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ABSTRACT 
 
Increasingly commercial companies including Google, Amazon and Apple are using machine learning (ML) to predict 
customer behaviour and market trends. As these ML methods mature, they will continue to help improve commercial 
sector decision making, and potentially military processes as well. Reports suggest that the DoD alone could save $32 
billion a year by increasing logistics and operational efficiency, savings that ML could help facilitate. Unfortunately, 
many ML methods require millions of known data points to train a system before its predictive capabilities can be 
realized. However, for many military processes, only relatively small data sets are available (i.e. hundreds to thousands 
of points). This paper explores a specific ML method, Bayesian Networks (BN), to function on problems with small 
amounts of known data. Specifically, this work investigates the feasibility of using Kriging and Radial Basis Functions 
to augment existing data available for training BNs. In addition, tuning BN parameters to increase network accuracy 
using Particle Swarm Optimization is also presented. Combined results from three different datasets suggest that 
pairing data generation and prior probability approximation can allow BNs to more accurately predict a system’s 
outcome with small amounts of known data, potentially up to 80% or higher. Ultimately, as strategies outlined in the 
paper continue to develop they could help aid the implementation of BNs for a wide range of military processes. This 
would allow inefficiencies to be predicted before actual time, materials, and person hours are wasted.   
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INTRODUCION 
 
With the increasing prevalence of commodity sensors and computing devices, data can now be collected for relatively 
inconsequential costs and effort. Using increasingly affordable commodity sensors, collecting data on a manufacturing 
process, customer satisfaction, or disaster response can now lead to a wealth of information, information that 
companies are increasingly reluctant to ignore in the digital age (Malinova & Mendling, 2015). With the rise of the 
digital economy, data is being compared to oil as an economic engine and as a result becoming a fiercely guarded 
trade secret (Rotella, 2012). With the new focus on data, many organizations, like Amazon, Google, and Microsoft, 
are recognizing how it can give them a competitive edge to help improve their product offerings (Biewald, 2016).  
 
While raw data collection is as simple as ever, distilling actionable strategies from it is extremely challenging. This is 
due to the magnitude of information collected on a daily basis that must be interpreted. In order to make use of all that 
information to guide important decisions, strategies need to be employed to sort through noise and produce something 
is actionable (Holzinger, Dehmer, & Jurisica, 2014). This sorting or mining through data is often accomplished by 
utilizing machine learning techniques that can make accurate predictions and forecasts based on trends. Not only can 
these machine learning tools aid in decision making, they can also be used to understand how different decisions or 
events impact a system as a whole. This ability to make sense of complex situations with numerous variables is 
invaluable in today’s world where companies and governments are operating on increasingly tight budgets. 
 
While using sensors to collect data is becoming more cost efficient, in some real-world cases one cannot often collect 
enough data points to use popular machine learning techniques like Neural Networks or Bayesian Networks, which 
can require millions of data points. In some domains, like manufacturing, battlefield training, or medical procedures, 
events of interest may only happen a handful of times throughout the year. As a result, collecting thousands to millions 
of unique data points is not possible in a reasonable amount of time. One specific example highlighting this data 
volume issue is aircraft manufacturing. The process is very complex and involves many different collaborators from 
union labor to dozens of suppliers all impacting the finished product. Specifically, worker suitability can significantly 
impact assembly and manufacturing process outcomes. The ability to assign the correct worker to a job could provide 
a competitive edge by making sure their skills are suitably matched with a task (Ong, Ato, Umar, & Oshino, 2016). 
However, there might only be a relatively small number of planes produced every month (i.e. 10-30), meaning there 
is not enough worker data to construct a model to predict competencies (BBC, 2015) until many years have passed. 
The lack of data means there is not a way to use machine learning to accurately understand the relationships between 
variables and to predict how changes might impact the production process. As a result, these types of complex 
processes cannot use the powerful predictive analytics of machine learning without strategies that augment the limited 
quantities of data available. 
 
