very reliable results are possible.

RECOMMENDATIONS AND FUTURE WORK

From our experiments, we have identified the need for a standard for procedural 3D model generation. We recommend
a standard for rules and a standard for art asset generation. The Esri®* Computer Generated Architecture (CGA)
specification provides such a set of rules (Esri, 2018). CGA'’s are the shape grammar of Esri’s CityEngine, used to
generate architectural 3D content. To complement the CGA standard, it is recommended that we define standards for

4 ESRI is a registered trademark of Environmental Systems Research Institute, Inc. within the United States and/or
other countries.
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art assets that support the procedural generation tools. These standards need to define texture spatial resolution,
wrapping and tiling schemes, map types, and any other attributes that ensure reusability.

Our future work will build upon the existing Conform framework, adding automation, expanding building types and
refining feature and sub-feature extraction. We plan to add two additional stages to our Neural Net Stages. First,
adding an initial neural net stage to distinguish between broad types of building automatically. And, second, adding a
stage following the aperture and appendages stage to determine the specific window and door models to be utilized
for the apertures. We plan to implement a fully automated neural net training system using procedurally-generated
models, replacing the manual marking with automated marking obtained from the knowledge of feature locations
implicitly available from the procedural generation process. We will expand the detection of appendages to support
roof-vents, stand-pipes, and skylights.
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