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ABSTRACT

Increasingly commercial companies including Google, Amazon and Apple are using machine learning (ML) to predict
customer behaviour and market trends. As these ML methods mature, they will continue to help improve commercial
sector decision making, and potentially military processes as well. Reports suggest that the DoD alone could save $32
billion a year by increasing logistics and operational efficiency, savings that ML could help facilitate. Unfortunately,
many ML methods require millions of known data points to train a system before its predictive capabilities can be
realized. However, for many military processes, only relatively small data sets are available (i.e. hundreds to thousands
of points). This paper explores a specific ML method, Bayesian Networks (BN), to function on problems with small
amounts of known data. Specifically, this work investigates the feasibility of using Kriging and Radial Basis Functions
to augment existing data available for training BNs. In addition, tuning BN parameters to increase network accuracy
using Particle Swarm Optimization is also presented. Combined results from three different datasets suggest that
pairing data generation and prior probability approximation can allow BNs to more accurately predict a system’s
outcome with small amounts of known data, potentially up to 80% or higher. Ultimately, as strategies outlined in the
paper continue to develop they could help aid the implementation of BNs for a wide range of military processes. This
would allow inefficiencies to be predicted before actual time, materials, and person hours are wasted.
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INTRODUCION

With the increasing prevalence of commodity sensors and computing devices, data can now be collected for relatively
inconsequential costs and effort. Using increasingly affordable commodity sensors, collecting data on a manufacturing
process, customer satisfaction, or disaster response can now lead to a wealth of information, information that
companies are increasingly reluctant to ignore in the digital age (Malinova & Mendling, 2015). With the rise of the
digital economy, data is being compared to oil as an economic engine and as a result becoming a fiercely guarded
trade secret (Rotella, 2012). With the new focus on data, many organizations, like Amazon, Google, and Microsoft,
are recognizing how it can give them a competitive edge to help improve their product offerings (Biewald, 2016).

While raw data collection is as simple as ever, distilling actionable strategies from it is extremely challenging. This is
due to the magnitude of information collected on a daily basis that must be interpreted. In order to make use of all that
information to guide important decisions, strategies need to be employed to sort through noise and produce something
is actionable (Holzinger, Dehmer, & Jurisica, 2014). This sorting or mining through data is often accomplished by
utilizing machine learning techniques that can make accurate predictions and forecasts based on trends. Not only can
these machine learning tools aid in decision making, they can also be used to understand how different decisions or
events impact a system as a whole. This ability to make sense of complex situations with numerous variables is
invaluable in today’s world where companies and governments are operating on increasingly tight budgets.

While using sensors to collect data is becoming more cost efficient, in some real-world cases one cannot often collect
enough data points to use popular machine learning techniques like Neural Networks or Bayesian Networks, which
can require millions of data points. In some domains, like manufacturing, battlefield training, or medical procedures,
events of interest may only happen a handful of times throughout the year. As a result, collecting thousands to millions
of unique data points is not possible in a reasonable amount of time. One specific example highlighting this data
volume issue is aircraft manufacturing. The process is very complex and involves many different collaborators from
union labor to dozens of suppliers all impacting the finished product. Specifically, worker suitability can significantly
impact assembly and manufacturing process outcomes. The ability to assign the correct worker to a job could provide
a competitive edge by making sure their skills are suitably matched with a task (Ong, Ato, Umar, & Oshino, 2016).
However, there might only be a relatively small number of planes produced every month (i.e. 10-30), meaning there
is not enough worker data to construct a model to predict competencies (BBC, 2015) until many years have passed.
The lack of data means there is not a way to use machine learning to accurately understand the relationships between
variables and to predict how changes might impact the production process. As a result, these types of complex
processes cannot use the powerful predictive analytics of machine learning without strategies that augment the limited
quantities of data available.