If smaller data sets could be augmented to a point where they are compatible with machine learning approaches, a 
wider range of applications could take advantage of these predictive tools. In order to accomplish this, however, a 
machine learning approach needs to be selected that has enough transparency so one can understand potential break 
downs in the training process, allowing improvements to be made. Since each machine learning algorithm has unique 
characteristics, it is important to select a method that is transparent enough for this task (Loyer, Henriques, Fontul, & 
Wiseall, 2016). Approaches like linear classification are simple and widely used for less demanding machine learning 
applications (Loh, 2014). However, assumptions of constant distributions, and the requirement that terms only be 
combined in a linear manner, results in a method not well suited to complex processes. Decision trees are another 
popular machine learning approach in many domains (Rokach & Maimon, 2015). They are easy to understand graph 
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like structures, lending themselves well to applications in medicine (Podgorelec, Kokol, & Rozman, 2002). However, 
decision trees suffer from overfitting and issues handling noisy incomplete data, which are often found in many real-
world applications (Bishop, 2006). Support vector machines (SVMs) are another widely popular machine learning 
approach. They are inherently a binary classification method that projects complex multivariate problems into an n-
dimensional space using a kernel (Chen & Wang, 2007). While SVMs are a popular and powerful tool, using a n-
dimensional kernel can be complex and challenging. This challenge does not allow for investigation of the small data 
set issue easily. Neural networks are one of the most powerful machine learning tools (Bernard, Chang, Popescu, & 
Graf, 2015). While they are a very powerful tool, they are very challenging to fully understand and dissect when 
trained. As a result, they are not a good option for investigating a machine learning algorithm for small data sets. 
Bayesian Networks (BN) are another widely used machine learning approach (Ropero, Flores, Rumí, & Aguilera, 
2016). They combine expert knowledge in the form of a network structure and prior probability distribution with 
Bayesian Statistics. The easily understandable network structure paired with flexible Bayesian Statistical methods 
lends itself well to exploratory investigation of behaviors associated with small data sets for machine learning. As a 
result, Bayesian Networks (BN) were selected as the machine learning method for this work. 
 
In addition to selecting a machine learning method for the work, a method of data augmentation is also required to 
train an accurate BN from a small sample size. It is important to select augmentation method that can capture the 
behavior of the dependent variable relationships in small data sets. This can facilitate data generation using a behavior 
model, instead of having to rely solely on what little data was collected. Theoretically, this could allow gaps in data 
collection to be filled. However, up to this point little work has been done looking augmentation strategies for ML 
using small datasets from real world processes. As such, little is known about what methods should be used to generate 
data for small dataset ML applications. Since different methods of data generation can produce very different results, 
any selected methods need to be tested and compared for accuracy (Krishnamurthy, 2005; Rusu & Rusu, 2006).  This 
paper begins to explore the feasibility of using Kriging and Radial Basis Function models to generate data for training 
a Bayesian Network using four different network structures and three different datasets. It also explores the feasibility 
of using Particle Swarm Optimization (PSO) to further increase network accuracy by intelligently setting the priors of 
a Bayesian Network. 
 
BACKGROUND 
 
Statistical methods have long been used to help make sense of data and predict the likelihood of an event when 
provided with certain parameters. Statistical theory is used in areas spanning from reliability analysis to scheduling 
airline flights (Jacobs et al., 2012; Muller, 2003). The reason statistical methods are used increasingly, especially 
today, is their ability to suggest courses of action based on previously collected data. These suggestions benefit from 
the ability to look at far more relationships between variables than humans can and provide decision-making aids that 
are more unbiased (De Martino, Kumaran, Seymour, & Dolan, 2009; Hastie, 2001).  
 
Bayesian Statistics 
 
Powerful machine learning techniques using Bayesian Networks are made possible due to the resurgence of Bayesian 
statistical methods (Pearl, 1988). Bayes Theorem, shown in Equation 1, is unique from traditional statistical methods 
because it allows the incorporation of background information called the prior probability (Bayes, 1763). The 
term	𝑃(𝐴|𝐵), called the posterior probability, represents the probability of A given that B occurs. The goal is to use 
what is known to calculate this unknown value. To calculate it involves using what is known on the right side of the 
equation. The term 𝑃(𝐴|𝐵),  is the likelihood of event B when A has already occurred in the population sample data. 
The term 𝑃(𝐴), is the prior probability of the event A happening anywhere in the population sample. The denominator 
term 𝑃(𝐵) is the probability of B occurring anywhere in the population sample data, which can be when A is either 
observed or not observed (Bayes, 1763).  

𝑃(𝐴|𝐵) = 	
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵) 	 (1) 

The inclusion of a prior differs from traditional statistical likelihood-based approaches. These traditional approaches 
mainly estimate probabilities of events based on the observed sample population data (Orloff & Bloom, 2014). The 
introduction of the prior probability term allows for a correction or smoothing of the observed data described by the 
likelihood. Often this prior probability is thought of as an expert specified term. The combination of the prior and the 
likelihood give the posterior probability of an event occurring. Using Bayes Theorem in Equation 1, the two 
distributions can be combined to provide a best estimate of the probability of an event occurring. 
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Bayesian Networks 
 
Conceptually, Bayes’ Theorem, is straightforward when there are few events and few variables. In a simple problem, 
to calculate the probability of an event, multiply the prior by the likelihood. However, determining classification is 
challenging when there are multiple events with multiple variables for each event. Representing the relationships 
between variables can quickly become very complex. Helping to alleviate this problem, Bayesian Networks allow for 
the representation of dependencies and relationships between variables using Directed Acyclic Graphs (DAGs) 
(Nielsen & Jensen, 2007; Stephenson, 2000). These graphs are made up of vertices and edges. Vertices, also known 
as nodes, represent the variables that make up data points. Edges denote the causal relationships between the vertices. 
These graphs allow for the direct visual representation of different variable dependencies, eliminating the need to 
interpret complex joint probability distributions. Instead joint probability distributions can be rewritten as the product 
of individual probabilities, greatly simplifying required calculations. The general form of this equation is shown in 
Equation 2. From a DAG perspective, Equation 2 shows that only probabilities of the parents of vertices need to be 
calculated to compute the resultant probability of output selection. 

𝑃(𝑣, …… , 𝑣.) =/𝑃0𝑣.1𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑣.)9
.

,

(2) 

Once a network structure is set, prior probabilities for categories or events within a node must be computed. The prior 
calculation is often a simple probability calculation. Theoretically, using this formulation, the prior probabilities for 
categories of a variable will sum to one. In addition to priors, the likelihood of an event given some evidence must 
also be computed. This work used the Laplace Smoothing likelihood method (MacKay, 1998; Williams, 1995). This 
method is popular since it considers the probability of seeing a combination of evidence even if an event is not 
observed in the training data. This is helpful during the testing stage where a network may encounter novel data 
combinations. The network is considered trained after likelihood calculations are complete. As a result, new points 
can be passed in for classification. The accuracy of a trained network is gauged by seeing how many testing set data 
points the network classifies correctly. 
 
Kriging 
 
Kriging models, the first data generation method used for this work, are inherently a way to fit a weighted regression 
model to a collection of data points (Bohling, 2005; Lovison, 2007). This model can then be used to approximate 
behavior of the dataset where little to no data is present. The goal of a Kriging model process is to find some function 
that approximates the behavior of the dataset while minimizing the discrepancy between predicted and expected 
values. 

𝑌(𝜃)∗ = 	>𝜆. ∗ 𝑌(𝜃.)
@

.A,

(3) 

The basic formulation of a Kriging model is shown in Equation 3. 𝑌(𝜃)∗ represents the expected value of a data point 
inserted into the model. This prediction is generated using a weighted summation of all the points describing a dataset’s 
behavior. The weights, or 𝜆., represent the influence a point in the data set has on a point that is being predicted. 
Usually these weights decrease the further away a point is from the predicted position 𝜃. 

𝜎D(𝜃) = 𝐸[|𝑌(𝜃)∗ − 𝑌(𝜃)|D] → 0	 (4) 

Ultimately, the goal is to solve for 𝜆.′𝑠 in Equation 3 that minimize the variance between the predicted and actual 
values. This difference between expected and actual values, or 𝜎D,  describes how well a model fits the data. The lower 
the 𝜎D value shown in Equation 4, the better the model fit. 
 
Radial Basis Functions 
 
Mathematically similar to Kriging models, Radial Basis Functions (RBFs) are also inherently a way to fit a weighted 
regression model to a collection of data points (Buhmann, 2000). Like Kriging, RBFs are often used to approximate 
a dataset’s behavior in areas where little to no collected data is present. The basic formulation of an RBF is shown 
below in Equation 5. The goal of the process is to find weights, or 𝜆.’s, that minimize the difference between the 
model and the actual points 𝑛. This difference is predicted by the basis function 𝜑. 
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𝑌(𝜃) = 	>𝜆.𝜑(|𝜃 − 𝜃.|)			
@

.A,

(5) 

One commonly used basis function is Gaussian. This type of basis function deals well with noisy data and does a good 
job of smoothing out noise in a collected data set. The Gaussian formulation is shown below in Equation 6, where 𝜀 
is a user specified shape factor. 