If smaller data sets could be augmented to a point where they are compatible with machine learning approaches, a
wider range of applications could take advantage of these predictive tools. In order to accomplish this, however, a
machine learning approach needs to be selected that has enough transparency so one can understand potential break
downs in the training process, allowing improvements to be made. Since each machine learning algorithm has unique
characteristics, it is important to select a method that is transparent enough for this task (Loyer, Henriques, Fontul, &
Wiseall, 2016). Approaches like linear classification are simple and widely used for less demanding machine learning
applications (Loh, 2014). However, assumptions of constant distributions, and the requirement that terms only be
combined in a linear manner, results in a method not well suited to complex processes. Decision trees are another
popular machine learning approach in many domains (Rokach & Maimon, 2015). They are easy to understand graph
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like structures, lending themselves well to applications in medicine (Podgorelec, Kokol, & Rozman, 2002). However,
decision trees suffer from overfitting and issues handling noisy incomplete data, which are often found in many real-
world applications (Bishop, 2006). Support vector machines (SVMs) are another widely popular machine learning
approach. They are inherently a binary classification method that projects complex multivariate problems into an n-
dimensional space using a kernel (Chen & Wang, 2007). While SVMs are a popular and powerful tool, using a n-
dimensional kernel can be complex and challenging. This challenge does not allow for investigation of the small data
set issue easily. Neural networks are one of the most powerful machine learning tools (Bernard, Chang, Popescu, &
Graf, 2015). While they are a very powerful tool, they are very challenging to fully understand and dissect when
trained. As a result, they are not a good option for investigating a machine learning algorithm for small data sets.
Bayesian Networks (BN) are another widely used machine learning approach (Ropero, Flores, Rumi, & Aguilera,
2016). They combine expert knowledge in the form of a network structure and prior probability distribution with
Bayesian Statistics. The easily understandable network structure paired with flexible Bayesian Statistical methods
lends itself well to exploratory investigation of behaviors associated with small data sets for machine learning. As a
result, Bayesian Networks (BN) were selected as the machine learning method for this work.

In addition to selecting a machine learning method for the work, a method of data augmentation is also required to
train an accurate BN from a small sample size. It is important to select augmentation method that can capture the
behavior of the dependent variable relationships in small data sets. This can facilitate data generation using a behavior
model, instead of having to rely solely on what little data was collected. Theoretically, this could allow gaps in data
collection to be filled. However, up to this point little work has been done looking augmentation strategies for ML
using small datasets from real world processes. As such, little is known about what methods should be used to generate
data for small dataset ML applications. Since different methods of data generation can produce very different results,
any selected methods need to be tested and compared for accuracy (Krishnamurthy, 2005; Rusu & Rusu, 2006). This
paper begins to explore the feasibility of using Kriging and Radial Basis Function models to generate data for training
a Bayesian Network using four different network structures and three different datasets. It also explores the feasibility
of using Particle Swarm Optimization (PSO) to further increase network accuracy by intelligently setting the priors of
a Bayesian Network.

BACKGROUND

Statistical methods have long been used to help make sense of data and predict the likelihood of an event when
provided with certain parameters. Statistical theory is used in areas spanning from reliability analysis to scheduling
airline flights (Jacobs et al., 2012; Muller, 2003). The reason statistical methods are used increasingly, especially
today, is their ability to suggest courses of action based on previously collected data. These suggestions benefit from
the ability to look at far more relationships between variables than humans can and provide decision-making aids that
are more unbiased (De Martino, Kumaran, Seymour, & Dolan, 2009; Hastie, 2001).