𝜑(𝜃 − 𝜃.) = 𝑒Q(R|SQST|)U	 (6)	 
 
Particle Swarm Optimization (PSO) 
 
Simple particle swarm optimization was developed by James Kennedy and Russell Eberhart in 1995 (Eberhart & 
Kennedy, 1995). The program is modeled after the flocking behavior of birds when in search of food or shelter as 
described by zoologist Frank Heppner. Flocks of birds use their own experiences and the knowledge of the flock when 
searching for shelter or food. This behavior forms the basis of the swarm characteristics in PSO. The particles use 
their own information (pBest) and the flock’s knowledge (gBest) to find the optimum solution to an optimization 
problem.  The velocity update function is what influences the behavior of the particles within the swarm, pulling the 
swarm towards the optimum value. This velocity equation is the heart of the PSO algorithm. Simple PSO was 
revolutionary when it first debuted but further research suggested that it could be improved upon using weighting 
factors to alter the original velocity update equation, shown in Equation 7 and 8. These methods such as using a 
weighting factor, or an inertia weight improve the ability of PSO to find the optimum in a faster and more reliable 
manner. Constriction PSO improves basic PSO by allowing the swarm to find minimum values more quickly and with 
greater accuracy (Banks, Vincent, & Anyakoha, 2007; Carlisle & Dozier, 2001).  Constriction PSO also eliminates 
the need to clamp velocity to prevent over exploration of the design space. As such, constriction PSO was the method 
employed in this paper. 

𝑉X⃗.Z[\],,. = 𝐾 ∗ _𝑉X⃗ .Z[\,. + 	𝑐, ∗ 𝑅c ∗ 0𝑝𝐵𝑒𝑠𝑡𝑋⃗. −	 𝑋⃗.9 +	𝑐D ∗ 𝑅e ∗ 0𝑔𝐵𝑒𝑠𝑡𝑋⃗ −	 𝑋⃗.9g	 (7) 
 

𝐾 =	2
12 − 𝜙 −j𝜙D − 4𝜙1k 											𝑤ℎ𝑒𝑟𝑒:	𝜙 = 	 𝑐, + 𝑐D	𝑎𝑛𝑑	𝜙 > 4								 (8) 

 
 
METHODOLOGY 
 
This section describes how the small data sets were collected and then how Kriging and RBF models were created 
and used to approximate the size of the data set. Lastly, network training and testing using original and generated data 
are covered. 
 
Data Collection and Processing 
 
To begin exploring BN for small dataset applications, building a Bayesian Network first required data. Three different 
datasets were collected. The first  dataset was collected from an assembly task using Augmented Reality guided work 
instructions (Nakanishi, Ozeki, Akasaka, & Okada, 2007; Richardson et al., 2014; Wang, Ong, & Nee, 2016). In the 
study, participants were asked to assemble a mock aircraft wing made of wood components and metal fasteners. The 
study setup was designed to mimic a traditional work cell found in an aerospace manufacturing environment. The AR 
application recorded when a participant moved between steps using a time stamped log files which were parsed to 
calculate how long participants spent on each 
step and how long they took to complete the 
assembly. For detailed information on this study, 
please see previously published work (Hoover et 
al., 2016; MacAllister, Gilbert, Holub, Winer, & 
Davies, 2016; Richardson et al., 2014). The 
other two datasets, Car Choice and Census, were pulled were pulled from the University of California Irvine (UCI) 
machine learning database (Asuncion & Newman, 2018). The Car Choice dataset represents a decision model created 
to describe the decision quality of a buyer’s car choice (Bohanec & Zupan, 1997). The Census dataset was pulled from 

Dataset # of Points Origin 
AR Assembly 75 User Study 

Car Choice 1,728 UCI Database 
Census 48,842 UCI Database 

Table 1. Datasets 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2018 

2018 Paper No. 18269 Page 6 of 14 

a subset of census responses in the 1990’s. 
The goal of the dataset if to predict the 
income level of a respondent (Kohavi & 
Becker, 1996). Table 1 shows the number 
of points in each dataset. Since the two 
datasets pulled from UCI were orders of 
magnitude larger than the AR assembly 
dataset and since the goal of the work is to 
study very small datasets, training data 
was randomly pulled from the Car Choice 
and Census data. For the Car choice data 
around 2% was used as training data. For 
the Census data, a randomly selected .1% 
subset was used for training. The leftover 
data was used for testing network 
accuracy. Since previous work showed 
that for small datasets the random 

assignment of testing and training data points can impact accuracy (MacAllister, Winer, & Miller, 2017), each dataset 
was randomly split into testing and training sets fifteen different times. These fifteen different splits were used to train 
and test the network to provide an average accuracy measure of performance. 
 
Data Generation 
 
After splitting the data into small training sets and setting aside some data for testing, the next step was to generate 
additional data. To generate data, the authors decided to utilize meta-models due to their proven use in engineering 
design. These models allowed the authors to fit a mathematical function to the design space and produce more data as 
needed. Data generated from the limited training set can then be used to create a BN. Using the testing data to gauge 
network performance can then show if network accuracy increases when augmenting training with generated data. For 
is portion of the work, Kriging and RBF models were selected to model the data because of their ability to efficiently 
describe the behavior of small datasets. This quality has been displayed repeatedly in many optimization publications 
(Kleijnen, 2009). For each of the fifteen different training datasets both a Kriging and RBF model was fit to the data. 
Kriging models were fit to each set of datasets using the ooDACE MatLab toolbox (Couckuyt, Dhaene, & Demeester, 
2014). Values generated using Radial Basis Functions were created using an RBF MatLab tool box (Chirokov, 2006). 
 
Figure 1 shows an example Kriging model and Figure 2 shows an example RBF model fit to AR Assembly data. The 
black points in Figure 1 and the red points in Figure 2 are the actual data points. Models fit to these points allow the 
entire domain to be approximated, especially in areas where little original data exists. These approximations and others 
like them were used to generate additional training data for a BN. To generate this additional data, the model was 
randomly sampled 1000 times. These points were then used to train an BN. 
 
Each of the Kriging models used a Gaussian correlation function to build the mathematical representation and to 
compute the expected vs 
actual values as shown 
in Equations 5 and 6. 
Gaussian correlation 
functions are popular in 
metamodeling for 
engineering applications 
(Simpson, Peplinski, & 
Koch, n.d.). For this 
application, it was used 
to ensure a smooth fit to 
the data and minimize 
the impact any noise the 
real-world data set 
contains. In addition, 

Figure 1. Kriging Model Fit to Limited Training Data 

Figure 2. RBF Model Fit to Limited Training Data 
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ooDACE provides a plot of errors at each point on the model, but these were excluded due to space constraints. The 
low 𝜎D error values in the plots suggest the created models fit the data available relatively accurately. However, 
looking at the example models and the data points available, there are large areas with limited data. This suggests that 
in some areas of the model, the approximation may be an extrapolation instead of an interpolation. 

 
Like the Kriging models, each of the RBF models used a Gaussian correlation functions. However, the RBF model 
was tuned to fit the data using the shape parameter, resulting in a mesh that very closely described the data’s behavior. 
As with the Kriging example model, looking at the RBF model one can see that there are areas with limited data. This 
suggests that in some areas of the model, the approximation again may be more of an extrapolation than interpolation. 
In addition, randomly sampling the design space could adversely impact the distribution of data in each category. This 
could negatively impact the generated data’s ability to represent the system by skewing prior probabilities. To deal 
with this possibility the authors theorized that PSO could help identify the best priors to use for a category. This is 
explored in greater detail in the results section.  
 
Network Construction 
 
After data were collected, before network training could occur, creating a network DAG structure for each of the 
datasets was required. The two datasets pulled from the UCI database have been cited in a number of publications 
specifically looking at creating network structures. For these two datasets, common structures found in academic 
literature were used (J Cheng, 2001; Jie Cheng, Hatzis, & Page, 2001; Salama & Freitas, 2013). However, since the 
AR Assembly data was a novel dataset, 
network construction required 
preliminarily analysis to understand 
relationships between variables. Linear 
regression models were created to show 
the strength of influence of variables 
upon each other and used to construct a 
DAG. An example network structure for 
predicting time using the AR Assembly 
data is shown in Figure 3. For more 
detail on network construction for the 
AR dataset please see previous work 
detailing the network construction 
process (MacAllister et al., 2017). This 
type of analysis was necessary due to the 
small data set, meaning research 
methods that construct network structure could not be used. While research in more automated network construction 
does not require as much expert input, it relies on having large amounts of data that can be used to learn relationships 
between variables. However, with small data sets there is often not enough data to make these relationships clear to 
an automated algorithm. In addition, solely relying on data to construct a network structure is still an active research 
area and some results indicate that networks constructed only from data are not as accurate as those including expert 
knowledge (Fenton, 2012; Masegosa & Moral, 2013; Zhou, Fenton, & Neil, 2014). As a result, when using a Bayesian 
Network approach expert understanding of a process is often necessary to help create a network structure when 
attempting to use small or even large data sets.  
 