Bayesian Statistics

Powerful machine learning techniques using Bayesian Networks are made possible due to the resurgence of Bayesian
statistical methods (Pearl, 1988). Bayes Theorem, shown in Equation 1, is unique from traditional statistical methods
because it allows the incorporation of background information called the prior probability (Bayes, 1763). The
term P(A|B), called the posterior probability, represents the probability of A given that B occurs. The goal is to use
what is known to calculate this unknown value. To calculate it involves using what is known on the right side of the
equation. The term P(A|B), is the likelihood of event B when A has already occurred in the population sample data.
The term P (A), is the prior probability of the event A happening anywhere in the population sample. The denominator
term P(B) is the probability of B occurring anywhere in the population sample data, which can be when A is either
observed or not observed (Bayes, 1763).
P(B|A)P(A
( 1|3(1); (4 o)
)
The inclusion of a prior differs from traditional statistical likelihood-based approaches. These traditional approaches
mainly estimate probabilities of events based on the observed sample population data (Orloff & Bloom, 2014). The
introduction of the prior probability term allows for a correction or smoothing of the observed data described by the
likelihood. Often this prior probability is thought of as an expert specified term. The combination of the prior and the
likelihood give the posterior probability of an event occurring. Using Bayes Theorem in Equation 1, the two
distributions can be combined to provide a best estimate of the probability of an event occurring.

P(A|B) =
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Bayesian Networks

Conceptually, Bayes’ Theorem, is straightforward when there are few events and few variables. In a simple problem,
to calculate the probability of an event, multiply the prior by the likelihood. However, determining classification is
challenging when there are multiple events with multiple variables for each event. Representing the relationships
between variables can quickly become very complex. Helping to alleviate this problem, Bayesian Networks allow for
the representation of dependencies and relationships between variables using Directed Acyclic Graphs (DAGs)
(Nielsen & Jensen, 2007; Stephenson, 2000). These graphs are made up of vertices and edges. Vertices, also known
as nodes, represent the variables that make up data points. Edges denote the causal relationships between the vertices.
These graphs allow for the direct visual representation of different variable dependencies, eliminating the need to
interpret complex joint probability distributions. Instead joint probability distributions can be rewritten as the product
of individual probabilities, greatly simplifying required calculations. The general form of this equation is shown in
Equation 2. From a DAG perspective, Equation 2 shows that only probabilities of the parents of vertices need to be
calculated to compute the resultant probability of output selection.

P(vg ... , V) = HP(vi|parents(vi)) (2)

Once a network structure is set, prior probabilities for categories or events within a node must be computed. The prior
calculation is often a simple probability calculation. Theoretically, using this formulation, the prior probabilities for
categories of a variable will sum to one. In addition to priors, the likelihood of an event given some evidence must
also be computed. This work used the Laplace Smoothing likelihood method (MacKay, 1998; Williams, 1995). This
method is popular since it considers the probability of seeing a combination of evidence even if an event is not
observed in the training data. This is helpful during the testing stage where a network may encounter novel data
combinations. The network is considered trained after likelihood calculations are complete. As a result, new points
can be passed in for classification. The accuracy of a trained network is gauged by seeing how many testing set data
points the network classifies correctly.

Kriging

Kriging models, the first data generation method used for this work, are inherently a way to fit a weighted regression
model to a collection of data points (Bohling, 2005; Lovison, 2007). This model can then be used to approximate
behavior of the dataset where little to no data is present. The goal of a Kriging model process is to find some function
that approximates the behavior of the dataset while minimizing the discrepancy between predicted and expected
values.

V() = ) A+ V(6) 3

The basic formulation of a Kriging model is shown in Equation 3. Y (8)* represents the expected value of a data point
inserted into the model. This prediction is generated using a weighted summation of all the points describing a dataset’s
behavior. The weights, or 4;, represent the influence a point in the data set has on a point that is being predicted.
Usually these weights decrease the further away a point is from the predicted position 6.

o?(0) =E[lY(0) —=Y(®)|’] -0 4

Ultimately, the goal is to solve for 1;'s in Equation 3 that minimize the variance between the predicted and actual
values. This difference between expected and actual values, or a2, describes how well a model fits the data. The lower
the o2 value shown in Equation 4, the better the model fit.

Radial Basis Functions

Mathematically similar to Kriging models, Radial Basis Functions (RBFs) are also inherently a way to fit a weighted
regression model to a collection of data points (Buhmann, 2000). Like Kriging, RBFs are often used to approximate
a dataset’s behavior in areas where little to no collected data is present. The basic formulation of an RBF is shown
below in Equation 5. The goal of the process is to find weights, or 4;’s, that minimize the difference between the
model and the actual points n. This difference is predicted by the basis function ¢.
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n
(ORWRTETA ©
i=1
One commonly used basis function is Gaussian. This type of basis function deals well with noisy data and does a good
job of smoothing out noise in a collected data set. The Gaussian formulation is shown below in Equation 6, where &
is a user specified shape factor.

P(0 — 6;) = e~ (elo=6D? (6)
Particle Swarm Optimization (PSO)

Simple particle swarm optimization was developed by James Kennedy and Russell Eberhart in 1995 (Eberhart &
Kennedy, 1995). The program is modeled after the flocking behavior of birds when in search of food or shelter as
described by zoologist Frank Heppner. Flocks of birds use their own experiences and the knowledge of the flock when
searching for shelter or food. This behavior forms the basis of the swarm characteristics in PSO. The particles use
their own information (pBest) and the flock’s knowledge (gBest) to find the optimum solution to an optimization
problem. The velocity update function is what influences the behavior of the particles within the swarm, pulling the
swarm towards the optimum value. This velocity equation is the heart of the PSO algorithm. Simple PSO was
revolutionary when it first debuted but further research suggested that it could be improved upon using weighting
factors to alter the original velocity update equation, shown in Equation 7 and 8. These methods such as using a
weighting factor, or an inertia weight improve the ability of PSO to find the optimum in a faster and more reliable
manner. Constriction PSO improves basic PSO by allowing the swarm to find minimum values more quickly and with
greater accuracy (Banks, Vincent, & Anyakoha, 2007; Carlisle & Dozier, 2001). Constriction PSO also eliminates
the need to clamp velocity to prevent over exploration of the design space. As such, constriction PSO was the method
employed in this paper.

uer st = K+ (Tuans + 2 Ry = (pBestR, — £) + ¢y Ry » (gBest® — X)) ™
K=2/ where:¢p = ¢, +c,and ¢ > 4 (8)
2—¢ o7 — 49| T
METHODOLOGY

This section describes how the small data sets were collected and then how Kriging and RBF models were created
and used to approximate the size of the data set. Lastly, network training and testing using original and generated data
are covered.

Data Collection and Processing

To begin exploring BN for small dataset applications, building a Bayesian Network first required data. Three different
datasets were collected. The first dataset was collected from an assembly task using Augmented Reality guided work
instructions (Nakanishi, Ozeki, Akasaka, & Okada, 2007; Richardson et al., 2014; Wang, Ong, & Nee, 2016). In the
study, participants were asked to assemble a mock aircraft wing made of wood components and metal fasteners. The
study setup was designed to mimic a traditional work cell found in an acrospace manufacturing environment. The AR
application recorded when a participant moved between steps using a time stamped log files which were parsed to
calculate how long participants spent on each Taple 1. Datasets

step and how long they took to complete the

assembly. For detailed information on this study, Dataset i+ of Points Origin
please see previously published work (Hoover et AR Assembly 75 User Study
al., 2016; MacAllister, Gilbert, Holub, Winer, & Car Choice 1,728 UCI Database
Davies, 2016; Richardson et al., 2014). The Census 48,842 UCI Database

other two datasets, Car Choice and Census, were pulled were pulled from the University of California Irvine (UCI)
machine learning database (Asuncion & Newman, 2018). The Car Choice dataset represents a decision model created
to describe the decision quality of a buyer’s car choice (Bohanec & Zupan, 1997). The Census dataset was pulled from
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Landscape plot of kriging model a subset of census responses in the 1990’s.
The goal of the dataset if to predict the
income level of a respondent (Kohavi &