For all datasets, Hierarchical Clustering was used to group like values (Kerber, 1992). Grouping the data into clusters 
or categories makes the likelihood calculations less computationally intensive. In addition, discretized data works 
better with smaller data sets since there may not be enough data to construct a continuous probabilistic distribution. 
Example results from the clustering algorithm are shown in network structure in Figure 3. Each vertex has multiple 
categories, with lower and upper bounds. Discretizing the data requires a participant’s recorded numeric value for a 
variable to be assigned to a category where it fits inside the bounds. Each category houses multiple participant values 
that fall within its specific assigned range. As a result, instead of continuous values, categorical values are used for 
training networks. 
 
  

Figure 3. Bayesian Network Structure 
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Training the Bayesian Networks 
 
Training the networks required calculating the likelihood of observing specific evidence states within a predictor 
category. The predictor vertices varied by network. Using the AR Assembly dataset two networks were constructed. 
One to predict total completion time and the other to predict the number of errors a participant made. For the Car 
Choice dataset, the suitability of the choice was the predictor variable. Finally, for the Census dataset income category 
was the predictor variable. To calculate the likelihood of observing specific evidence, the number of times evidence 
combinations appeared were calculated for a predictor category. Table 2 is a representative example evidence 
combination table including frequency for the AR dataset when attempting to predict time. Once an evidence table is 
constructed for a network training can continue by using the number of observed combinations to calculate likelihood. 
 
Taking a closer look at the evidence counts column in Table 2, it is apparent that the training data is not evenly 
distributed across the time categories. The vast majority of the observed evidence exists in time category two. This 
suggests that the network does not have much information on the behavior of data points outside time category two. 

This lack of information outside of time category 
two and the bulk of the data falling into category 
two, skewing the priors, suggests that the network 
will over assign the category that it is most familiar 
with. The propensity to over assign time category 
two is a direct result of the limited information 
available from the small data set. Since there is only 
a small number of points describing the system’s 
behavior, likelihood values will play only a small 
role deciding a point’s category assignment, 
allowing the prior to drive assignments.  This could 
end up causing the network to miscategorize points 
as time category two since it is by far the most 
frequently represented category and will have the 
largest prior. The lack of evidence in some 
categories in Table 2 is characteristic of a small data 
set. A larger data set would contain more points and 

a wider variety of points to ensure that all the behavior of the recorded process is captured.  
 
By generating data based on a Kriging or RBF model, a wider variety of evidence states can be represented. Due to 
space constraints all of those evidence combination tables are not shown for the other three networks. However, for 
larger data sets, such as those generated using Kriging and RBF, more evidence combinations are generally present. 
More states are represented in the Bayesian Network could allow it to better predict events it encounters. The next 
section explores how well Bayesian Networks trained with generated data perform, to see if this theory holds. 
 
 
RESULTS AND DISCUSSION 
 
After all the steps consisting of splitting data into testing and training sets, and network structure creation the networks 
were ready for testing. The testing process involved running fifteen different splits of testing and training data for each 
through one of the four corresponding network structures. Data used for training a network each run was either original 
data, Kriging generated data, and RBF generated data. The average accuracy of these fifteen runs was used to gauge 
how accurate each BN was using different types of data. Fifteen runs were used since previous work showed that with 
small datasets slight changes in the breakdown of testing and training data can impact results (MacAllister et al., 
2017). Averaging results across a number of runs minimizes the slight changes due to dataset composition. 