“»"‘
‘ “‘ 8 “‘“\\ Becker, 1996). Table 1 shows the number

of points in each dataset. Since the two
datasets pulled from UCI were orders of
magnitude larger than the AR assembly
dataset and since the goal of the work is to
study very small datasets, training data
was randomly pulled from the Car Choice
and Census data. For the Car choice data
around 2% was used as training data. For
the Census data, a randomly selected .1%
subset was used for training. The leftover
Figure 1. Kriging Model Fit to Limited Training Data data was used for testing network
accuracy. Since previous work showed
that for small datasets the random
assignment of testing and training data points can impact accuracy (MacAllister, Winer, & Miller, 2017), each dataset
was randomly split into testing and training sets fifteen different times. These fifteen different splits were used to train
and test the network to provide an average accuracy measure of performance.

y X

Data Generation

After splitting the data into small training sets and setting aside some data for testing, the next step was to generate
additional data. To generate data, the authors decided to utilize meta-models due to their proven use in engineering
design. These models allowed the authors to fit a mathematical function to the design space and produce more data as
needed. Data generated from the limited training set can then be used to create a BN. Using the testing data to gauge
network performance can then show if network accuracy increases when augmenting training with generated data. For
is portion of the work, Kriging and RBF models were selected to model the data because of their ability to efficiently
describe the behavior of small datasets. This quality has been displayed repeatedly in many optimization publications
(Kleijnen, 2009). For each of the fifteen different training datasets both a Kriging and RBF model was fit to the data.
Kriging models were fit to each set of datasets using the 00DACE MatLab toolbox (Couckuyt, Dhaene, & Demeester,
2014). Values generated using Radial Basis Functions were created using an RBF MatLab tool box (Chirokov, 2006).

Figure 1 shows an example Kriging model and Figure 2 shows an example RBF model fit to AR Assembly data. The
black points in Figure 1 and the red points in Figure 2 are the actual data points. Models fit to these points allow the
entire domain to be approximated, especially in areas where little original data exists. These approximations and others
like them were used to generate additional training data for a BN. To generate this additional data, the model was
randomly sampled 1000 times. These points were then used to train an BN.

Each of the Kriging models used a Gaussian correlation function to build the mathematical representation and to
compute the expected vs

actual values as shown RBF Interpolation - 10

in Equations 5 and 6.
Gaussian correlation
functions are popular in @
metamodeling for
engineering applications
(Simpson, Peplinski, &
Koch, n.d.). For this 1000
application, it was used 1500
to ensure a smooth fit to
the data and minimize
the impact any noise the
real-world  data  set
contains. In addition,

Total tim

Assembly Time [s] Picking Time [s]

Figure 2. RBF Model Fit to Limited Training Data
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00DACE provides a plot of errors at each point on the model, but these were excluded due to space constraints. The
low o2 error values in the plots suggest the created models fit the data available relatively accurately. However,
looking at the example models and the data points available, there are large areas with limited data. This suggests that
in some areas of the model, the approximation may be an extrapolation instead of an interpolation.

Like the Kriging models, each of the RBF models used a Gaussian correlation functions. However, the RBF model
was tuned to fit the data using the shape parameter, resulting in a mesh that very closely described the data’s behavior.
As with the Kriging example model, looking at the RBF model one can see that there are areas with limited data. This
suggests that in some areas of the model, the approximation again may be more of an extrapolation than interpolation.
In addition, randomly sampling the design space could adversely impact the distribution of data in each category. This
could negatively impact the generated data’s ability to represent the system by skewing prior probabilities. To deal
with this possibility the authors theorized that PSO could help identify the best priors to use for a category. This is
explored in greater detail in the results section.