Predictor 
Category 

Evidence- 
Assembly 

Evidence- 
Picking 

Evidence 
Count 

Prior 

Time1 Assemb2 Picking1 1 0.053 
Time1 Assemb3 Picking2 1 
Time2 Assemb3 Picking2 18 0.632 
Time2 Assemb3 Picking3 5 
Time2 Assemb1 Picking5 1 
Time3 Assemb3 Picking3 4 0.158 
Time3 Assemb3 Picking2 2 
Time4 Assemb3 Picking3 1 0.053 
Time4 Assemb4 Picking3 1 
Time5 Assemb3 Picking3 1 0.105 
Time5 Assemb4 Picking4 2 
Time5 Assemb5 Picking3 1 

Table 2. Likelihood Table for Time Network 
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Figure 4 shows the testing results 
when trying to predict total 
assembly time using original, RBF, 
and Kriging data. The histogram of 
accuracy results from the 15 
networks trained and tested with 
random allocations of data also 
contain box plots describing the 
distribution of the results. The 
medians of the box plots in Figure 
4 show that the original data 
trained networks achieve the 
highest median accuracy, even 
though RBF and Kriging have two 
orders of magnitude (1000 vs ~35) 
more data points. This suggests 
that even though the Kriging and 
RBF models were good fits to the data, they don’t capture the randomness associated with human operators well. Or 
it could also be that some of the testing data lay in the extrapolation range of the model or sampling the design space 
randomly threw off the priors. As a result, a model trained to predict completion time using generated data would not 

have accurate predictive 
capabilities.  
 
The second network structure 
tested for the AR assembly data 
shown in Figure 5, produces 
similar results. The box plots show 
the mean network testing accuracy 
for original data trained BN is 
slightly higher than RBF and 
Kriging. This again suggests that 
something is missing when 
generating data. 
 
To see if original data trained 
networks are more accurate than 
generated, the results from the 

second two datasets need to be examined. Histograms and box plots for the car choice dataset shown in Figure 6 
indicate that original data produces a network with twice the accuracy of the Kriging and RBF. This suggests that 
these models, especially the Kriging model, did not generate data that was very good for training a BN, even though 
the model was an accurate fit to 
the data. This could point to 
another factor contributing to 
decreasing the accuracy of the 
BN, other than data generation 
model accuracy. Another peculiar 
result is the range of network 
accuracies seen in the RBF 
metrics. Some datasets result in 
good training datasets for the BN, 
but some poor. Digging into the 
reason behind this and looking for 
differences could help guide the 
creation of good datasets rather 
than poor. 

Figure 4. AR Dataset Time Network 

Figure 5. AR Dataset Error Network 

Figure 6. Car Choice Dataset 
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Moving on to the third dataset in 
Figure 7, Census data, the mean 
accuracy for the original and Kriging 
data are very similar. RBF also 
generates a large number of 
accurately trained networks, 
however, it’s average is reduced by a 
few poorly performing networks.  
 
The results discussed above suggest 
that generated data on its own is not 
enough to increase the accuracy of a 
Bayesian Network trained with small 
data. When dealing with such small 
amounts of data, up sampling to such 

a high degree to increase dataset variety might be damaging the network’s ability to produce accurate predictions. The 
authors hypothesize that this could be due to the fact that when the number of likelihood combinations are increased 
through randomly sampling the design space, the priors become distorted. This distortion of the priors unbalances 
Bayes Theorem and reduces the accuracy of the network. The theory is that in order to use the generated data, priors 
have to be re-computed in a way that can maximize the usefulness of the generated data. In short, the goal is to 
decouple the priors from the generated 
data. This will provide more likelihood 
values using data generation, while still 
trying to represent the system with 
priors that maximize the accuracy of 
the network.  
 
Figure 8 shows the results of using PSO 
to set prior probabilities for the three 
different Time Network datasets. The 
results show that in this case using PSO 
actually decreases the median accuracy 
of the networks. However, in some 
cases the method produces some very 
accurate networks that surpass the 
original trained network accuracy. This 
suggests that sometimes the PSO method could work on a dataset, but not all runs are particularly stable as evidenced 
by the handful of low-lying results. Even though the method produces some inaccurate networks, the proof of concept 
showing the presence of high preforming networks is encouraging. These high preforming variants, demonstrating 
increases over the original data trained networks, could be used as a way to improve classification accuracy. Accuracy 

gains from the generated data trained 
networks could potentially help model a 
process more accurately, saving time 
and money. 
 