Network Construction

After data were collected, before network training could occur, creating a network DAG structure for each of the
datasets was required. The two datasets pulled from the UCI database have been cited in a number of publications
specifically looking at creating network structures. For these two datasets, common structures found in academic
literature were used (J Cheng, 2001; Jie Cheng, Hatzis, & Page, 2001; Salama & Freitas, 2013). However, since the
AR Assembly data was a novel dataset,
network construction required
preliminarily analysis to understand
relationships between variables. Linear
regression models were created to show Pckingz] | 5306 e aears
the strength of influence of variables 5515

upon each other and used to construct a
DAG. An example network structure for
predicting time using the AR Assembly
data is shown in Figure 3. For more
detail on network construction for the

AR dataset please see previous work Assembly3| _>621 1245

detailing the network construction — [FEiGriiel Sises |

process (MacAllister et al., 2017). This

type of analysis was necessary due to the Figure 3. Bayesian Network Structure

small data set, meaning research

methods that construct network structure could not be used. While research in more automated network construction
does not require as much expert input, it relies on having large amounts of data that can be used to learn relationships
between variables. However, with small data sets there is often not enough data to make these relationships clear to
an automated algorithm. In addition, solely relying on data to construct a network structure is still an active research
area and some results indicate that networks constructed only from data are not as accurate as those including expert
knowledge (Fenton, 2012; Masegosa & Moral, 2013; Zhou, Fenton, & Neil, 2014). As a result, when using a Bayesian
Network approach expert understanding of a process is often necessary to help create a network structure when
attempting to use small or even large data sets.

Total Time
Category Name | Lower Bound | Upper Bound

Category Name | Lower Bound | Upper Bound

For all datasets, Hierarchical Clustering was used to group like values (Kerber, 1992). Grouping the data into clusters
or categories makes the likelihood calculations less computationally intensive. In addition, discretized data works
better with smaller data sets since there may not be enough data to construct a continuous probabilistic distribution.
Example results from the clustering algorithm are shown in network structure in Figure 3. Each vertex has multiple
categories, with lower and upper bounds. Discretizing the data requires a participant’s recorded numeric value for a
variable to be assigned to a category where it fits inside the bounds. Each category houses multiple participant values
that fall within its specific assigned range. As a result, instead of continuous values, categorical values are used for
training networks.
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Training the Bayesian Networks

Training the networks required calculating the likelihood of observing specific evidence states within a predictor
category. The predictor vertices varied by network. Using the AR Assembly dataset two networks were constructed.
One to predict total completion time and the other to predict the number of errors a participant made. For the Car
Choice dataset, the suitability of the choice was the predictor variable. Finally, for the Census dataset income category
was the predictor variable. To calculate the likelihood of observing specific evidence, the number of times evidence
combinations appeared were calculated for a predictor category. Table 2 is a representative example evidence
combination table including frequency for the AR dataset when attempting to predict time. Once an evidence table is
constructed for a network training can continue by using the number of observed combinations to calculate likelihood.

Taking a closer look at the evidence counts column in Table 2, it is apparent that the training data is not evenly
distributed across the time categories. The vast majority of the observed evidence exists in time category two. This
suggests that the network does not have much information on the behavior of data points outside time category two.
This lack of information outside of time category
two and the bulk of the data falling into category
|39 01 T0 1)) G DAY T3 13 TWSCR A% 13 (9 TSR Y T 0 (VR 9 S Ol two, skewing the priors, suggests that the network
Category  Assembly Picking Count will over assign the category that it is most familiar
with. The propensity to over assign time category
two is a direct result of the limited information

Table 2. Likelihood Table for Time Network

Time2 Assemb3 Picking2 18 0.632 | available from the small data set. Since there is only
Time2 Assemb3 Picking3 5 a small number of points describing the system’s
Time2 Assembl Picking5 1 behavior, likelihood values will play only a small
Time3 Assemb3 Picking3 4 0.158 | role deciding a point’s category assignment,
Time3 Assemb3 Picking2 2 allowing the prior to drive assignments. This could

end up causing the network to miscategorize points
as time category two since it is by far the most
frequently represented category and will have the
largest prior. The lack of evidence in some
categories in Table 2 is characteristic of a small data
set. A larger data set would contain more points and
a wider variety of points to ensure that all the behavior of the recorded process is captured.