Figure 9 shows the results of the error 
predicting network when the priors are 
optimized using PSO. Results of PSO 
prior optimization show accuracy 
improvements over the non-PSO 
optimized networks for all three training 
dataset variations. The median accuracy 
for original, Kriging, and RBF, are 
higher than the non-PSO prior 
optimized networks shown in Figure 5. 
In addition, maximum classification 

Figure 7. Census Dataset 

Figure 9. Error PSO Results 

Figure 8. Time Network - PSO Priors 
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accuracy values exceeded previous 
levels. This suggests that a handful of 
generated training datasets are 
promising candidates to use to train 
the network. Using this experimental 
data generation approach paired with 
PSO prior optimization a more 
accurate network could be created 
from relatively little data, even when 
using original data. This could 
potentially open up more applications 
for machine learning, specifically 
those with only small datasets 
available. Figure 10 shows the PSO 
results for Car Choice dataset. These 

results show that using PSO to set priors for the original training data greatly reduces classification accuracy from 
71% to around 8%. However, Kriging data trained networks were not impacted by PSO manipulation of priors. Finally, 
RBF data trained networks saw very slight average accuracy gains and the number of networks with over 60% 
accuracy increased. It seems with PSO priors RBF generated data is able to surpass the network accuracy set by the 
original non-PSO data trained 
network. This again suggests 
that using PSO coupled with 
data generation can help 
improve network accuracy 
when using small datasets. 
However, accomplishing these 
accuracy gains require 
experimentation and a number 
of trial runs to produce a good 
accuracy improving candidate. 
 
Results from the Census 
dataset predicting a person’s 
income shown in Figure 11 are 
less clear. These results show 
that using PSO to manipulate 
prior accuracy has less of an 
impact on the average accuracy of the generated data trained networks than the other datasets. This could suggest that 
the generated network priors are fairly stable and not as sensitive to variation as the original data. 
 
Overall, the results presented above demonstrate a proof of concept showing that in some cases PSO can produce 
networks that match or exceed classification accuracy of original data trained networks. High accuracy networks tuned 
using PSO or augmented with generated data could be used as a way to improve prediction models for areas in industry 
and the military that are currently underserved by traditional ML approaches. 
 
 
CONCLUSION AND FUTURE WORK 
 
Bayesian Networks are a very powerful tool for modeling and predicting complex relationships between variables. 
They provide a transparent way to map and understand variable relationships and how changes to networks might 
impact their accuracy. Their easily understandable network structure paired with flexible Bayesian Statistical methods 
lends itself well to investigating behaviors associated with small data sets for machine learning. Greater understanding 
of how to adapt machine learning tools like BN to use with small datasets will ultimately help underserved areas like 
small volume manufacturing or military applications utilize the powerful predictive analytics of machine learning. 
The work in this paper took initial steps towards this goal by exploring the feasibility of using Kriging and Radial 
Basis Function models to generate data for four different Bayesian Networks. The goal of the network was to predict 

Figure 10. Car PSO Results 

Figure 11. Income PSO Results 
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completion time for workers conducting assembly operations, predict the number of errors an assembly worker made, 
a buyer’s car choice, and the income level of an adult. Data for the project was collected from a human-subjects study 
that used augmented reality guided work instructions and from the UCI machine learning database. Small amounts of 
data were used to train the different BNs. Each of these training datasets were each fitted with a Kriging and a Radial 
Basis Function model. These models were randomly sampled to produce a larger dataset for training. Results showed 
that generated data, alone, did not increase the accuracy of the trained networks. As a result, Particle Swarm 
Optimization (PSO) was used to set the priors of the data to gauge if prior optimization could improve network 
accuracy. Results of these tests showed that using PSO can help increase network accuracy. However, not all network 
and data combinations see accuracy improvements. Moving forward, the authors will explore the characteristics of 
the datasets that experience accuracy gains and gauge if generating even greater amounts of data impact network 
accuracy. The goal of future work is to gain greater understanding of best practices for augmenting small datasets used 
to train Bayesian Networks. In the end, the work presented above provides the first steps towards coming up with a 
strategy to begin using Bayesian Networks in real world small dataset problems.  However, these initial results should 
be applied with caution to other applications. The quality of the small dataset and of the models used to generate data 
can have a large impact on the augmented dataset. If the small dataset is of poor quality generating more data might 
not improve network performance. When evaluating datasets for potential augmentation it is important practitioners 
sufficiently test the accuracy of networks trained using generated data to ensure that poorly trained networks are not 
used to make important decisions. 
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