By generating data based on a Kriging or RBF model, a wider variety of evidence states can be represented. Due to
space constraints all of those evidence combination tables are not shown for the other three networks. However, for
larger data sets, such as those generated using Kriging and RBF, more evidence combinations are generally present.
More states are represented in the Bayesian Network could allow it to better predict events it encounters. The next
section explores how well Bayesian Networks trained with generated data perform, to see if this theory holds.

RESULTS AND DISCUSSION

After all the steps consisting of splitting data into testing and training sets, and network structure creation the networks
were ready for testing. The testing process involved running fifteen different splits of testing and training data for each
through one of the four corresponding network structures. Data used for training a network each run was either original
data, Kriging generated data, and RBF generated data. The average accuracy of these fifteen runs was used to gauge
how accurate each BN was using different types of data. Fifteen runs were used since previous work showed that with
small datasets slight changes in the breakdown of testing and training data can impact results (MacAllister et al.,
2017). Averaging results across a number of runs minimizes the slight changes due to dataset composition.
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Figure 4 shows the testing results
when trying to predict total
assembly time using original, RBF,
and Kriging data. The histogram of
accuracy results from the 15
networks trained and tested with
random allocations of data also
contain box plots describing the
distribution of the results. The
medians of the box plots in Figure
4 show that the original data
trained networks achieve the
highest median accuracy, even
though RBF and Kriging have two
orders of magnitude (1000 vs ~35)
more data points. This suggests
that even though the Kriging and
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Figure 4. AR Dataset Time Network

RBF models were good fits to the data, they don’t capture the randomness associated with human operators well. Or
it could also be that some of the testing data lay in the extrapolation range of the model or sampling the design space
randomly threw off the priors. As a result, a model trained to predict completion time using generated data would not
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Figure S. AR Dataset Error Network
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have accurate
capabilities.

predictive

The second network structure
tested for the AR assembly data
shown in Figure 5, produces
similar results. The box plots show
the mean network testing accuracy
for original data trained BN is
slightly higher than RBF and
Kriging. This again suggests that
something is missing when
generating data.

To see if original data trained
networks are more accurate than
generated, the results from the

second two datasets need to be examined. Histograms and box plots for the car choice dataset shown in Figure 6
indicate that original data produces a network with twice the accuracy of the Kriging and RBF. This suggests that
these models, especially the Kriging model, did not generate data that was very good for training a BN, even though

the model was an accurate fit to
the data. This could point to
another factor contributing to
decreasing the accuracy of the
BN, other than data generation
model accuracy. Another peculiar
result is the range of network
accuracies seen in the RBF
metrics. Some datasets result in
good training datasets for the BN,
but some poor. Digging into the
reason behind this and looking for
differences could help guide the
creation of good datasets rather
than poor.
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Moving on to the third dataset in
Figure 7, Census data, the mean
accuracy for the original and Kriging
data are very similar. RBF also
generates a large number of
accurately trained networks,
however, it’s average is reduced by a
few poorly performing networks.

The results discussed above suggest
that generated data on its own is not
enough to increase the accuracy of a
Bayesian Network trained with small
data. When dealing with such small
amounts of data, up sampling to such

a high degree to increase dataset variety might be damaging the network’s ability to produce accurate predictions. The
authors hypothesize that this could be due to the fact that when the number of likelihood combinations are increased
through randomly sampling the design space, the priors become distorted. This distortion of the priors unbalances
Bayes Theorem and reduces the accuracy of the network. The theory is that in order to use the generated data, priors
have to be re-computed in a way that can maximize the usefulness of the generated data. In short, the goal is to

decouple the priors from the generated
data. This will provide more likelihood
values using data generation, while still
trying to represent the system with
priors that maximize the accuracy of
the network.

Figure 8 shows the results of using PSO
to set prior probabilities for the three
different Time Network datasets. The
results show that in this case using PSO
actually decreases the median accuracy
of the networks. However, in some
cases the method produces some very
accurate networks that surpass the
original trained network accuracy. This
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suggests that sometimes the PSO method could work on a dataset, but not all runs are particularly stable as evidenced
by the handful of low-lying results. Even though the method produces some inaccurate networks, the proof of concept
showing the presence of high preforming networks is encouraging. These high preforming variants, demonstrating
increases over the original data trained networks, could be used as a way to improve classification accuracy. Accuracy
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gains from the generated data trained
networks could potentially help model a
process more accurately, saving time
and money.

Figure 9 shows the results of the error
predicting network when the priors are
optimized using PSO. Results of PSO
prior optimization show accuracy
improvements over the non-PSO
optimized networks for all three training
dataset variations. The median accuracy
for original, Kriging, and RBF, are
higher than the non-PSO prior
optimized networks shown in Figure 5.
In addition, maximum classification
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Distributions accuracy values exceeded previous
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those with only small datasets
available. Figure 10 shows the PSO
results for Car Choice dataset. These
results show that using PSO to set priors for the original training data greatly reduces classification accuracy from
71% to around 8%. However, Kriging data trained networks were not impacted by PSO manipulation of priors. Finally,
RBF data trained networks saw very slight average accuracy gains and the number of networks with over 60%
accuracy increased. It seems with PSO priors RBF generated data is able to surpass the network accuracy set by the
original non-PSO data trained

network. This again suggests Distributions
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prior accuracy has less of an
impact on the average accuracy of the generated data trained networks than the other datasets. This could suggest that
the generated network priors are fairly stable and not as sensitive to variation as the original data.

Overall, the results presented above demonstrate a proof of concept showing that in some cases PSO can produce
networks that match or exceed classification accuracy of original data trained networks. High accuracy networks tuned
using PSO or augmented with generated data could be used as a way to improve prediction models for areas in industry
and the military that are currently underserved by traditional ML approaches.

CONCLUSION AND FUTURE WORK

Bayesian Networks are a very powerful tool for modeling and predicting complex relationships between variables.
They provide a transparent way to map and understand variable relationships and how changes to networks might
impact their accuracy. Their easily understandable network structure paired with flexible Bayesian Statistical methods
lends itself well to investigating behaviors associated with small data sets for machine learning. Greater understanding
of how to adapt machine learning tools like BN to use with small datasets will ultimately help underserved areas like
small volume manufacturing or military applications utilize the powerful predictive analytics of machine learning.
The work in this paper took initial steps towards this goal by exploring the feasibility of using Kriging and Radial
Basis Function models to generate data for four different Bayesian Networks. The goal of the network was to predict
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completion time for workers conducting assembly operations, predict the number of errors an assembly worker made,
a buyer’s car choice, and the income level of an adult. Data for the project was collected from a human-subjects study
that used augmented reality guided work instructions and from the UCI machine learning database. Small amounts of
data were used to train the different BNs. Each of these training datasets were each fitted with a Kriging and a Radial
Basis Function model. These models were randomly sampled to produce a larger dataset for training. Results showed
that generated data, alone, did not increase the accuracy of the trained networks. As a result, Particle Swarm
Optimization (PSO) was used to set the priors of the data to gauge if prior optimization could improve network
accuracy. Results of these tests showed that using PSO can help increase network accuracy. However, not all network
and data combinations see accuracy improvements. Moving forward, the authors will explore the characteristics of
the datasets that experience accuracy gains and gauge if generating even greater amounts of data impact network
accuracy. The goal of future work is to gain greater understanding of best practices for augmenting small datasets used
to train Bayesian Networks. In the end, the work presented above provides the first steps towards coming up with a
strategy to begin using Bayesian Networks in real world small dataset problems. However, these initial results should
be applied with caution to other applications. The quality of the small dataset and of the models used to generate data
can have a large impact on the augmented dataset. If the small dataset is of poor quality generating more data might
not improve network performance. When evaluating datasets for potential augmentation it is important practitioners
sufficiently test the accuracy of networks trained using generated data to ensure that poorly trained networks are not
used to make important decisions.
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